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Abstract: Rock-Eval pyrolysis and the biomarker composition of organic matter were systematically
studied in hydrate-bearing sediments from the Shenhu area, South China Sea. The n-alkane distri-
bution patterns revealed that the organic matter in the sediments appeared to originate from mixed
sources of marine autochthonous input, terrestrial higher plants, and ancient reworked organic matter.
The low total organic carbon contents (average < 0.5%) and the low hydrogen index (HI, <80 mg
HC/g TOC) suggested the poor hydrocarbon-generation potential of the deposited organic matter at
a surrounding temperature of <20 ◦C in unconsolidated sediments. The abnormally high production
index and the fossil-originated unresolved complex mixture (UCM) accompanied by sterane and
hopane of high maturity indicated the contribution of deep hydrocarbon reservoirs. Preliminary
oil-to-source correlation for the extracts implied that the allochthonous hydrocarbons in the W01B
and W02B sediments might have originated from the terrestrial source rocks of mature Enping and
Wenchang formations, while those of W03B seem to be derived from more reduced and immature
marine source rocks such as the Zhuhai formation. The results of the organic extracts supported the
previous identification of source rocks based on the isotopic composition of C2+ hydrate-bound gases.
The biomarker of methanogens, squalane, was recognized in the sediments of this study, possibly
suggesting the generation of secondary microbial gases which are coupled with the biodegradation
of the deep allochthonous hydrocarbons.

Keywords: organic matter; biomarkers; Rock-Eval; gas hydrate; biodegradation; South China Sea

1. Introduction

Natural gas hydrates are crystalline compounds composed of water and gases formed
under high pressure and low temperature [1], which have been a frontier issue in both
the industrial and academic research fields [2,3]. Marine geological surveys and drilling
expeditions have shown that the Shenhu area, South China Sea (SCS) has abundant gas
hydrate resources [4–7], and it has been one of the most promising exploration areas for
gas hydrates [8–13].

It is conducive to understanding the formation mechanism, evolution history, and
distribution of gas hydrate to acknowledge the origins and sources of hydrate-bound
gas and its corresponding source rocks [3,14,15]. At present, most studies rely on the
geochemical characteristics of gas hydrate, which provide limited available indicators
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(mainly carbon and hydrogen isotopes of methane (δ13C-CH4 and δD-CH4) and the dry
coefficient (C1/(C2 + C3); C1, C2, and C3 refer to methane, ethane, and propane, respectively)
to study the gas origins [16–18]—the ambiguous boundaries in the genetic diagrams
and the complex secondary processes present difficulties for a definite interpretation.
Fortunately, biomarkers extracted from the hydrate-bearing sediment have more proxies
and thereby provide more information regarding the original deposition and potential
oil-source correlation of organic matter, and more clues as to the source rocks of the hydrate-
bound gas.

The geochemical characteristics of gases bound in hydrates and core sediments at
the three sites used in this study have been previously reported [19–22]. Hydrate samples
from W03B were suggested to be dominated by microbial gases, while those from W01B
and W02B exhibited a high content of thermogenic hydrocarbons [21,22]. Therefore, it is
an intriguing phenomenon that these three drilling sites have different gas origins and
sources, despite the fact that they are adjacent and located on either side of a canyon in
the Shenhu area (Figure 1b). Moreover, for the Shenhu area, it has been reported that the
deep conventional hydrocarbons have undergone an upward migration and subsequent
microbial biodegradation to participate in the formation of shallower gas hydrate, based
on the gas geochemistry and microbial community [21–23], but this inference still lacks
further robust evidence. Remarkably, biomarker patterns are important evidence to shed
new light on the contribution of petroleum hydrocarbons from deep oil/gas reservoirs and
provide clues for potential oil/source correlation. Apart from this, lipid biomarkers in gas
hydrate systems may provide important information for microbial communities associated
with methane metabolic activities.
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Figure 1. (a) Location of the Shenhu area in the Baiyun Sag of the Pearl River Mouth Basin
(PRMB), South China Sea (SCS), modified from [24]; (b) location of the hydrate coring sites of
this study—W01B, W02B, and W03B. C1–C17 refer to 17 canyons in the Shenhu area, modified
from [10,21,25].
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This study investigates the organic biomarker and pyrolysis geochemistry of sed-
iment samples from three sites (W01B, W02B, and W03B) in the Shenhu area by Gas
Chromatography–Mass Spectrometry (GC–MS) and Rock-Eval analyses to determine:
(1) the sources of the organic matter in the sediments; (2) the microbial gas generation po-
tential of the in situ sediment; (3) the existence/absence of a deep hydrocarbon contribution
and potential oil-source correlation; and (4) the significances of organic matter for the gas
hydrate system research in the Shenhu area. The novel results of this study might provide
profound insights into gas hydrate formation in the Shenhu area.

2. Geological Setting

Located at the intersection of three tectonic plates, the SCS is the largest passive
marginal sea in the Western Pacific [26,27]. The complex history of tectonic evolution
and the promising prospects of oil and gas have made the SCS a natural laboratory for
marine geology research [28,29]. The Shenhu drilling area is located in the Baiyun Sag, a
deep-water depression in the Pearl River Mouth Basin (PRMB) of the SCS [30,31] (Figure 1),
which has favorable conditions for gas hydrate formation and preservation [32–35]. High-
quality source rocks have been found to supply gas for the shallow gas hydrate de-
posits [11,12,36–38]. The Eocene Wenchang formation and the Oligocene Enping formation
are considered to be mature/overmature source rocks for the generation of thermogenic
gases (Figure 2) [11,37,38]. The Zhujiang formation and the Hanjiang formation cannot
provide thermogenic gas due to the limitation of their maturity, but they can still pro-
vide microbial gas as source rocks (Figure 2) [12,36]. Conventional oil/gas reservoirs
have been explored in the PRMB, further confirming the great resource potential of this
area [11,39–41]. Furthermore, polygonal faults induced by the overpressure environment
of rapid deposition and large-scale mud diapirs formed during the neotectonic movement,
all providing migration channels for gases accumulating at the gas hydrate stability zone
(GHSZ) [32]. In addition, regional exploration shows that the Baiyun Sag has favorable
geological conditions (seafloor pressures greater than 10 MPa, seafloor temperatures below
4 ◦C, and a geothermal gradient of 45–67.7 ◦C/km) for gas hydrate preservation [42,43].
Furthermore, it is noteworthy that the Shenhu area is the first place in the world where
high concentrations of disseminated natural gas hydrate have been discovered in fine-grain
sediment [9,25,44–46]. The gas hydrate is finely distributed in the foram-rich clayed silts,
with a concentration of 20–60% of the pore volume [9,25,44].
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Figure 2. Structural evolution characteristics and stratigraphic column of the PRMB, modified from [31,47].

3. Results
3.1. Rock-Eval Pyrolysis

The total organic carbon (TOC) contents of sediments from W01B and W02B decreased
exponentially with depth from 1.34% to 0.15% (Figure 3a,e), while that of W03B slightly
increased with depth from 0.19% to 0.32% (Figure 3i). The S1 and S2 of sediments from the
three sites all showed extremely low values, and the depth variation profiles were similar to
those of the TOC (Figure 3b,f,j). The HI values of sediments from the three sites ranged from
7 to 77, 16 to 55, and 16 to 45 mg HC/g TOC, respectively (Figure 3c,g,k). The OI indexes of
sediments from the three sites were in the range of 40–125, 100–139, and 74–93 mg HC/g
TOC, respectively (Figure 3c,g,k). The production indexes (PIs) of sediments from the three
sites were in the range of 0.11–0.86, 0.15–0.58, and 0.11–0.5, respectively (Figure 3d,h,l). The
Tmax values of the sediments were in the range of 331–404 ◦C, 366–399 ◦C, and 374–405 ◦C,
respectively (Figure 3d,h,l). A detailed data composition is shown in Table S1.

3.2. Biomarkers
3.2.1. n-Alkanes

The samples obtained from the three sites mainly contained n-alkanes from n-C12 to
n-C35, and most of the samples displayed a bimodal distribution pattern (Figure 4) with a
maximum at n-C16 or n-C18 of the pre-peak and n-C29 or n-C31 of the post-peak (Figure 4a).
Most samples showed a bimodal distribution pattern with the pre-peak dominating (e.g.,
Figure 4b: 3-18X, 1-17X), except for the shallow samples, which showed the post-peak
dominating (e.g., Figure 4b: 1-2H). The pre-peak showed an even-carbon dominance, while
the post-peak showed an odd-carbon dominance (Figure 4a).
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Figure 3. Depth profile of total organic carbon (TOC) (including pyrolysable organic carbon (PC) and
residual organic carbon (RC)), free hydrocarbons (S1), oil potential (S2), hydrogen index (HI), oxygen
index (OI), production index (PI), and Tmax of W01B (a–d), W02B (e–h), and W03B (i–l).



Molecules 2022, 27, 2533 6 of 20

Molecules 2022, 27, x FOR PEER REVIEW 7 of 22 
 

 

Figure 3. Depth profile of total organic carbon (TOC) (including pyrolysable organic carbon (PC) 
and residual organic carbon (RC)), free hydrocarbons (S1), oil potential (S2), hydrogen index (HI), 
oxygen index (OI), production index (PI), and Tmax of W01B (a–d), W02B (e–h), and W03B (i–l). 

3.2. Biomarkers 
3.2.1. n-Alkanes 

The samples obtained from the three sites mainly contained n-alkanes from n-C12 to 
n-C35, and most of the samples displayed a bimodal distribution pattern (Figure 4) with a 
maximum at n-C16 or n-C18 of the pre-peak and n-C29 or n-C31 of the post-peak (Figure 4a). 
Most samples showed a bimodal distribution pattern with the pre-peak dominating (e.g., 
Figure 4b: 3-18X, 1-17X), except for the shallow samples, which showed the post-peak 
dominating (e.g., Figure 4b: 1-2H). The pre-peak showed an even-carbon dominance, 
while the post-peak showed an odd-carbon dominance (Figure 4a). 

20 30 40 50 60
0

2x106

4x106

6x106

8x106

1x107

Ab
un

da
nc

e

Time (min)

—W02B 4H (99.9mbsf)

UCMs

a

15

16

18

17

20

21 22 23 2425 26
27

28

29

30

31

32 33

n-
C

14

n-
C

15

n-
C

16

no
r-P

r
n-

C
17 Pr

n-
C

18 Ph
n-

C
19

n-
C

20

n-
C

21

n-
C

22

n-
C

23

n-
C

24

n-
C

25

n-
C

26

PM
I

n-
C

27

n-
C

28

n-
C

29

n-
C

30

n-
C

31

n-
C

32

n-
C

33

n-
C

34

0

0.05

0.1

0.15

0.2

0.25

0.3

Ar
ea

 p
er

ce
nt

ag
e

 1-2H (54.9mbsf)
 1-17X (166.88mbsf)
 3-18X (176.36mbsf)

b

 
Figure 4. (a) Total ion chromatogram (TIC) of extracts from the studied sample W02B-4H (99.9 
mbsf); (b) representative n-alkane composition from W01B-2H (54.9 mbsf), W01B-17X (166.88 mbsf), 
and W03B-18X (176.36 mbsf). 
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Figure 4. (a) Total ion chromatogram (TIC) of extracts from the studied sample W02B-4H (99.9 mbsf);
(b) representative n-alkane composition from W01B-2H (54.9 mbsf), W01B-17X (166.88 mbsf), and
W03B-18X (176.36 mbsf).

3.2.2. Isoprenoid

The two major acyclic isoprenoid hydrocarbons in all the samples were pristane and
phytane. Empirical observations of marginally mature to mature rocks suggest that the
ratios of pristane to phytane vary systematically according to the type of depositional
environment [48,49]. The sources of pristane and phytane are multiple and complex, but,
as a general rule, Pr/Ph values > 3 are typical of organic matter with predominantly
terrestrial sources deposited in or transported through an anoxic environment; values of
less than 1 are typically found in sediments from anoxic marine or hypersaline depositional
environments [48,50,51]. The Pr/Ph of samples from the three sites ranged from 0.6 to 1.11,
0.61 to 0.97, and 0.18 to 0.8, respectively; all were less than 1 except for W01B-10x (1.11)
and W01B-17x (1.04), indicating a phytane-dominant reduction depositional environment.
Except for Pr and Ph, another kind of isoprenoid, squalene, was detected in samples from
all three sites, of which the content ranged from 1.38 to 10.06, 2.49 to 7.84, and 3.71 to 13.19,
respectively. The total squalane content of W03B was higher than that of W01B and W02B.

3.2.3. Steranes and Terpanes

A series of terpanes were detected in the extracts, including tricyclic terpanes (TT),
tetracyclic terpanes (TeT), and hopanes series (Figure 5a). Figure 5a shows the distribution
patterns of the hopane series. They are characterized by the predominance of C30 hopane
(C30H) and C29H. The relatively high abundance of biological configurational isomers
17β(H), 21β(H)-hopane (ββ-C30H) and 17β(H), 21β(H)-homohopane (ββ-C31H) indicate
their low maturation levels (Figure 5a). The 18α(H)-22,29,30trisnorhopane (Ts) had a
relatively high abundance in all samples, with Ts/Tm ratios ranging from 0.25 to 0.81,
0.19 to 0.72, and 0.11 to 0.55, respectively. C3122S/(S + R) showed less variation than Ts/Tm,



Molecules 2022, 27, 2533 7 of 20

with values of 0.23~0.53, 0.21~0.4, and 0.1~0.21, respectively, whereas gammacerane (Ga),
oleanane (OL), and C33–C35 homohopanes were absent. C27 diasteranes and C27, C28,
and C29 regular steranes were detected in the extracts (Figure 5b). The C27, C28, and C29-
5α(H),14α(H),17α(H)-20R-cholestanes exhibited an approximately V-shaped distribution
pattern (Figure 5b). The sterane maturation parameter αααC2920S/20(S + R) index of the
three sites ranged from 0.16 to 0.43, 0.15 to 0.36, and 0.03 to 0.24, respectively, and the
C29ββ/ββ + αα index of the three sites ranged from 0.24 to 0.42, 0.23 to 0.43, and 0.07 to
0.49, respectively.
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of the diasteranes and regular steranes on the mass chromatograms (m/z 217).

4. Discussion
4.1. Sources and Preservation of Organic Matter
4.1.1. n-Alkanes

It is thought that the light hydrocarbons (C21−) are mainly derived from the lipids of
marine algae, while the long-chain hydrocarbons (C21+) mainly originate from the waxes
of terrestrial higher vascular plants and the lipid fragments derived from conifers [52–54];
thus, the bimodal distribution pattern of most of the samples in this study indicates a
terrestrial–marine mixed source (Figure 4a,b), except for the layers such as W01B-10X
and W01-17X, which tended to be unimodal pre-peak (Figure 4b), and layers such as
W01B-2H and W02B-1H, which had an obvious unimodal post-peak (Figure 4b). The TAR,
C21-/C21+, and OEP2 showed that W01B and W02B had more terrestrial contributions in
the shallow part (Table S1), while W03B had the opposite tendency, which may be related
to the geographical location of the three sites. W01B, W02B, and W03B were located on
either side of the migration canyon in the Shenhu area, respectively, and formed a unique
sedimentary pattern under the complex interaction of a gravity current, a bottom current,
and internal waves, resulting in differences in deposition between the sites [55–60].

In addition to the mixed-source characteristics, it was remarkable that C12-C22 n-alkanes
with even-to-odd predominance were observed in all samples (Figure 4). They were also
observed in recent/ancient sediments as well as in the marine sediments [61–65]. The
possible reasons for the even–odd dominance of short-chain n-alkanes (C12-C22) in the
sediments are as follows: (I) normal fatty acids with odd-carbon predominance were
reduced in a strongly reducing environment during deposition [66]; (II) anthropogenic
pollution from fossil fuels or hydrocarbon leakage from the underlying high-maturity
formations [67]; (III) biomass combustion can also form the dominant distribution of
normal short-chain carbon pairs (thermal degradation of long-chain n-alkanes to short-
chain n-alkanes) [68]; and (IV) they are derived from specific species of bacteria or fungi [62,
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69,70]. All the layers of the three sites displayed obvious even-carbon predominance, which
is presumed to be independent of hydrocarbon leakage but usually indicates the direct
input of microorganisms in sediments.

Compared to short-chain n-alkanes, long-chain C23-C33 n-alkanes with a strong odd–
even carbon preference (particularly C27, C29, and C31) are indicative of terrestrially derived
organic matter [71]. On the other hand, n-alkane distributions without odd/even predomi-
nance in sediments lacking petrogenic markers (hopane and sterane mixtures specific to
mature organic matter) have been attributed to microbial odd-C-numbered inputs or to
the microbial reworking of the n-alkane mixtures [70,72–74], suggesting that they can be
used as tracers for degraded or microbially altered organic matter [75,76]. Both types of
n-alkane distribution were quantified separately in the sediment from the three sites using
the following equations [77,78]:

Aodd =
6

∑
i=1

C(21+2i) −
5

∑
i=1

C(22+2i) −
C22 + C32

2
(1)

Arew = Ct − Aodd (2)

where Ci is the measured concentration of each n-alkane and Ct is the sum of all n-alkane
homologues between C21 and C33. Arew refers to n-alkanes without an even/odd carbon
number preference and Aodd refers to odd carbon number dominant n-alkanes.

From the calculation results, W01B and W02B were shown to have more contributions
from terrestrial plants in the shallow part and more contributions from reworked organic
matter in the deep part (Figure 6a,b). However, the proportion of W03B was relatively
constant with depth and had the highest contribution from reworked organic matter among
the three sites (Figure 6c). From the perspective of n-alkanes, organic matter from the
Shenhu area appeared to be from mixed marine, continental, and ancient reworked organic
matter sources, with the latter possibly contributed by turbidity flows/bottom currents
from the upper continental shelf or nearby continental slope.
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Figure 6. Relative proportion of n-alkanes without an even/odd carbon number preference (Arew)
and odd carbon number dominant n-alkanes (Aodd) of n-alkanes in sediment samples from (a) W01B,
(b) W02B, and (c) W03B. Blank area and shaded area represent Aodd and Arew, respectively.

4.1.2. Steranes

Information regarding source type may sometimes be obtained from the relative
abundance of C27:C28:C29 sterols or their fossil counterparts, the steranes [79,80]. Land plant



Molecules 2022, 27, 2533 9 of 20

influxes usually result in a dominance of C29 desmethylsteranes, whereas in predominantly
marine sediments, different types and proportions of algal to zooplankton sources can
result in a wide variety of sterane distributions [50,81,82].

C27/C29 indicates that the marine contribution of organic matter in W03B was higher
than that of W01B and W02B. However, in some horizons, such as W01B, there was an
increase in the pre-peak of the n-alkane distribution (low carbon number), but there was
no corresponding reflection in the C27/C29 indicators. In this case, we suggest that the
n-alkane distributions better reflect the terrestrial influxes.

4.1.3. Pyrolysis Indexes

The Rock–Eval method developed by Espitalie et al. [83] is a widely used method for
petroleum source-rock characterization and evaluation [84–86]. The HI, which correlates
strongly with the elemental H/C ratio of the kerogen, is used to determine the hydrogen
richness of a rock or sediment in order to identify the type of organic matter originally
deposited in a given setting and to infer some aspects of the preservation of the remaining
organic matter. High HI values are interpreted to reflect both algal and planktonic (high
H/C) sources and the good preservation of the deposited organic matter [83], whereas
low HI values are used to identify terrestrial organic matter sources and/or the extensive
post-depositional alteration (oxidation) of algal remains [87]. Specifically, in immature
marine sediments containing mixed phytoplankton, zooplankton, and bacterial debris
(Type II organic matter), typical HI values range between 200 and 400 mg HC/g TOC [83],
whereas in sediments containing terrestrial organic matter (Type III), the HI values are less
than 200 mg HC/g TOC. Very low HI values are observed in sediments containing oxidized
and reworked organic matter (Type IV) [85]. Consequently, the sediment records of HI
provide information on both the sources and post-deposit processes of organic matter.

Cross plots of the HI, OI, and Tmax of the sediment samples from the three sites are
shown in Figure 6 [85]. These plots may be used similarly to a van Krevelen diagram to
differentiate organic matter types. The samples in this study fell into the category of Type
IV organic matter due to a lower HI (Figure 7a, b). A low HI index has been attributed
to: I. A mineral matrix effect, if the sediment has variable amounts of carbonate and clay
minerals, which will result in low but variable HI values [85,88,89]. However, the carbonate
fraction was removed before the Rock-Eval analysis, and the clay mineral content was
confirmed to be low and constant among the different samples in this study (unpublished
data), so the mineral matrix effect was not considered to be the dominant factor for the low
HI. II. Additional contribution from varying amounts of hydrogen-poor, reworked organic
matter. Sediment reworking can increase the relative proportion of terrestrial organic
matter by preferentially removing algal remains and lower the HI values by increasing the
degradation degree of organic matter during post-depositional winnowing. The relatively
lower HI/OI (<0.5) can also help to reconfirm this circumstance; a low HI and HI/OI in
this study indicated a contribution from highly degraded reworked organic matter, since
fresh or not highly degraded organic matter usually has a HI/OI greater than 2.

The low HI value is consistent with the previously calculated ancient reworked organic
matter proportion in the samples. Specifically, the W03B site showed a higher proportion of
reworked organic matter and also had the highest Tmax and lowest HI values of the three
sites (Figure 7b). The explanation for this phenomenon relies on the high proportion of
reworked allochthonous organic matter, which manifested itself as a high Tmax value and
a low HI value, while the immature autochthonous component was responsible for the
opposite signature.
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Figure 7. (a) Diagram of Rock-Eval HI vs. OI; (b) plot of HI vs. Tmax of sediment samples from W01B,
W02B, and W03B.

4.2. The Potential of Microbial Gas Generation in Hydrate-Bearing Sediments

In the diagenesis stage (also called the immature stage), the microbial gas generation
potential of sediments is mainly controlled by the TOC content [90–93]. The formation
of gas hydrate with low saturation (1–2%) from in situ sediments requires a minimum
TOC content of 0.5% [93–95]. For the formation of high-saturation hydrate (>3%), it is not
sufficient to rely solely on the biodegradation of particulate organic matter [96]. In addition,
an optimal temperature (35–65 ◦C) is required during microbial methanogenesis activities
for methanogens to survive and produce methane efficiently [90,93]. In a word, the high
yield of microbial gas requires a high abundance of reactive/labile organic matter and a
favorable temperature.

The TOC contents of the studied samples from the three sites were extremely depleted
(average of 0.37% for W01B and W02B, 0.13% for W03B) and did not reach the threshold of
in situ methane generation and gas hydrate formation. Additionally, as mentioned before,
very low HI values were observed in the sediments from this study, which indicated the
presence of oxidized and reworked organic matter (Type IV) and corresponded to a poor
hydrocarbon generation potential [85]. Moreover, according to the seafloor temperature
(~4 ◦C) and geothermal gradient (54.6–62.6 ◦C/km) reported by Zhang et al. [21], the
temperature of the studied layers (<240 m) was calculated to be less than 20 ◦C, which is
below the optimum temperature zone for microbial activities. Furthermore, the pyrolysis
parameters S1, S2, Tmax, and HI of the sediment samples from the three sites had extremely
low values (Figure 7), which were far lower than the threshold criteria for source rocks
(Peters and Cassa, 1994). Therefore, such depleted TOC contents (most < 0.4%), in situ
temperatures (<20 ◦C), and HI indexes (mostly less than 50 mg HC/g TOC) may jointly
suggest a fairly poor hydrocarbon generation potential for the in situ sediments at these
three sites that is insufficient to form highly saturated gas hydrate relying solely on the
in situ sediment.

4.3. Implication of Upward Migration of Deep Hydrocarbons
4.3.1. Evidence of Petroleum Hydrocarbons

Primarily, the pyrolysis parameters (S1, S2, Tmax, and HI indexes) of the samples were
significantly lower than the threshold for source rocks [97], indicating that thermogenic
hydrocarbons could not be generated. However, most of the samples had a PI greater than
0.1, even as high as 0.8 (W01B-16, -17X; W02B-7H) (Figure 8d), indicating the intrusion and
preservation of allochthonous hydrocarbons into the sediment [85].

In addition, an unresolved complex mixture (UCM) composed of a large number
of isomers and homologues with complex branched chains and acyclic compounds that
cannot be resolved by capillary columns was present in most samples, as shown in the
chromatogram in Figure 4a [98,99]. The presence of a UCM in marine sediments is an
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indicator of chronic/degraded petroleum contamination [100]. Although a bacteria-derived
UCM cannot be ruled out [101], the GC/MS identification of 17α (H), 21β (H)-hopanes
and steranes confirmed the fossil origin of the UCM (Figure 8a,b). Conventional oil and
gas fields are ubiquitous in the northern SCS, and the hydrate gas has been considered
to be cogenetic with the deep conventional gas reservoir; therefore the detection of the
petroleum-based contaminants in this area was not unusual.
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Ph/nC18 vs. Pr/nC17 (modified from [115]), showing the geochemical differences between the extracts 
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relatively high hydrocarbon generation potential and are mainly in the high-mature stage. 
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Figure 8. Maturity parameters of sterane (a) and hopane (b) in the sediment of W01B, W02B, and
W03B. Plot of C29 ββ/(ββ + αα) vs. C29 20S/(20S + 20R) showing the thermal maturation level of
the extracts in this study and representative source rocks from the deep-water area of the Shenhu
area, Baiyun Sag. Cutoff-points adopted from [51,81,102–114]. (c) Plot of Pr/Ph vs. Ts/Tm. (d) Plot
of Ph/nC18 vs. Pr/nC17 (modified from [115]), showing the geochemical differences between the
extracts in this study and representative source rocks from the Shenhu area. Geochemical parameters
of representative source rock samples are cited from [116–119].

Moreover, the increase in the steranes and terpanes maturity index at the W01B and W02B
sites also suggested the supply of deep mature hydrocarbons (Figure 8a,b [50,87,101–113]). The
thermal effects of the stereochemical complexity of the basic skeleton of steranes and ter-
panes, i.e., the C2920S/(20S + 20R), C29ββ/(ββ + αα), Ts/Tm, and C31αβ-22S/22(S + R),
could help to determine the maturity and the cut-off points between the immature, low-
mature, and mature stages, which are labeled in Figure 8a,b [51,81,102–114]. The sterane
and terpane maturity parameters of the samples from sites W01B and W02B of this study in-
dicated that the organic matter mainly originated from low-mature to mature source rocks.
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4.3.2. Preliminary Oil-to-Source Correlation in the Extracts

Previous studies have suggested that the Baiyun Sag contains three sets of potential
source rocks: Wenchang formation lacustrine source rocks, Enping formation transitional
source rocks, and Zhuhai formation marine source rocks [11,21,41,116,120,121]. The first
two sets of source rocks are identified as the principal source rocks, as they have a relatively
high hydrocarbon generation potential and are mainly in the high-mature stage. The
Zhuhai formation source rock is not considered as a primary source rock, because of its
low thermal maturity [11,41,122,123]. The source rocks of the Wenchang formation Group
formed in relatively anoxic to suboxic, lacustrine conditions, while the source rocks of the
Enping formation were deposited in oxic, shallow lacustrine settings, with a relatively high
input of terrigenous higher plants at the beginning and subsequent impact from a marine
transgression; the source rocks of the Zhuhai formation were deposited in anoxic, relatively
stable, neritic environments, with a greater contribution from aquatic algae relative to
terrestrial higher plants [116,117].

To further investigate the origin of the allochthonous hydrocarbons within the extracts,
a preliminary oil-to-source correlation was carried out based on the geochemical results
obtained in this study and the geochemical parameters of the representative source rocks in
the Baiyun sag reported in the literature. A series of biomarker compounds from the mature
source rocks were also detected in the extracts, except for the immature hydrocarbons,
such as the isoprenoids (Pr and Ph) on the mass chromatograms (Figure 4a), tricyclic
terpanes and hopanes (Figure 5a), and diasteranes and regular steranes (Figure 5b). The
distributions and characteristics of these biomarkers were useful for illustrating the origin of
the allochthonous hydrocarbons within the extracts. In this study, Pr and Ph were detected
in all samples, and the Pr/Ph ratios ranged from 0.18 to 1.11 (Figure 8c), suggesting that
the organic matter sources of the allochthonous hydrocarbons were mainly deposited
in an anoxic depositional environment [48,50,51]. The plot of Ph/nC18 versus Pr/nC17
(Figure 8d) shows that W01B and W02B had more terrestrial organic matter under more
oxidized conditions, while W03B indicated more marine sources and a more reduced
depositional environment. W01B and W02B exhibited geochemical characteristics similar
to those of the terrestrial source rocks of the Enping and Wenchang formations, of which the
latter contributed more to the supply. While W03B displayed geochemical characteristics
similar to the marine source rocks of the Zhuhai formation.

Combined with the abnormally high maturity and the geochemical characteristics
similar to those of deep mature source rocks, it is speculated that the allochthonous hydro-
carbons within the extracts of W01B and W02B may include contributions from the Enping
and Wenchang formations, of which the latter has a higher similarity, while W03B has a
greater contribution from the immature marine source rocks of the Zhuhai formation.

4.4. Implication for Hydrate-Bound Gas Origin
4.4.1. Evidence of Thermogenic Gas Contribution

The combination of a poor microbial gas generation potential and a weak biodegra-
dation degree both indicate that the in situ organic matter could not generate sufficient
gases for the formation of hydrate with a saturation as high as 20–60% at the three sites [25],
indicating that there must be other gas sources supplying the hydrate system in this area;
this is also consistent with our above speculation as to deep hydrocarbon leakage.

From the perspective of gas geochemistry, it has been suggested that the hydrate-
bounded gases of sites W01B and W02B are mixed gases dominated by thermogenic
gases [19–22], while the gas origin of W03B is mainly microbial gases produced by the
biodegradation of organic matter in shallow strata (Figure 9a,b) [21], which further enhances
the speculation that W01B and W02B received contributions from deeper thermogenic
hydrocarbons. Liang et al. [22] obtained the isotope composition of the C2+ hydrocarbons
bound in hydrate in the Shenhu area to identify the source rocks of the gas hydrate and
found that the biogenic hydrocarbons and thermogenic hydrocarbons were derived from
marine organic matter and terrestrial organic matter, respectively. The source rocks of ther-
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mogenic hydrate gas are interpreted to be from both the gas-prone coal strata of the Enping
formation and the oil-prone medium-deep lacustrine strata of the Wenchang formation,
the latter of which contributed more to the hydrocarbon supply of the gas hydrates [22].
These conclusions are consistent with the results of the oil-to-source correlation via or-
ganic biomarkers in this study. In addition, some studies show that the source rock of the
Wenchang formation has been in the stage of pyrolytic dry-gas production since the early
Pliocene [117,124] and is considered to be the main source rock for hydrate accumulation
in this region, which is consistent with the conclusion drawn as to the extract sources in
this study and the gas sources in the previous study.

4.4.2. Evidence of Secondary Microbial Gas

Squalene was detected in this study, which has been used as a biomarker for methanogens [48].
A study by Lin et al. [23] verified that most abundant archaeal genera are potential
methanogenic archaea in the Shenhu area, and the hydrogenotrophic type was inferred to be
predominant among the multiple types of methanogenesis. It is well-known that microbial
biodegradation is coupled with the methanogenic process, which means that the presence
of the methanogenic process also indicates the existence of biodegradation [100,125,126].
Considering the low hydrocarbon-generation potential and intact n-alkane preservation of
the in situ sediment, we speculate that the methanogenesis activities are likely related to the
biodegradation of deep allochthonous hydrocarbons, which is coupled with the generation
of secondary microbial gases [127]. This inference corresponds to the speculation of Zhang
et al. [21] that the geochemical characteristics of the hydrate-bound gas from these three
sites are very similar to those of confirmed biodegraded gases [21,128,129], which is also
consistent with the identified putative hydrocarbon degraders in the microbial commu-
nity structure study by Lin et al. [23]. Moreover, the deviations in the temperature of
methanogens from the geothermal gradient of the study area suggested the migration of or-
ganic matter, emphasizing the possibility of microbially mediated secondary microbial gas
formation from deep thermogenic fluid [23]. Therefore, the gases bound in hydrate from
the three sites may have complex sources, including the primary in situ microbial gases,
deep thermogenic gases, and secondary microbial gases generated by the biodegradation
of the leakage hydrocarbons.
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5. Materials and Methods

The samples were retrieved by the GMGS4 expedition, which was carried out on the
geotechnical drilling vessel Fugro Voyager in 2016 [25]. The water depth of the three sites
is ~1285 m, 1274 m, and 1310 m, respectively, and the drilling depth was ~234 m below
seafloor (mbsf), 240 mbsf, and 222 mbsf, respectively. Detailed information and lithological
description of sediment samples can be found in Table S1.

5.1. Rock-Eval Analysis

Rock-Eval analysis was conducted by Rock-Eval IV instrument to obtain the amount of
free hydrocarbons (S1), the amount of hydrocarbons generated through thermal cracking of
nonvolatile organic matter (S2), the amount of CO2 produced during pyrolysis of kerogen
(S3), and the temperature at which the maximum release of hydrocarbons from cracking
kerogen occurred during pyrolysis (top of S2, Tmax). The hydrogen index (HI) was calcu-
lated from the formula HI = 1000 × S2/Corg, and oxygen index (OI) was calculated using
the formula OI = 1000 × S3/Corg. The pyrolysis temperature of organic matter ranged from
300 ◦C to 600 ◦C, with a rising rate of 25 ◦C/min.

The Rock-Eval analyses were conducted at the National Research Center for Geoanal-
ysis, China Geological Survey (CGS).

5.2. Biomarker Analysis

Around 100–200g dried and crushed samples (<100 mesh) were Soxhlet extracted for
72 h by the solvent mixture of dichloromethane (DCM) and methanol (93:7, v:v). After
removing the solvents and asphaltenes by n-hexane, the resultant soluble fraction was
separated into aliphatic hydrocarbons, aromatic hydrocarbons, and polar compounds
by using the column chromatography method (alumina/silica gel column). Aliphatic
hydrocarbons, aromatic hydrocarbons, and nonhydrocarbons were extracted by washing
with n-hexane, dichloromethane, and methanol, respectively.

Aliphatic hydrocarbons were analyzed using a Gas Chromatography–Quadrupole
Mass Spectrometer (GC–MS) 6890N/5973N (Agilent Technologies, Palo Alto, CA, USA),
which was fitted with a DB-5 MS fused silica capillary column (J&W Scientific, Agilent,
USA; 30 m × 0.25 mm × 0.25 µm). The GC oven temperature was initially set at 80 ◦C
(hold for 5 min), then programmed to 290 ◦C (hold for 40 min) at a rate of 4 ◦C/min. The
compounds were identified by comparing their mass spectra with those in the NIST02
library and published data.

The biomarker experiments were conducted in the sample pretreatment laboratory of the
Key Laboratory of Petroleum Resource Research, Northwest Institute of Eco-Environment &
Resources, Chinese Academy of Sciences.

6. Conclusions

The organic geochemical characteristics of hydrate-bearing sediment provide clues for
studying the origins and formation processes of gas hydrate. In this study, the Rock-Eval
pyrolysis and biomarkers (n-alkane, isoprenoid, sterane, and hopane) of organic matter
were systematically studied in hydrate-bearing sediments from the Shenhu area (GMGS4-
W01B, -W02B, and -W03B), South China Sea. According to the experimental results, the
following conclusions can be drawn.

(1) The n-alkane distribution patterns reveal that the organic matter in sediments from
the three sites appears to originate from the mixed sources of marine, terrestrial higher
plant, and ancient reworked organic matter; the presence of the latter is verified by
the pyrolysis parameters, especially the low hydrogen index (HI) and high Tmax.
The relative proportion of terrestrial higher plants to reworked organic matter was
calculated from equations, and it was found that the depth variation trend of the ratio
was consistent with that of the HI and Tmax, and the formation with a high proportion
of reworked organic matter manifested as a low HI and high Tmax.
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(2) The low total organic carbon (TOC) contents (average < 0.5%) with a HI < 80 mg HC/g
TOC suggest the poor hydrocarbon-generation potential of the deposited organic
matter at a surrounding temperature of <20 ◦C in unconsolidated sediments, which
also indicates that the highly saturated hydrate could not have been formed solely by
the in situ sedimentary organic matter.

(3) The abnormally high production index (PI), fossil-originated UCM, and sterane and
hopane of high maturity indicate the contribution of deep hydrocarbon reservoirs,
which is consistent with the thermogenic origin contribution of hydrate-bound gases.

(4) The preliminary oil-to-source correlation for the extracts implied that the allochthonous
hydrocarbons in the W01B and W02B sediments might have originated from the low-
mature to mature terrestrial source rocks of the Enping and Wenchang formations,
while those of W03B seem to be derived from more reduced and immature marine
source rocks, such as those of the Zhuhai formation. The results of the organic extracts
indicated that some organic matter might have migrated from deep hydrocarbon
reservoirs, similar to the hydrate-bound gas, and supported the previous identification
of source rocks based on the isotopic composition of C2+.

(5) That the biomarker of methanogens, squalane, was recognized in the sediments of this
study might suggest the generation of secondary microbial gases which are coupled
with the biodegradation of the deep allochthonous hydrocarbons, indicating the
complex component of the hydrate-bound gases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27082533/s1, Table S1: Site information and lithological
description of the samples in this study; Table S2: Biomarker composition and Rock-Eval pyrolysis
parameters of sediments in this study.
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