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Stress triggers cellular and systemic reactions in organisms to restore homeo-

stasis. For instance, metabolic stress, experienced during starvation, elicits a

hormonal response that reallocates resources to enable food search and

readjustment of physiology. Mammalian gonadotropin-releasing hormone

(GnRH) and its insect orthologue, adipokinetic hormone (AKH), are

known for their roles in modulating stress-related behaviour. Here we

show that corazonin (Crz), a peptide homologous to AKH/GnRH, also

alters stress physiology in Drosophila. The Crz receptor (CrzR) is expressed

in salivary glands and adipocytes of the liver-like fat body, and CrzR

knockdown targeted simultaneously to both these tissues increases the

fly’s resistance to starvation, desiccation and oxidative stress, reduces feed-

ing, alters expression of transcripts of Drosophila insulin-like peptides

(DILPs), and affects gene expression in the fat body. Furthermore, in starved

flies, CrzR-knockdown increases circulating and stored carbohydrates. Thus,

our findings indicate that elevated systemic Crz signalling during stress

coordinates increased food intake and diminished energy stores to regain

metabolic homeostasis. Our study suggests that an ancient stress-peptide

in Urbilateria evolved to give rise to present-day GnRH, AKH and Crz

signalling systems.
1. Introduction
Stress can be evoked by a multitude of different environmental factors and

animals have evolved an arsenal of mechanisms to respond to such aversive

stimuli, both systemically and at the cellular level [1–3]. At the systems level,

hormonal and neuronal pathways are involved both in mediating stress signals

and in resetting the homeostasis. Thus, in mammals, corticosteroids as well as

several neuropeptides and peptide hormones have been identified in stress

response pathways [4–11].

The vinegar fly Drosophila has emerged as a versatile genetic model

for analysis of stress responses, both at the cellular and organismal levels

[2,12–17]. At the organismal level, Drosophila insulin-like peptides (DILPs)

and adipokinetic hormone (AKH), an insect orthologue of mammalian

gonadotropin-releasing hormone (GnRH), play important roles in various

stress responses and affect longevity [2,18–21]. Corazonin (Crz) is another

Drosophila peptide ancestrally related to AKH/GnRH, which has been proposed

as a stress-induced hormone based on various actions revealed in several insect

species [22–27], but mechanisms of Crz function in stress are not known. The

Crz receptor (CrzR; CG10698) is evolutionarily related to that of mammalian

gonadotropin-releasing hormone (GnRH), but also those of arthropod AKH

and AKH-corazonin-like peptide (ACP) [28,29]. GnRH is known to mediate meta-

bolic and stress-related effects on reproduction [10,11,30,31], and thus it may be

that an ancestral role of Crz, AKH and GnRH in metabolism and stress has
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been conserved over evolution in parallel with a diversification

of other functional roles [24,25].

We showed earlier that knockdown of Crz in the Crz-

producing dorsolateral peptidergic neurons (DLPs) in the

Drosophila brain affects metabolism and resistance to star-

vation stress [32]. As the DLPs are neurosecretory cells with

axon terminations in the corpora cardiaca, anterior aorta

and intestine [32–34], it is likely that Crz primarily functions

as circulating hormone acting on peripheral tissues. This is

supported by detecting expression of the CrzR in the fat

body, salivary glands and heart of adult Drosophila [35,36]

(see also FlyAtlas, http://flyatlas.org). Thus, we set out to

investigate the role of systemic Crz signalling under normal

conditions and during stress in flies. We used different fat

body Gal4 drivers to knockdown the CrzR and tested the

flies in a set of assays for effects on metabolism, stress toler-

ance, gene expression and neuropeptide levels. We found

that these drivers also target expression to the salivary

glands, a tissue known to express the CrzR [35,36]. Our find-

ings suggest that systemic Crz signalling predominantly to

the fat body and salivary glands regulates starvation, desicca-

tion and oxidative stress resistance, as well as food ingestion.

Furthermore, in starving flies CrzR-knockdown leads to

increased circulating and stored carbohydrates, and altered

expression of several genes in the fat body. We also find indi-

cations of feedback from the fat body to endocrine cells of the

brain and corpora cardiaca as targeted CrzR-knockdown

alters dilp3, dilp5 and Crz transcript levels and Crz and

AKH peptide levels. As a comparison to knockdown of the

CrzR with the fat body GAL4 drivers, we also targeted

CrzR-RNAi more broadly with a CrzR-Gal4 driver, and fur-

thermore analysed the effects of Crz peptide knockdown

(Crz-Gal4.UAS-Crz-RNAi). These experiments produced

similar phenotypes in the assays performed, suggesting that

a major role of Crz signalling in stress and food intake is

via peripheral targets. Thus, systemic Crz signalling, includ-

ing the fat body as a target, regulates food intake,

carbohydrate metabolism and storage, and affects the

expression of Upd2 in the fat body, which is a feedback

signal from the fat body to the brain [37]. Crz may thus

operate in stress responses in association with insulin-like

peptides and AKH.
2. Results
2.1. The CrzR is expressed by the adult fat body cells
As there is a sex-dimorphic distribution of Crz-producing

cells [38,39], and male stress responses were more strongly

affected by genetic manipulations of these cells [24], we

performed all our experiments on male flies.

FlyAtlas transcript expression data suggest that the CrzR

(CG10698) is highly expressed in the adult fat body, salivary

glands and dorsal vessel [36], and a previous study substan-

tiated the adult-specific expression in the fat body by using

a CrzR-Gal4 [35]. We confirmed the expression of CrzR-

Gal4-driven GFP in the fat body in adult flies (figure 1a).

The receptor distribution coincides with pumpless ( ppl) [40]

and takeout (to) [41] GFP expression (figure 1b,c; electronic

supplementary material, figure S1a,b). It should be noted

that the CrzR-, ppl- and to-Gal4 lines also drive GFP expression

in the salivary glands (figure 1d; electronic supplementary
material, figure S1c,d ), and to-Gal4 additionally in the proven-

triculus (electronic supplementary material, figure S1d ), but

neither line displays GFP in the dorsal vessel (heart). After tar-

geting CrzR-RNAi to the fat body with the ppl-Gal4, we

observed a 40% decrease in CrzR mRNA from dissected

abdominal fat body (figure 1e). With a global actin-Gal4

driver (Act5C-Gal4), we found a 50% decrease in CrzR
expression determined from whole flies (electronic sup-

plementary material, figure S1e). Knockdown of CrzR in the

fat body with the ppl-Gal4 driver leads to increased Crz pep-

tide levels in the DLPs (figure 1f– i) and elevated Crz
transcript levels in starved flies (figure 1j,k), presumably as a

feedback compensation.

2.2. Crz signalling to the periphery modulates stress
resistance

We previously found that knockdown of Crz in DLPs results

in increased survival of flies exposed to starvation [32]. Here,

we obtained a similar starvation phenotype following CrzR
knockdown in the fat body using ppl-Gal4 and to-Gal4 drivers

in adult flies (figure 2a,b). We cannot exclude a direct or indir-

ect effect of the CrzR-RNAi on the salivary glands in some of

the phenotypes obtained in our assays, and henceforth we

refer to our experiments (fat body/salivary gland-specific

CrzR-knockdown with to and ppl-Gal4 lines) as targeting

CrzR-RNAi to the periphery. Diminishing the Crz signalling

to the periphery by crossing the ppl-Gal4 or to-Gal4 drivers

with UAS-CrzR-RNAi results in significantly extended

median survival compared with corresponding controls

(figure 2a,b). However, under desiccation conditions (dry star-

vation), knockdown of CrzR with the ppl-Gal4 did not affect

fly survival, whereas with the to-Gal4 survival increased sub-

stantially (figure 2c,d). The different results here could

possibly be explained by the different strength or tissue

expression of the two drivers (electronic supplementary

material, figure S1). In addition, knockdown of CrzR with

both drivers leads to an improved resistance to oxidative

stress induced by feeding paraquat-containing food

(figure 2e,f ). However, the time of recovery from chill coma

(induced by exposure to 08C for 4 h) was not affected by

CrzR-RNAi in the periphery (electronic supplementary

material, figure S2). In summary, resistance to starvation,

desiccation and oxidative stress all increased after diminishing

Crz signalling to the periphery.

2.3. Crz affects carbohydrate metabolism by direct
action on peripheral targets, especially during
stress

Similar to mammals, Drosophila strictly controls carbohydrate

homeostasis. Thus, glucose and trehalose levels in the

circulation are tightly regulated by action of DILPs and

AKH [42–47]. These fly peptides are therefore the functional

homologues of insulin and glucagon. We asked whether the

Crz signalling to the periphery also influences carbohydrate

metabolism. Previous work showed that Crz knockdown in

brain DLPs led to elevated levels of circulating glucose [32].

Here we find that knockdown of CrzR in the fat body does

not alter glucose levels in the haemolymph under normal

feeding conditions (electronic supplementary material,

http://flyatlas.org
http://flyatlas.org
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Figure 1. The corazonin receptor (CrzR) is expressed in adipocytes of D. melanogaster fat body and its knockdown leads to a compensatory increase of corazonin
peptide (Crz) and transcript (crz) expression. (a) The CrzR is expressed in the adult fly fat body (CrzR.GFP), mainly in the abdomen. (b,c) Two different Gal4 drivers
( ppl-Gal4 and to-Gal4) display GPF expression in adult flies. These were used for targeting UAS-CrzR-RNAi in subsequent experiments. In electronic supplementary
material, figure S1a – d, we show details of GFP expression, as well as GFP expression in other tissues. (d ) Expression of CrzR in salivary gland revealed by CrzR-
Gal4.UAS-GFP). (e) CrzR-RNAi efficiency was tested by qPCR in ppl.CrzR-RNAi flies ( ppl.CrzR-Ri). The efficiency for the CrzR-RNAi driven by an actin-Gal4 is
shown in electronic supplementary material, figure S1e. ( f ) Corazonin-immunolabelling is found in a set of seven dorsolateral peptidergic neurons (DLPs) in each
brain hemisphere (shown in w1118 fly). (g – i) Knockdown of CrzR in fat body/salivary glands by ppl-Gal4 induces an increase of CRZ expression in DLPs. ( j,k) Using
ppl-Gal4 and to-Gal4 to drive CrzR-RNAi results in increased crz transcript levels, especially after 36 h starvation. Data in graphs are presented as means+ s.e.m.,
n ¼ 3 – 4 independent replicates with 8 – 12 flies in each replicate. (e) Kruskal – Wallis’s test followed by pairwise comparisons using Wilcoxon’s rank sum test with
#p , 0.05, ##p , 0.01, (i) Student’s t-test with *p , 0.05, **p , 0.01 and ( j,k) ANOVA followed with Tukey’s test p , 0.05, **p , 0.01, ***p , 0.001.

rsob.royalsocietypublishing.org
Open

Biol.6:160152

3

figure S3a). However, in response to starvation, flies with

diminished CrzR exhibited higher levels of circulating glu-

cose compared with controls (electronic supplementary

material, figure S3b). A similar effect was observed on

whole-body glucose levels, where diminishing the CrzR in

the periphery had no effect on fed flies, but starved flies

with reduced receptor expression displayed higher levels of

body glucose than controls (figure 3a,b). Trehalose is the

main carbohydrate fuel and a source for both circulating

and body glucose in all insects, including Drosophila
[46,48,49]. Indeed, we found that flies with CrzR-knockdown

displayed higher levels of whole-body trehalose following

starvation (figure 3c,d ), but circulating trehalose levels were

not affected (electronic supplementary material, figure S3c,d ).

A primary carbohydrate store in most animals is glycogen.

The major hormone involved in initiating glycogen break-

down in Drosophila and other insects is AKH [45,49,50]. A
previous study suggests that Crz signalling also affects glyco-

gen storage: flies with Crz knockdown in brain DLPs displayed

approximately 1.5 times more glycogen than the controls [32].

That study, however, did not reveal whether the Crz action is

via the fat body, or by indirect mechanisms (e.g. via CNS neur-

ons). Here we show that reducing Crz signalling to the fat

body/salivary glands by targeted CrzR-knockdown resulted

in glycogen stores that were larger than in controls

(figure 3e,f ). Moreover, the difference in glycogen stores

between control and flies with CrzR-knockdown was more

drastic after starvation, where to.CrzR-RNAi flies contained

about three times more glycogen than their respective controls,

whereas ppl.CrzR-RNAi flies displayed almost twice as much

(figure 3e,f ). Furthermore, 36 h starvation led to a drastic (60–

90%) depletion of stored glycogen in control flies, whereas flies

with CrzR-knockdown only lost about half of their glycogen

(figure 3e,f ). As the steady-state level of glucose in Drosophila
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Figure 2. Knockdown of CrzR in the fat body increases stress resistance in flies. We used 3-day-old male flies for all experiments. All results were analysed by log-
rank test and data for flies with CrzR-knockdown (CrzR-Ri) were compared with their respective controls. Data are presented as means+ s.e.m. (n ¼ 80 – 100 flies
for each genotype, run in four replicates). (a,b) Flies with CrzR knockdown targeted to adipocytes displayed increased survival at starvation (water, but no food;
x2 ¼ 35.5, p , 0.0001 and x2 ¼ 22.3, p , 0.0001). (c,d ) Knockdown of CrzR with to-Gal4 results in enhanced survival under desiccation (no food, no water;
x2 ¼ 48.6, p , 0.0001), whereas the same manipulation using ppl-Gal4 does not affect survival (x2 ¼ 3.8, p ¼ 0.0519). (e,f ) to-Gal4-driven CrzR-RNAi
drastically increased oxidative stress resistance (food supplemented with 10 mM paraquat; x2 ¼ 71, p , 0.0001) and a similar phenotype was observed with
ppl-Gal4-driven CrzR-RNAi (x2 ¼ 11.6, p , 0.001).
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is known to be supported by glycogen breakdown, trehalose

digestion, food ingestion and gluconeogenesis [16,46,51–53],

we hypothesize that knockdown of CrzR on peripheral

targets might slow down glycogenolysis and stimulate gluco-

neogenesis and glycogenesis to decrease storage utilization

and allow flies to keep high levels of both glucose and glyco-

gen. It can also be noted that flies with diminished Crz

signalling (due to genetic deletion or hyperpolarization of

Crz neurons) display reduced locomotor activity during star-

vation [24], which could result in higher levels of carbohydrate.

In contrast with stored carbohydrates, levels of stored lipids,

measured as triacylglycerides (TAG), were not affected by

knockdown of CrzR in the periphery (electronic supplementary
material, figure S3e,f ). However, as expected, the TAG content

decreased in all investigated genotypes after starvation com-

pared with fed animals (electronic supplementary material,

figure S3e,f; tables 1 and 2). Finally, in flies with CrzR-knock-

down (to-Gal4) the body mass was found higher both in fed

and starved conditions, compared with the controls (electronic

supplementary material, figure S4a,b; tables 1 and 2).

2.4. Crz signalling to the periphery affects food intake
Next, we assessed whether the increased resistance to stress

and higher levels of glucose, trehalose and glycogen in flies

with CrzR-knockdown could be attributed to differences in
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Figure 3. CrzR-knockdown targeted to the periphery increases stored carbohydrates in flies exposed to 36 h of starvation. (a,b) In flies with CrzR-RNAi targeted to
fat body ( ppl.CrzR-Ri and to.CrzR-Ri) concentrations of body glucose are about twofold higher than in controls after 36 h starvation, but CrzR-knockdown has no
effect in fed flies. (c,d ) CrzR-knockdown in fat body results in higher levels of whole body trehalose after starvation than in control flies, but in fed flies no
significant difference is seen. (e,f ) Glycogen stores are depleted by starvation, but flies with CrzR-Ri targeted to adipocytes contain more glycogen in both exper-
imental conditions used. Data are presented as means+ s.e.m., n ¼ 4 replicates with 10 – 15 flies in every replicate (*p , 0.05, **p , 0.01 and ***p , 0.001;
ANOVA followed by Tukey’s test, or #p , 0.05 (Kruskal – Wallis’s test followed by pairwise comparisons using Wilcoxon’s rank sum test). See also electronic
supplementary material, figure S3 for graphs with circulating carbohydrates and whole body triacylglycerides (TAG).
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food intake prior to exposure to stress. We found that CrzR-

knockdown in the periphery led to a significant decrease

(15–35%) in cumulative food consumption compared with

controls (figure 4a,b). Temporal dynamics of food intake are
shown in electronic supplementary material, figure S4a,b.

The body mass in to.CrzR-RNAi flies is larger than in con-

trols, both after normal feeding and after starvation

(electronic supplementary material, figure S5a), whereas no



Table 1. Body weight, concentrations of circulating carbohydrate and content of total triacylglycerides (TAG) in control and experimental flies ( ppl-Gal4.CrzR-
RNAi).

genotype normal (N) starvation (S) comparison N versus S

TAG (mg per mg wm)

ppl.CrzR-Ri 3.06+ 0.15 1.75+ 0.12 ***p , 0.001

ppl.w1118 3.14+ 0.24*** 1.61+ 0.06* ***

w1118.CrzR-Ri 2.66+ 0.10n.s. 0.55+ 0.05*** ***

body mass (mg)

ppl.CrzR-Ri 0.616+ 0.006 0.537+ 0.006 ***

ppl.w1118 0.591+ 0.004n.s. 0.554+ 0.001 *p , 0.05

w1118.CrzR-Ri 0.640+ 0.007 0.586+ 0.007** **p , 0.01

haemolymph glucose (mmol per mg wm)

ppl.CrzR-Ri 9.68+ 0.95 11.87+ 0.57 n.s.

ppl.w1118 9.44+ 0.29 8.31+ 0.42* n.s.

w1118.CrzR-Ri 10.15+ 0.36 5.68+ 0.42*** **p , 0.01

haemolymph trehalose (mmol per mg wm)

ppl.CrzR-Ri 2.06+ 0.31 2.55+ 0.29 n.s.

ppl.w1118 2.20+ 0.21 2.26+ 0.38 n.s.

w1118.CrzR-Ri 2.31+ 0.32 2.90+ 0.44 n.s.

Table 2. Body weight, concentrations of circulating carbohydrate and content of total triacylglycerides (TAG) in control and experimental flies (to-
Gal4.CrzR-RNAi).

genotype normal (N) starvation (S) comparison N versus S

TAG (mg per mg wm)

to.CrzR-Ri 2.49+ 0.11 0.67+ 0.05 ***p , 0.001

to.w1118 2.38+ 0.21*** 0.66+ 0.06*** ***

w1118.CrzR-Ri 2.66+ 0.10n.s. 0.55+ 0.05*** ***

body mass (mg)

to.CrzR-Ri 0.708+ 0.007 0.643+ 0.014 ***

to.w1118 0.620+ 0.005 0.575+ 0.005*** ***

w1118.CrzR-Ri 0.640+ 0.007 0.586+ 0.007*** **p , 0.01

haemolymph glucose (mmol per mg wm)

to.CrzR-Ri 10.67+ 0.61 13.64+ 0.45 n.s.

to.w1118 9.46+ 1.03 6.27+ 0.41*** n.s.

w1118.CrzR-Ri 10.15+ 0.36 5.68+ 0.42*** **p , 0.01

haemolymph trehalose (mmol per mg wm)

to.CrzR-Ri 3.49+ 0.25 2.80+ 0.36 n.s.

to.w1118 3.62+ 0.97 2.57+ 0.18 n.s.

w1118.CrzR-Ri 2.31+ 0.32 2.90+ 0.44 n.s.
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significant difference was seen after ppl.CrzR-RNAi (elec-

tronic supplementary material, figure S5b). On the other

hand, the stores of carbohydrates were higher in starvation-

exposed flies after CrzR-knockdown with both drivers. The

finding that the two fat body Gal4 drivers also target the sali-

vary glands (electronic supplementary material, figure S1)

suggests that part of the feeding phenotype may derive from

alteration of gland function, such as lubrication of the food

and secretion of digestive enzymes [54,55]. Nevertheless, our

findings suggest that elevated Crz signalling coordinates
increased food intake and reallocation of energy stores to

alleviate stress and regain metabolic homeostasis.
2.5. Diminished CrzR in the periphery influences dilp
expression and AKH levels

Metabolic homeostasis and resource allocation in Drosophila is

regulated by peptide hormones produced by brain and cor-

pora cardiaca, a functional homologue of the pituitary
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gland, as well as factors produced by adipocytes of the fat

body [16,17,51,56]. Among these are DILPs and AKH

[43,44,46,57]. Here we used qPCR to monitor transcripts of

dilps and Akh in flies with CrzR-knockdown in the periphery

to determine whether the fat body produces feedback signals

to the brain/corpora cardiaca. First, we measured the

expression of dilp2, dilp3 and dilp5, which are expressed

primarily in the insulin-producing cells (IPCs) of the brain

[43,58]. The dilp5 levels were higher in fed flies with dimin-

ished CrzR, but not in starved ones (figure 5c). However,

dilp2 did not change after CrzR-knockdown, whereas the

expression of dilp3 decreased both in fed and starved flies

compared with controls (figure 5b) and the dilp5 expression

increased in fed flies (figure 5c). The effect of 36 h starvation

(compared with fed flies) was consistent for all genotypes: we

noted a significant decrease in mRNA levels of dilp2, dilp3

and dilp5 (figure 5a–c). Immunolabelling with antisera to

DILP2 and 5 did not reveal any significant effect of CrzR-

knockdown on peptide levels in IPCs (figure 5d,e), perhaps

suggesting that peptide release was not affected [59]. Neither

manipulation of CrzR nor starvation affected expression of

Akh mRNA (figure 5f ), but AKH immunolabelling in the cor-

pora cardiaca decreased drastically after CrzR-knockdown,

both in fed and starved flies (figure 5g,h). Reduced AKH

immunolabelling in the corpora cardiaca may reflect an

increased release of this peptide.
2.6. Knockdown of CrzR in the periphery affects
expression of genes regulating metabolism
and stress

In response to changing levels of circulating carbohydrates,

lipids or amino acids, several factors are known to be secreted

from the nutrient-sensing fat body and act on neurosecretory

cells of the brain, which in turn signal to the fat body and

other tissues to affect metabolism and nutrient stores
[37,60–63]. One fat-body-derived coordinator of metabolism

and growth is DILP6 [64,65]. We found that knockdown of

CrzR (with ppl-Gal4) did not affect dilp6 mRNA expression

in dissected abdominal fat body (figure 6a). Also, in whole-

fly extract we did not find any differences in dilp6 expression

after CrzR-knockdown compared with controls, or between

fed and starved flies (electronic supplementary material,

figure S6a). Another factor secreted from the Drosophila fat

body and acting on the brain IPCs is the cytokine

Upd2 (unpaired-2) with leptin-like properties [37]. The

Upd2 transcript was decreased in fat body extract after

CrzR-knockdown (figure 6b), but was not significantly

altered in whole fly extracts (electronic supplementary

material, figure S6b). Possibly the altered Upd2 expression

in the fat body reflects altered Upd2 signalling to the brain

as a consequence of CrzR-RNAi in the fat body.

Next, we measured transcript of the gene bmm, encoding

Brummer TAG lipase, a protein responsible for lipid break-

down [66]. bmm levels diminished in fat body extract after

CrzR-knockdown (figure 6c), but increased slightly in the

whole fly after to.CrzR-RNAi (electronic supplementary

material, figure S6c). In all genotypes, bmm expression was

strongly increased after starvation compared with fed flies

(electronic supplementary material, figure S6c). In fat body

extract CrzR-RNAi had no effect on phosphoenolpyruvate
carboxykinase ( pepck), a gene encoding a key enzyme in gluco-

neogenesis in both Drosophila and mammals [67] (figure 6d ).

Also, in whole fly extracts CrzR-RNAi had no effect, although

starvation induced an increase of pepck in all flies (electronic

supplementary material, figure S6d ).

To determine whether Crz signalling to the periphery plays a

role in general stress response, we monitored the expression of

genes encoding superoxide dismutase 2 (Sod2) [68], Neuronal

Lazarillo (NLaz) as a target of JNK signalling [13] and Turandot

A (TotA) as a read-out gene in JAK/STAT signalling [69,70] in

whole flies, as well as in dissected abdominal fat body. Sod2
was not altered by CrzR-RNAi (figure 6e), but displayed

higher expression in fed flies than in starved ones (electronic sup-

plementary material, figure S6e). In the fat body samples NLaz
was upregulated after CrzR-RNAi (figure 6f ), but no difference

was detected in whole body extract (electronic supplementary

material, figure S6f ). TotA expression was upregulated in

response to CrzR-RNAi, and this was seen both in whole body

and fat body extracts (figure 6g; electronic supplementary

material, figure S4g). TotAwas also found higher in fed flies com-

pared with starved ones. Thus, we obtained some evidence for

effects of CrzR-knockdown in the periphery on genes

involved in general stress responses. A summary of results for

whole-body measurements is shown in figure 7.
2.7. Knockdown of the CrzR with a CrzR-Gal4 affects
stress response and food intake

We used a CrzR-Gal4 to diminish the CrzR more broadly as a

comparison with our experiments on fat body (peripheral)

directed RNAi. It is known that the CrzR in Drosophila is

expressed also in neurons of the CNS [35,39], salivary

glands and the dorsal vessel, also known as heart (see

FlyAtlas) [36]. Nevertheless, we found that CrzR-Gal4.UAS-

CrzR-RNAi resulted in a similar increased resistance

to paraquat-induced oxidative stress and a decrease in

food intake (figure 8) as seen after targeting CrzR-RNAi to
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the periphery. Thus, the additional neuronal knockdown

of the receptor did not seem to affect the outcome of the

assays tested.

2.8. Knockdown of Crz peptide with a Crz-Gal4 affects
stress responses and food intake

In an earlier study, we showed that diminishing Crz

peptide levels broadly by Crz-Gal4.UAS-Crz-RNAi

increased starvation resistance in fed flies [32]. Here, we

extended these findings by showing that Crz-Gal4.UAS-

Crz-RNAi increases survival both during desiccation and

paraquat feeding, as well as diminishes food intake

(figure 9). Taken together, we therefore show that global
knockdown of Crz peptide or CrzR yields effects on stress

resistance and feeding very similar to those noted after

CrzR-knockdown in the periphery.
3. Discussion
Our study shows that the CrzR, the insect homologue of

GnRH receptors, is expressed in the fat body and salivary

glands of adult flies. The fat body thus receives Crz signals

from the brain that affects carbohydrate but not lipid metab-

olism, diminishes resistance to starvation, desiccation and

oxidative stress, increases food ingestion, and triggers feed-

back signals from the fat body to the brain. We cannot

exclude the possibility that part of these phenotypes are
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caused by Crz signalling to the salivary gland. However, our

aim was to tease apart the effects of systemic Crz signalling

from Crz action in the CNS. Several of the effects of diminish-

ing the CrzR in the periphery are more prominent in starved

flies. Thus, we suggest that Crz signalling from neuroendo-

crine cells of the brain to the fat body (and perhaps

salivary glands) is important when flies are under nutritional

stress. In mammals, the GnRH producing neuroendocrine

cells are located in the hypothalamus and receive nutrient

inputs via leptin signalling [30,31], and the GnRH system is

also affected by stress [9,10]. The Drosophila neuroendocrine

cells releasing Crz are located in a brain area that is a

functional equivalent of the hypothalamus [71], and may

be regulated by nutrient-sensing inputs [60], and stress hor-

mones such as the diuretic hormones DH31 and DH44 that

are ancestrally related to calcitonin and corticotropin-releas-

ing factor, respectively [23,25].

It has previously been suggested that Crz is utilized in

stress signalling in various insects [22,23], but only a few

studies in Drosophila have actually tested this. An earlier

report showed that ablation or inactivation of the Crz-

producing DLP neurons in the brain resulted in flies with

increased resistance to metabolic, oxidative and desiccation

stress, as measured by survival, and also resulted in increased

triglyceride levels [24]. The same authors also found that the
Crz transcript decreased during starvation and osmotic, but

not oxidative stress. Furthermore, ablation of Crz neurons

resulted in elevated dopamine levels in the circulation and

increased locomotor activity in male flies [24]. However,

these results need to be interpreted with caution as a later

study found that another neuropeptide, short neuropeptide

F (sNPF), coexpressed with Crz in DLPs, also affects

starvation resistance and other metabolism related pheno-

types [32]. Nonetheless, our previous paper demonstrated

that knockdown of Crz in DLPs in the Drosophila brain

increased starvation resistance and carbohydrate and TAG

levels [32].

Our results herein are derived from selectively diminish-

ing Crz signalling to the fat body and salivary glands by

targeted CrzR-knockdown. Thus, we can discount direct

actions on other targets, including the brain and heart. Never-

theless, the effects seen here following CrzR-knockdown in

the periphery on stress resistance and carbohydrate metab-

olism are similar to those where DLP neurons were

targeted by Crz-RNAi [24,32]. We also showed here that

more global knockdown of CrzR or Crz peptide resulted in

stress and feeding phenotypes very similar to those obtained

after more selective CrzR-RNAi in fat body/salivary gland.

Therefore, it seems that a substantial portion of the systemic

effects of Crz are mediated via the fat body. Indeed, we
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found clear effects of CrzR-knockdown on transcription of a

few relevant genes in the fat body (figures 6 and 7). The bmm
transcript level decreased. bmm encodes the TAG lipase

Brummer, which regulates lipid storage [66], and this gene

is therefore important in regulation of energy homeostasis.

However, as will be discussed in more detail below, we

also detected effects of CrzR-knockdown on the fat body

genes Upd2, NLaz and TotA. Upd2 is a leptin-like factor,

which is nutrient signal released from the fat body acting

on the brain IPCs [37]. Such, a feedback to the brain is sup-

ported by changes in transcripts of dilp3 and 5, as well as

AKH peptide levels after CrzR-knockdown. This feedback
may thus result in complex effects after CrzR-knockdown

in the fat body due to both direct and indirect regulation of

the adipocytes by Crz as well as DILPs and AKH.

Earlier studies have shown that Crz displays multiple

actions in insects, several of which may be associated with

stress responses. Crz was first identified as a cardioactive hor-

mone in cockroaches [72], but its actions have been extended

in Drosophila to roles in reproduction [39,73], carbohydrate

metabolism [24,38], modulation of locomotor activity [24],

regulation of ethanol sedation and metabolism [26,35], and

a role in the clock system [34,74]. In other insects, Crz induces

gregarization-associated colour change in locusts [75] and
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controls ecdysis behaviour in a moth [76]. Furthermore, it

was shown recently that during adult reproductive diapause

in Drosophila, when stress resistance is increased [14,77],

transcripts of both Crz and its receptor are significantly upre-

gulated [78]. In addition, a possible function of Crz signalling

to the salivary glands remains to be determined. Data

from FlyAtlas [36] suggest the presence of the CrzR in the

Drosophila salivary glands, and we cannot exclude that our

CrzR-RNAi experiments with ppl- and to-Gal4 drivers gener-

ated effects on salivary gland function that contributed to the

phenotypes we recorded. Adult salivary gland function is not

well investigated in Drosophila, but this tissue may contribute

to facilitating food ingestion and processing by lubrication

and release of digestive enzymes (see [54,55]).

The Drosophila Crz receptor is ancestrally related to the

GnRH receptor family [79,80], which is known to partici-

pate in stress responses in mammals [81,82]. Also, the CrzR

and AKH receptor (AkhR) have been proposed to have

a common ancestor [79], suggesting that Crz and AKH sig-

nalling might share some of the ancient functions in
regulation of stress and metabolism. AKH predominantly

stimulates catabolic processes (mobilization of lipids, carbo-

hydrates and amino acids) while simultaneously inhibiting

their biosynthesis [18,47–49]. Although both AKH and

Crz target the fat body, a comparison of our results and

those of earlier studies analysing Akh and AkhR mutants

(see electronic supplementary material, figure S7) reveals

that these two signalling systems play distinct roles in

metabolism and stress responses [18,45,83]. Knockdown of

Crz or ablation of Crz-producing cells leads to increased

levels of stored lipids and carbohydrates [24,32], and here

we show that the effect on carbohydrate metabolism is

mediated by Crz signalling to the periphery, and this effect

is stronger during stress conditions. One difference between

Crz and CrzR-knockdown is the lack of effect on TAG

levels after CrzR-knockdown in the periphery. This suggests

that Crz regulates lipid metabolism indirectly via another

signalling system.

The fat body is not only a primary metabolic tissue and

energy store, but it is also an active endocrine organ
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[2,16,84,85]. Hence, similar to mammals, Drosophila displays

reciprocal humoral interactions between adipocytes/liver

and brain neuroendocrine cells. The adult fat body can release

hormonal factors to modulate IPCs and systemic insulin signal-

ling, which in turn signals to the fat body [17,60,63,86].

In mammals, systemic insulin signalling is influenced by

adipocyte-derived hormonal factors, such as leptin and adipo-

nectin [87,88]. In Drosophila, a functional leptin homologue,

Upd2, produced in the fat body, was shown to regulate IPCs

[37]. In addition, DILP6 from the fat body can act on IPCs to

decrease DILP2 expression [63]. Fasting induces dilp6 mRNA

expression in fat body of Drosophila larvae [64] and adults

[63]. In our study, 36 h of starvation failed to affect dilp6
expression but diminished Upd2 in the fat body. Taken together

with the altered dilp3 and 5 transcript levels, our results suggest

that fat-body-derived humoral signals are affected by Crz

activation of the adipocytes.

We also assayed a few fat body genes associated with

stress signalling in Drosophila. Of these, the mRNA of Turan-

dot A (TotA) was upregulated after CrzR-RNAi in the

periphery. TotA is a target gene of Janus kinase/signal trans-

ducer and activator of transcription (JAK/STAT) signalling

[89], and is known to play an important role in stress

tolerance and immune response [69,70,90]. In fed flies,

CrzR-knockdown had no effect on the transcript of the

antioxidant enzyme manganese-containing superoxide dis-

mutase 2 (Sod2) which is a target of the transcription factor

FOXO [91,92], but upregulated the lipocalin Neural Lazarillo

(encoded by NLaz), which is related to apolipoprotein A

(ApoA) in mammals and is part of the stress responsive

Jun-N-terminal Kinase (JNK) signalling pathway [13,93].

Thus, we can conclude that increased Crz action on the fat

body upregulates TotA and Nlaz stress signalling.

In summary, signalling through the CrzR in the periphery

during metabolic stress results in increased nutrient intake and

reallocated energy stores enabling the fly to reestablish homeo-

stasis. The Crz action triggers transcriptional changes in the

adipocytes that include stress genes and one gene involved

in metabolism. The alteration of transcript levels of Crz, dilp3
and dilp5 and the decreased AKH peptide levels suggests

that Crz signalling to the periphery generates a feedback

signal to the brain and corpora cardiaca endocrine cells and

thereby gives rise to complex hormonal fine-tuning. The

CrzR is considered ancestrally related to the GnRH receptor

[79], which is known to be involved in specific stress responses

in mammals [9,81,82]. Thus, the role of Crz in stress may be an

ancient one, and over evolution Crz, AKH and GnRH signal-

ling systems have acquired additional functions seen both in

Drosophila, other invertebrates and in mammals.
4. Material and methods
4.1. Fly strains and husbandry
The following Drosophila melanogaster Gal4 lines were used:

ppl-Gal4 [40] from M. Pankratz (Bonn, Germany); to-Gal4
[41] provided by B. Dauwalder (Houston, TX, USA);

Crz-Gal4 [94], CrzR-Gal4T11a and CrzR-Gal4Se [35] were

gifts from J.H. Park (Knoxville, TN, USA). For targeted

interference we used UAS-Crz-RNAi (ID:106876) and UAS-
CrzR-RNAi (ID:44310) from the Vienna Drosophila Resource

Center (VDRC). Act5C-Gal4 and w1118 were from
Bloomington Drosophila Stock Center (BDSC), Bloomington,

IN, USA. The JFRC81-10XUAS-Syn21-IVS-GFP-p10 line [95]

was obtained from M. Texada (Janelia Farm, Ashburn,

VA, USA). This line is referred to as UAS-GFP in the text. Par-

ental flies were reared on BDSC food medium (see http://

flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloom-

food.htm) supplemented with 1.5 g l21 nipagin. For

collection of eggs 4–5-day-old flies were transferred to

enriched medium containing 100 g l21 sucrose, 50 g l21

yeast, 12 g l21 agar, 3 ml l21 propionic acid and 3 g l21 nipa-

gin. Experimental flies were grown under uncrowded

conditions at 258C and normal photoperiod (12 L : 12 D).
4.2. Immunocytochemistry and imaging
Adult Drosophila tissues were dissected in phosphate buffered

saline (PBS) (pH 7.2) and fixed in ice-cold 5% paraformalde-

hyde in 0.1 M sodium phosphate buffer for 3.5 h. Samples

were washed thoroughly in PBS before application of pri-

mary antisera. The primary antisera were diluted in PBS

with 0.5% Triton X (PBST) and tissues were incubated for

48 h at 48C with gentle agitation.

The following primary antisera were used: rabbit anti-Crz

[96] at a dilution of 1 : 4000 rabbit anti-DILP2 [97] at dilution

of 1 : 2000 (both were kindly donated by J. A. Veenstra,

Bordeaux, France). A rabbit antiserum to a mosquito AKH

was donated by M. Brown (Athens, GA). A rabbit anti-

DILP5 [98] was applied at a dilution of 1 : 2000 and mouse

anti-GFP at a dilution of 1 : 1000. For detection of primary

antisera we used Alexa 546 tagged goat anti-rabbit antiserum

and Alexa 488 tagged goat anti-mouse antiserum (Invitrogen)

at a dilution of 1 : 1000. After washes, tissues were mounted

in 80% glycerol in PBS. For each experiment we analysed at

least 12 tissues from three independent replicates.

Tissue samples were imaged with a Zeiss LSM 510 META

confocal microscope (Jena, Germany) using 40� or 63� oil

immersion objectives. Confocal images were processed with

Zeiss LSM software and FIJI immunofluorescence levels

were recalculated to corrected total cell fluorescence

(CTCF) according to Burgess et al. [99] using FIJI software [100].
4.3. Stress resistance experiments
We used 3-day-old male flies to assay survival under stress

conditions. In each replicate, 15 male flies (unless otherwise

stated) were kept in 50 ml vials and mortality was monitored

every 3 h until no alive flies were left. For starvation resist-

ance flies were placed in vials, containing 5 ml of 0.5%

aqueous agarose (A2929, Sigma-Aldrich). For desiccation

flies were kept in empty vials without access to water or

food. To induce oxidative stress flies were kept on 5 ml of

enriched food medium, supplemented with 10 mM paraquat

(methyl viologen, 856177, Sigma-Aldrich). For chill coma

recovery assay flies were placed into empty vials (15 flies

per vial) and vials were placed into ice to induce immediate

chill coma. Flies were incubated at 08C for 4 h followed by a

transfer flies to 258C for recovery. Recovering flies were mon-

itored every 2 min till all flies recovered. All stress resistance

assays were done at 258C and 12 L : 12 D. All experiments

were run in three replicates with at least 100 flies of each

genotype in each run.

http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood.htm
http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood.htm
http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood.htm
http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood.htm
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4.4. Carbohydrate and lipid assays
Flies from all investigated genotypes were also used to

measure concentrations of circulating (haemolymph) glucose,

together with stored (whole body) glucose, trehalose and

glycogen as well as stored triacylglycerides (TAG). For this

we used 10–15 male flies from each of four independent

replicates. Three-day-old male flies of each genotype and

replicate were separated into two different treatments. One

batch of the flies was transferred to 5% agarose for starvation

for 36 h (this is the time when control and knockdown flies

start to show different survival). Another batch of flies was

kept at normal (fed) conditions on the enriched food

medium. After 36 h of incubation all flies were frozen in

liquid nitrogen and kept for further assays.

Haemolymph was collected following published proto-

cols [101,102] including centrifugation (3000g, at 48C,

for 6 min). After haemolymph extraction the pelleted fly

bodies were homogenized in 0.01 M PBS buffer (pH 7.2) in

ratio 1 : 10 (w/v) followed by centrifugation (16 000g, 48C,

15 min) and collection of supernatants. Carbohydrate assays

of haemolymph and whole body supernatants were per-

formed as described earlier [32,77] using a glucose assay kit

with glucose oxidase and peroxidase (Liquick Cor-Glucose

diagnostic kit, Cormay, Poland). Glucose was measured after

trehalose and glycogen from haemolymph and whole-body

supernatants had been hydrolysed into glucose with porcine

kidney trehalase (Sigma, T8778) and amyloglucosidase from

Aspergillus niger (Sigma, 10115).

For extraction of triacylglycerides (TAG) 10–15

pre-weighed flies per sample were homogenized in the

ratio 1 : 10 (w/v) in PBS buffer (pH 7.4), supplemented

with 0.05% Triton X [103]. Homogenates were incubated

for 15 min at 1008C, cooled on ice and centrifuged

(16 000g, 48C, 10 min). Supernatants were collected and the

amount of TAG was determined with a Liquick Cor-TG

diagnostic kit (Cormay, Poland) using a linear regression

coefficient from a standard curve made with 1.1–22 mg of

TAG standard (Cormay, Poland). Absorbance of samples

was measured at 550 nm with a spectrophotometer

(Genova Jenway, UK-PRC).

4.5. Capillary feeding assay
The capillary feeding (CAFE) assay was performed on

3-day-old male flies according to Ja et al. [104] with 5 ml capil-

laries filled with food composed of 50 g l21 sucrose, 50 g l21

yeast and 3 ml l21 propionic acid. Measurements were made

in three independent replicates with 10 flies in each

replicate. The food consumption was recorded every 24 h

with refilling of capillaries. Data are shown as total food

intake in microliters of consumed food by one fly for 96 h (ml

per 96 h per fly).

4.6. Quantitative real-time PCR
Total RNA was extracted with Trizol-chloroform from four

independent biological replicates with 10–15 whole flies in

each replicate, from both normal (fed) and starvation con-

ditions. We also analysed 20–30 dissected abdomens

(carcasses) of normally fed flies with attached fat body.

The dorsal part of the carcass was removed to ensure mini-

mal contamination from dorsal vessel, known to express
CrzR (see FlyAtlas). Extracted RNA was further treated

with DNAase (EN0521, Thermo Fisher Scientific). Quality

and concentration of the RNA were determined with a

NanoDrop 8000 spectrophotometer (Thermo Fisher Scienti-

fic). Reverse transcription (cDNA synthesis) was done

following [105] in 20 ml reaction mixture, containing 2 mg

of total RNA, 1 ml of 10 mM dNTPs (R0192, Thermo

Fisher Scientific), 0.4 ml of 100 mM random hexamer primer

(SO142, Thermo Fisher Scientific) and 2 ml of M-MuLV

reversible transcriptase (EP0352, Thermo Fisher Scientific)

were used. The cDNA was then applied for qPCR using a

StepOnePlus (Applied Biosystems) instrument and Sensi-

FAST SYBR Hi-ROX Kit (Bioline) as recommended by the

manufacturer. For each sample duplicate reactions of the

total volume of 20 ml were conducted with a primer concen-

tration of 400 nM and 4 ml of diluted 1 : 10 cDNA template.

The mRNA levels were normalized to that of the reference

genes, rp49 and Act88 levels in the same samples (displayed

data are shown relative to rp49). Relative expression values

were determined by the 22DDCt method [106]. The sequences

of the primers are shown in electronic supplementary

material, table S1.
4.7. Data analysis
The experimental data are presented as means+ s.e.m. Stat-

istical analysis was performed using R statistical software

(Foundation for Statistical Computing, Vienna, Austria)

v. 3.0.3. Prior to statistical treatment all data were tested for

homogeneity of variances using the Fligner–Killeen’s test

and for normal distribution by the Shapiro-Wilk’s normality

test. Unless otherwise stated statistical analysis was per-

formed by one-way analysis of variance (ANOVA) followed

by Tukey’s multiple comparisons test, when data had a

normal distribution, and a non-parametric Kruskal–Wallis’s

test followed by pairwise comparisons using Wilcoxon’s

rank sum test when data lacked normal distribution. Cor-

rected total cell fluorescence data and qPCR results in

dissected fat body samples were compared with unpaired

t-test. Stress survival data were compared using log-rank

test, Mantel-Cox. A 95% confidence limit ( p , 0.05) was

used throughout the study. Graphs were produced in

ORIGINPRO v. 7.5 software.
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Nylin S, Theopold U, Nässel DR. 2016 Slowed aging
during reproductive dormancy is reflected in
genome-wide transcriptome changes in Drosophila
melanogaster. BMC Genomics 17, 50. (doi:10.1186/
s12864-016-2383-1)

http://dx.doi.org/10.1073/pnas.1218246109
http://dx.doi.org/10.1101/gad.1010302
http://dx.doi.org/10.1073/pnas.0405775102
http://dx.doi.org/10.1073/pnas.0405775102
http://dx.doi.org/10.1126/science.1070058296/5570/1118]
http://dx.doi.org/10.1038/nature02897
http://dx.doi.org/10.1242/jeb.016451
http://dx.doi.org/10.1534/genetics.167.1.311
http://dx.doi.org/10.1534/genetics.167.1.311
http://dx.doi.org/10.1016/j.cbpa.2012.10.012
http://dx.doi.org/10.1016/S0074-7696(01)11019-3
http://dx.doi.org/10.1016/S0074-7696(01)11019-3
http://dx.doi.org/10.1016/S0016-6480(03)00159-X
http://dx.doi.org/10.1016/S0016-6480(03)00159-X
http://dx.doi.org/10.1534/genetics.112.143610
http://dx.doi.org/10.1016/j.cmet.2007.09.002
http://dx.doi.org/10.1016/j.cmet.2007.09.002
http://dx.doi.org/10.1074/jbc.M114.619411
http://dx.doi.org/10.1016/j.jinsphys.2013.11.005
http://dx.doi.org/10.3389/fnins.2013.00012
http://dx.doi.org/10.3389/fnins.2013.00012
http://dx.doi.org/10.1016/j.pneurobio.2010.04.010
http://dx.doi.org/10.1016/j.pneurobio.2010.04.010
http://dx.doi.org/10.1016/S0960-9822(01)00068-9
http://dx.doi.org/10.1016/S0960-9822(01)00068-9
http://dx.doi.org/10.1371/journal.pgen.1004555
http://dx.doi.org/10.1007/s00018-015-2063-3
http://dx.doi.org/10.1016/j.cmet.2015.01.006
http://dx.doi.org/10.1016/j.cmet.2015.01.006
http://dx.doi.org/10.1371/journal.pone.0068641
http://dx.doi.org/10.1111/acel.12000
http://dx.doi.org/10.1016/j.devcel.2009.10.009
http://dx.doi.org/10.1016/j.devcel.2009.10.008
http://dx.doi.org/10.1016/j.cmet.2005.04.003
http://dx.doi.org/10.1091/mbc.E06-10-0909
http://dx.doi.org/10.1091/mbc.E06-10-0909
http://dx.doi.org/10.1515/BC.2008.033
http://dx.doi.org/10.1016/S1534-5807(03)00244-2
http://dx.doi.org/10.1016/S1534-5807(03)00244-2
http://dx.doi.org/10.1016/S0960-9822(01)00203-2
http://dx.doi.org/10.1016/S0960-9822(01)00203-2
http://dx.doi.org/10.1677/joe.1.06964
http://dx.doi.org/10.1677/joe.1.06964
http://dx.doi.org/10.1016/0014-5793(89)80727-6
http://dx.doi.org/10.1016/0014-5793(89)80727-6
http://dx.doi.org/10.1371/journal.pgen.1002631
http://dx.doi.org/10.1002/cne.10242
http://dx.doi.org/10.1002/cne.10242
http://dx.doi.org/10.1073/pnas.96.12.7083
http://dx.doi.org/10.1073/pnas.96.12.7083
http://dx.doi.org/10.1073/pnas.0305291101
http://dx.doi.org/10.1073/pnas.0305291101
http://dx.doi.org/10.1371/journal.pone.0113051
http://dx.doi.org/10.1371/journal.pone.0113051
http://dx.doi.org/10.1186/s12864-016-2383-1
http://dx.doi.org/10.1186/s12864-016-2383-1


rsob.royalsocietypublishing.org
Open

Biol.6:160152

16
79. Grimmelikhuijzen CJ, Hauser F. 2012 Mini-review:
the evolution of neuropeptide signaling. Regul.
Pept. 177 (Suppl), S6 – S9. (doi:10.1016/j.regpep.
2012.05.001)

80. Mirabeau O, Joly JS. 2013 Molecular evolution of
peptidergic signaling systems in bilaterians. Proc.
Natl Acad. Sci. USA 110, E2028 – E2037. (doi:10.
1073/pnas.1219956110)

81. Li XF, Bowe JE, Mitchell JC, Brain SD, Lightman SL,
O’Byrne KT. 2004 Stress-induced suppression of the
gonadotropin-releasing hormone pulse generator in
the female rat: a novel neural action for calcitonin
gene-related peptide. Endocrinology 145,
1556 – 1563. (doi:10.1210/en.2003-1609)

82. Tellam DJ, Perone MJ, Dunn IC, Radovick S,
Brennand J, Rivier JE, Castro MG, Lovejoy DA. 1998
Direct regulation of GnRH transcription by CRF-like
peptides in an immortalized neuronal cell line.
Neuroreport 9, 3135 – 3140. (doi:10.1097/00001756-
199810050-00003)

83. Grönke S, Muller G, Hirsch J, Fellert S, Andreou A, Haase
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