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Abstract: We isolated a complementary DNA (cDNA) clone encoding endoplasmic reticulum
oxidoreductin 1 (bERO1, a specific oxidant of protein disulfide isomerase (PDI)) from Bombyx mori.
This protein has a putative open reading frame (ORF) of 489 amino acids and a predicted size
of 57.4 kDa. Although bERO1 protein shares less than 57% amino acid sequence homology with
other reported ERO1s, it contains two conserved redox active motifs, a Cys-X-X-X-X-Cys motif of
N-terminal and Cys-X-X-Cys-X-X-Cys motif of C-terminal. Both motifs are typically present in
ERO1 protein family members. The bEro1 mRNA expression was highest in posterior silk gland
on the sixth day of the 5th instar larvae. Expression of bEro1 mRNA also markedly increased during
endoplasmic reticulum (ER) stress induced by stimulation with antimycin, calcium ionophore
A23187, dithiothreitol, H2O2, monencin, and tunicamycin. In addition, expression levels of bEro1
exactly coincided with that of bPdi. This is the first result suggesting that bERO1 plays an essential
role in ER quality control through the combined activities of bERO1 and bPDI as a catalyst of protein
folding in the ER and sustaining cellular redox homeostasis.

Keywords: Bombyx mori; endoplasmic reticulum oxidoreductin 1 (ERO1); protein disulfide
isomerase (PDI); disulfide bond

1. Introduction

The endoplasmic reticulum (ER) is a highly specialized organelle involved in the maturation of
extracellular membrane proteins and secreted proteins. Disulfide bond formation is a key step in
this process [1]. Disulfide bonds are usually formed by pairing and oxidative linkage of sulfhydryl
groups (-SH) on cysteine residues during the folding process in the ER. Cooperative activity of
two proteins, protein disulfide isomerase (PDI) and flavin adenine dinucleotide (FAD)-dependent
oxidase ER oxidoreductin 1 (ERO1) formed disulfide bonds, which both have protein oxidation
with redox reactions [2,3]. Two proteins use an exchanging mechanism of thiol-disulfide to transfer
disulfide bonds on to their substrate proteins [3]. Disulfide bonds formed between cysteines in
the active site of PDI are transferred directly to the folding secretory protein. ERO1 reoxidizes
reduced PDI, whereas reduced ERO1 is reoxidized by its FAD cofactor [4–6]. The ERO1 contains
a conserved Cys-X-X-X-X-Cysmotif (N-terminal) and Cys-X-X-Cys-X-X-Cys motif (C-terminal). The
N-terminal Cys-X-X-X-X-Cys motif likely transfers electrons to the two latter residues of the
Cys-X-X-Cys-X-X-Cys motif (C-terminal), which are in close proximity to the isoalloxazine ring of
FAD [7].
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In Saccharomyces cerevisiae, most disulfide bonds are formed by thiol-disulfide transfer
mechanisms with the oxidized Pdi1p [8,9]. Pdi1p requires other oxidizing molecules to be
recycled because Pdi1p is unable to generate disulfide bonds by itself. In previous work, a major
disulfide-generating FAD-dependent oxidase Ero1p was identified in yeast [10]. Disulfide bonds are
directly transferred to PDI by ERO1 in both yeast and mammalian cells [8]. Frand and Kaiser reported
that the oxidative capacity of ER depend on Ero1p activity in S. cerevisiae. Mutation of Ero1p inhibit
yeast resistance to the small-molecule redox reagent DTT and increases the unfolded protein response
(UPR) along with secretory protein accumulation. Overexpression of Ero1p improves the oxidizing
capacity, as shown by its enhanced resistance to DTT [5,11,12].

Although the functional role and complementary DNA sequence of the ERO1 family of
proteins have been demonstrated in a number of eukaryotic organisms and tissues, they have
not yet been reported in B. mori. In this study, we used a genetic approach to investigate
regeneration of oxidized PDI catalyzing protein in B. mori. Here, we present a novel protein
termed bERO1, endoplasmic reticulum oxidoreductin 1 of B. mori, containing two cysteine motifs,
N-terminal CAMKYC (Cys-X-X-X-X-Cys motif; active-site cysteine) and C-terminal CVECDKC
(Cys-X-X-Cys-X-X-Cys motif; shuttle cysteine). Finally, we provide direct evidence of the gene
structure, molecular characterization, and connection between bERO1 and bPDI expression in B. mori
for the first time.

2. Results and Discussion

2.1. Screening and Analysis of bEro1 cDNA

To identify novel genes involved in the unfolded protein response in B. mori–derived Bm5 cells,
we used a differential screening method [13]. One of the 768 cDNA clones in the screening shared
high homology with the other ERO1 genes, and the cDNA fragment was cloned. Further cDNA
sequencing was performed after obtaining a full cDNA using 31-RACE PCR [14]. This cDNA was
shown to contain a putative open reading frame of 489 amino acids and predicted size of 57.4 kDa,
whereas the protein shared up to 57% amino acid sequence homology with other reported ERO1s.
The gene was named B. mori bEro1 (Table 1), and the bEro1 sequence was submitted to GenBank under
accession number FJ502246. The bEro1 gene contains a 51-untranslational region of 99 nucleotides,
followed by an initiating ATG codon (Figure 1).

Table 1. Comparison of pairwise identifies of B. mori endoplasmic reticulum oxidoreductin 1 (bEro1)
gene and known eukaryotic ERO1 genes.

Scientific Name 1 2 3 4 5 6 7 8 9 10 11 12 13

B. mori -
A. mellifera 57 -
T. castaneum 57 62 -
A. aegypti 52 54 61 -
D. melanogaster 51 52 54 56 -
X. tropicalis 46 44 46 43 45 -
M. musculus 46 45 46 44 45 69 -
H. sapiens 47 45 48 45 44 57 69 -
P. toglopytes 47 45 47 46 45 58 57 58 -
B. taurus 51 50 51 50 48 62 58 58 98 -
G. gallus 48 46 49 46 45 58 62 62 96 96 -
D. rerio 49 47 49 47 47 58 58 60 85 86 92 -
S. cerevisiae 24 28 26 25 26 27 26 29 29 30 27 27 -

Sequences were adjusted to optimize alignment of conserved residues, and percentage of aligned identities
were determined.
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The putative polyadenylation signal (AATAA) is located 70 nucleotides downstream of the
termination codon, and the poly A tail is located 57 nucleotides downstream of the putative
polyadenylation signal. The bERO1 protein contains two specific regions: an N-terminal CAMKYC
(C/X/X/X/X/C motif; active-site cysteine) and C-terminal CVECDKC (Cys-X-X-Cys-X-X-Cys motif;
shuttle cysteine) [7]. All eukaryotes contain a shuttle cysteine motif [Cys-V-G(E)-C-D(F,S)-K-Cys]
in the C-terminal region of ERO1. However, SIKD amino acid sequences are present between
N-terminal cysteines in the active site cysteine motif (Cys-X-X-X-X-Cys) in mammals [15]. In our
results, the active site cysteine motif (Cys-X-X-X-X-Cys) in the N-terminus of B. mori was identical
to that in insects [Cys-A-M(I)-R(K)-Y(F)-Cys]. These are marked in gray in Figure 1 and are
compared with other known ERO1s in Table 2. In addition, we detected an XBP1-binding site
(51-AACTGACGTGTACTT-31) in bEro1 as well as other Ero1 family members (data not shown) [16].
Based on previous cDNA sequence analysis, we propose that bEro1 gene is a member of the Ero1
gene family.

Int. J. Mol. Sci. 2015, 16age–page 

3 

(C/X/X/X/X/C motif; active-site cysteine) and C-terminal CVECDKC (Cys-X-X-Cys-X-X-Cys motif; 
shuttle cysteine) [7]. All eukaryotes contain a shuttle cysteine motif [Cys-V-G(E)-C-D(F,S)-K-Cys] in 
the C-terminal region of ERO1. However, SIKD amino acid sequences are present between  
N-terminal cysteines in the active site cysteine motif (Cys-X-X-X-X-Cys) in mammals [15]. In our 
results, the active site cysteine motif (Cys-X-X-X-X-Cys) in the N-terminus of B. mori was identical to 
that in insects [Cys-A-M(I)-R(K)-Y(F)-Cys]. These are marked in gray in Figure 1 and are compared 
with other known ERO1s in Table 2. In addition, we detected an XBP1-binding site  
(5′-AACTGACGTGTACTT-3′) in bEro1 as well as other Ero1 family members (data not shown) [16]. 
Based on previous cDNA sequence analysis, we propose that bEro1 gene is a member of the Ero1 
gene family. 

 
Figure 1. Nucleotide and deduced amino acid sequences of B. mori bERO1 cDNA. The predicated 
amino acid sequence is shown below the nucleotide within the open reading frame. Two activation 
domains, CHIKTC (111~116 a.a) and CVGCDKC (266~272 a.a), are indicated in the shadow box. The 
letters in the box indicate three putative glycosylation sites. The translation start and stop codons are 
indicated by asterisks. The underline nucleotide sequences indicate the putative polyadenylation 
signal and poly (A) tail, respectively. 

2.2. Tissue Distribution of bEro1 Expression 

To determine where the bEro1 gene is expressed in B. mori, we isolated fat body (fb), skin (sk), 
middle silk grand (msg), malpighian vessels (mv), posterior silk grand (psg), midgut (mg), and head 
(he) from three-day-old 5th instar larvae. After isolation of total RNA, we performed real-time PCR 

Figure 1. Nucleotide and deduced amino acid sequences of B. mori bERO1 cDNA. The predicated
amino acid sequence is shown below the nucleotide within the open reading frame. Two activation
domains, CHIKTC (111~116 a.a) and CVGCDKC (266~272 a.a), are indicated in the shadow box. The
letters in the box indicate three putative glycosylation sites. The translation start and stop codons
are indicated by asterisks. The underline nucleotide sequences indicate the putative polyadenylation
signal and poly (A) tail, respectively.
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2.2. Tissue Distribution of bEro1 Expression

To determine where the bEro1 gene is expressed in B. mori, we isolated fat body (fb), skin (sk),
middle silk grand (msg), malpighian vessels (mv), posterior silk grand (psg), midgut (mg), and head
(he) from three-day-old 5th instar larvae. After isolation of total RNA, we performed real-time PCR
(Figure 2a). Although bEro1 mRNA was very weakly expressed in fat body, higher expression levels
were detected in the posterior silk grand, middle silk grand, and skin. Relative expression levels
of the bEro1 gene were as follows: posterior silk grand > skin > middle silk grand > fat body >
midgut > head. However, bEro1 expression was not detected in the malpighian vessels. Among
the tissues tested, highest bEro1 expression was detected in the posterior silk grand, which showed
approximately 21-fold higher bEro1 expression than fat body. This is the first report demonstrating
pronounced expression of an ERO1 family protein (bERO1) in the posterior silk grand of B. mori.
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Figure 2. Expression of bEro1 in various tissues, developmental stages of 5th instar whole body, and 
posterial silk grand of B. mori. (a) Expression levels of bEro1 in various tissues, including fat body (fb), 
skin (sk), middle silk grand (msg), malpighian vessels (mv), posterial silk grand (psg), midgut (mg) 
and head (he) in 5th instar three-day larvae. Relative expression levels are presented as the mean ±SD 
(n = 6); * p < 0.05 versus fat body. Total RNA was extracted from 5th instar (1–8 days) larvae from 
whole body (b) and posterial silk grand (c). Relative expression levels are presented as the mean ± SD 
(n = 6); * p < 0.05 versus day one. 

2.3. bEro1 Expression in Development Stages of 5th Instar Larvae 

Silk fibroin consisting of a heavy-chain, light-chain, and P25 is highly expressed in the posterior 
silk grand in stages of 5th instar larvae compared with other stages to make silk [17]. As ERO1 helps 
to facilitate protein folding by catalyzing a reaction that forms disulfide bonds, which helps stabilize 
final protein structures [18], we can assume that bEro1 was highly expressed at this stage. Thus, we 
investigated bEro1 expression in the whole body and posterior silk grand in all development stages 
of 5th instar larvae. As shown in Figure 2b, bEro1 was highly expressed in the whole body from four 
days to seven days in 5th instar larvae. Especially, highest bEro1 expression was detected after six 
days in 5th instar larvae, which showed approximately 3.3-fold higher expression compared with 
day one. Furthermore, bEro1 was also highly expressed in the posterior silk grand from four days to 

Figure 2. Expression of bEro1 in various tissues, developmental stages of 5th instar whole body, and
posterial silk grand of B. mori. (a) Expression levels of bEro1 in various tissues, including fat body
(fb), skin (sk), middle silk grand (msg), malpighian vessels (mv), posterial silk grand (psg), midgut
(mg) and head (he) in 5th instar three-day larvae. Relative expression levels are presented as the
mean ˘SD (n = 6); * p < 0.05 versus fat body. Total RNA was extracted from 5th instar (1–8 days)
larvae from whole body (b) and posterial silk grand (c). Relative expression levels are presented as
the mean ˘ SD (n = 6); * p < 0.05 versus day one.
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2.3. bEro1 Expression in Development Stages of 5th Instar Larvae

Silk fibroin consisting of a heavy-chain, light-chain, and P25 is highly expressed in the posterior
silk grand in stages of 5th instar larvae compared with other stages to make silk [17]. As ERO1 helps
to facilitate protein folding by catalyzing a reaction that forms disulfide bonds, which helps stabilize
final protein structures [18], we can assume that bEro1 was highly expressed at this stage. Thus,
we investigated bEro1 expression in the whole body and posterior silk grand in all development
stages of 5th instar larvae. As shown in Figure 2b, bEro1 was highly expressed in the whole body
from four days to seven days in 5th instar larvae. Especially, highest bEro1 expression was detected
after six days in 5th instar larvae, which showed approximately 3.3-fold higher expression compared
with day one. Furthermore, bEro1 was also highly expressed in the posterior silk grand from four
days to eight days in 5th instar larvae similar to the whole body (Figure 2c). Especially, highest
bEro1 expression was detected after six days in the posterior silk grand, which showed approximately
588-fold higher expression compared with day one. This result indicates that bERO1 may play an
important physiological role related to quality control during synthesis of fibroin in the posterior
silk grand.

Table 2. Comparison of CXXXXC motifs and CXXCXXC motifs in amino acid sequence of ERO1s.

Scientific Name N-Terminal (CXXXXC Motif) C-Terminal (CXXCXXC Motif)

A. mellifera CHVQPC CVGCDKC
T. castaneum CHVEAC CVGCDKC

A. aegypti CHVEQC CVGCDKC
D. melanogaster CQVENC CVGCDKC

X. tropicalis CAVKPC CVGCDKC
M. musculus CAVKPC CVGCDKC
H. sapiens CHVEPC CVGCDKC

P. toglopytes CHVEPC CVGCDKC
B. taurus CHVEPC CVGCDKC
G. gallus CHVEPC CVGCDKC
D. rerio CHVEPC CVGCDKC
B. mori CHIKTC CVGCDKC

2.4. Induction of bEro1 during ER Stress

Cells subjected to ER stress can show drastically altered protein folding, leading to accumulation
of unfolded proteins. As a result, this activates a signaling response termed the UPR [19]. A
hallmark of this response is coordinated by up-regulation of folding enzymes and ER chaperones.
Increased levels of folding enzymes and chaperones during ER stress prevent aggregation of mis- or
unfolded proteins and promote proper folding and assembly of proteins in the ER. A previous work
demonstrated that Ero1 mRNA levels could be increased in cells subjected to ER stress [20]. In this
study, we tested the effects of ER stress on bEro1 expression. Bm5 cells derived from B. mori were
treated with antimycin A (A), calcium ionphore A23187 (Ci), DTT (D), H2O2 (H), monensin (M), and
tunicamycin (T). As shown in Figure 3, bEro1 expression was elevated by 2-fold compared with the
control. Treatment with DTT, an inhibitor of disulfide bond formation, induced high levels of bEro1
expression, suggesting bEro1 may play a role in the formation of disulfide bonds through increased
oxidizing capacity, as shown by their increased resistance to reducing agent DTT [8,12]. Furthermore,
bEro1 expression was remarkably increased by treatment with H2O2. This result indicates that bERO1
plays essential roles in oxidative protein folding and is an oxidizing agent in the ER, similar to ERO1
in mammals [10,11].
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Figure 3. Effects of various endoplasmic reticulum stresses on bEro1 expression. Bm5 cells were 
treated with 8 μM antimycin (A), 10 μM calcium inophore A23187 (Ca), 3 mM dithiothreitol (D),  
100 μM H2O2 (H), 100 μM monensin (M), and 5 μg/mL of tunicamycin (T) for 4 h. (C) indicates the 
control without ER stress reagent. Relative expression levels are presented as the mean ± SD (n = 3);  
* p < 0.05 versus control. 

Figure 3. Effects of various endoplasmic reticulum stresses on bEro1 expression. Bm5 cells were
treated with 8 µM antimycin (A), 10 µM calcium inophore A23187 (Ca), 3 mM dithiothreitol (D),
100 µM H2O2 (H), 100 µM monensin (M), and 5 µg/mL of tunicamycin (T) for 4 h. (C) indicates the
control without ER stress reagent. Relative expression levels are presented as the mean ˘ SD (n = 3);
* p < 0.05 versus control.

2.5. Relationship between bERO1 and bPDI

In the case of eukaryote, oxidative protein folding in the ER is an essential function that requires
the electron relay system between the proteinaceous components of the pathway [21]. During this
process, PDIs directly oxidize new substrate proteins and are subsequently reduced. ERO1 is located
upstream of this redox reaction, which reoxidizes and reactivates one of two thioredoxin-like domains
of PDI to induce a new cycle of oxidative protein folding through its cofactor FAD [10,12,22]. ERO1
activity plays an essential roles in disulfide bond formation in simple eukaryotes such as yeast and
worms. ERO1 function is essential for disulfide bond formation in these types of simple eukaryotes
but is largely compensated for by alternative pathways in mammals [23,24]. Although ERO1
participates in alternative mammalian pathways, its importance is highlighted by UPR-mediated
up-regulation [21,25]. Formation of disulfide bonds within the ER requires the combined activities
of ERO1 and PDI [26].

In this study, we investigated whether or not bPDI and bERO1 are required for oxidative protein
folding in the ER as well as mammals. To investigate the relationship between bPdi and bEro1 gene
expression in B. mori, we isolated total RNA from fat body, skin, middle silk grand, malpighian
vessels, posterior silk grand, midgut, and head from three-day-old 5th instar larvae, as well as the
whole body in all development stages of 5th instar larvae (1–8 days, respectively). As shown in
Figure 4, expression of bEro1 exactly coincided with that of bPdi in fat body, skin, middle silk grand,
posterior silk grand, and the whole body. Especially, in six-day-old 5th instar larvae, bPdi expression
drastically increased by about 136-fold compared with the posterior silk grand on day one as well as
bEro1 (588-fold).

A huge amount of silk fibroin is synthesized within cells of the posterior silk grand in silkworm
B. mori in the 5th instar stage. Silk fibroin is composed of H-chain (350 kDa), L-chain (26 kDa), and P25
glycoprotein (30 kDa) [27,28]. H- and L-chains are linked by a disulfide bond between Cys-c20 of the
H-chain and Cys-172 of the L-chain, whereas P25 associates with disulfide-linked H- and L-chains via
non-covalent interaction [29,30]. This H-L disulfide-linkage is essential for secretion of great amounts
of silk fibroin [31]. In our previous work, we reported high expression of bPDI in the posterior silk
gland of B. mori in the 5th instar stage using expressed sequence tag (EST) analysis [32]. The bEro1
expression also markedly increased in the posterior silk grand of 5th instar larvae as well as bPdi.
Increasing evidence suggests that ERO1 directly oxidizes PDI, which participates in disulfide bond
formation for newly synthesized proteins [3,6,26]. Therefore, cooperative activity and expression of
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bPDI and bERO1 play important roles in the formation of disulfide linkages among fibroin heavy and
light chains in B. mori.
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fat body; (b) Expression levels of bEro1 and bPdi in developmental stages of 5th instar whole body
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mean ˘ SD (n = 6); * p < 0.05 versus bEro1 on day one. # p < 0.05 versus bPdi on day one.

3. Experimental Section

3.1. Insects and Cells

The silkworm larvae (Jam 306) were reared on an artificial diet under standard recommended
conditions at 24–27 ˝C, and 70%–90% relative humidity. B. mori ovary-derived Bm5 cells were
maintained at 27 ˝C in TC-100 insect medium (Sigma, St. Louis, MO, USA) with 10% FBS (fetal
bovine serum) (GIBCO Life Technologies, Grand Island, NY, USA) using the standard recommended
method [33].

3.2. RACE PCR Analysis

To generate the 31-translated sequence of bEro1 messenger RNA (mRNA), 31-RACE PCR was
carried out using Bm5 cells, poly (A+), and a Marathon cDNA Amplification Kit (Clontech, Palo Alto,
CA, USA) according to the manufacturer’s protocol. The adapter sequence attached to the ends of
the cDNA allowed its usage in 51- and 31-RACE. Three GSPs (gene specific primers) were designed
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for detecting 31-RACE fragment of the bEro1 cDNA. Nucleotide sequences of the primer set: GSP1,
51-GCTCCTCCGGAAGGAGAGT-GGGTC-31; GSP2, 51-CCGACAGGCGATCAGCAACATGTTG-31;
GSP3, 51-GGGTCTCGGGAC-TGCTTTGAAAATATTGTTCT-31. These primers were used in 31-RACE
in conjunction with the adaptor primer (AP1,51-CCATCCTAATACGACTCACTATAGGGC-31) to
amplify the 31-ends of the gene from cDNA. PCR conditions were as follows: initial denaturation
at 94 ˝C for 3 min, then 30 cycles of 94 ˝C for 30 s, 60 ˝C for 30 s, and 72 ˝C for 1 min followed by
72 ˝C for 10 min. PCR products were subcloned using pGEM-T Easy Vector (Promega, WI, USA), and
subcloned cDNA fragment were then sequenced.

3.3. Reverse Transcription PCR

Quantitative real-time PCR was carried out using the total cellular RNA extracted using a Total
RNA Isolation Kit (Promega, Madison, WI, USA) according to the manufacturer’s protocol. PCR
was performed using GSP set at an annealing temperature of 60 ˝C for 40 cycles using a SYBR
Premix Ex Tag (Takara, Shiga, Japan). Nucleotide sequences of the primer set: actin3 forward
primer, GAAGCTGTGCTACGTCGCTC; actin3 reverse primer, CCGATGGTGATGACCTGACC;
bEro1 forward primer, CCATTAGTGCTGCCA-ACCAGTA; bEro1 reverse primer,
ATCTGCATCAGCATCACGGTC; bPdi forward primer, CTAGCGAAAGTTGACGCAACTC; bPdi
reverse primer, TGCATAGGACTGCCATTCCTG [34]. Actin3 was used as an internal control.

3.4. Statistical Analysis

All data are presented as the mean ˘ S.D. from three or more independent experiments, unless
otherwise stated. Different treatments were compared with Student’s t-test, one-way ANOVA
with Dunnett’s multiple comparisons test, or chi-square tests using SPSS software (version 18.0;
SPSS Inc., Chicago, IL, USA). Differences with a p-value less than 0.05 were considered to be
statistically significant.

4. Conclusions

In conclusion, this result suggests that disulfide bond formation within the ER requires combined
expression of bERO1 and bPDI in B. mori as well as yeast and mammals. However, further studies
are warranted to clarify the role of bERO1 in reoxidizing bPDI for disulfide bond formation and
maintaining an oxidative environment in the ER through gain- or loss-of-function studies.
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