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Abstract

In malaria and several other important infectious diseases, high prevalence occurs concomi-

tantly with incomplete immunity. This apparent paradox poses major challenges to malaria

elimination in highly endemic regions, where asymptomatic Plasmodium falciparum infec-

tions are present across all age classes creating a large reservoir that maintains transmis-

sion. This reservoir is in turn enabled by extreme antigenic diversity of the parasite and

turnover of new variants. We present here the concept of a threshold in local pathogen diver-

sification that defines a sharp transition in transmission intensity below which new antigen-

encoding genes generated by either recombination or migration cannot establish. Transmis-

sion still occurs below this threshold, but diversity of these genes can neither accumulate

nor recover from interventions that further reduce it. An analytical expectation for this thresh-

old is derived and compared to numerical results from a stochastic individual-based model

of malaria transmission that incorporates the major antigen-encoding multigene family

known as var. This threshold corresponds to an “innovation” number we call Rdiv; it is differ-

ent from, and complementary to, the one defined by the classic basic reproductive number

of infectious diseases, R0, which does not readily is better apply under large and dynamic

strain diversity. This new threshold concept can be exploited for effective malaria control

and applied more broadly to other pathogens with large multilocus antigenic diversity.

Author summary

The vast diversity of the falciparum malaria parasite, as seen by the immune system of

hosts in high transmission regions, underlies both high prevalence of asymptomatic infec-

tions and partial protection to re-infection despite previous exposure. This large antigenic

diversity of the parasite challenges control and elimination efforts. We propose a thresh-

old quantity for antigenic innovation, we call Rdiv, measuring the potential of transmission

to accumulate new antigenic variants over time. When Rdiv is pushed below one by

reduced transmission intensity, new genes encoding this variation can no longer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008729 February 19, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: He Q, Pascual M (2021) An antigenic

diversification threshold for falciparum malaria

transmission at high endemicity. PLoS Comput

Biol 17(2): e1008729. https://doi.org/10.1371/

journal.pcbi.1008729

Editor: Miles P. Davenport, UNSW Australia,

AUSTRALIA

Received: June 2, 2020

Accepted: January 20, 2021

Published: February 19, 2021

Copyright: © 2021 He, Pascual. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data used to produce

figures are deposited in https://figshare.com/

projects/An_antigenic_diversification_threshold_

for_falciparum_malaria_transmission_at_high_

endemicity/95803. The original C++ code for the

var evolution model is available on Github (https://

github.com/pascualgroup/varRdiv).

Funding: This work was supported by the grant by

the joint NIH-NSF-NIFA Ecology and Evolution of

Infectious Disease (award R01 AI149779) to MP

and Karen P. Day. The funders had no role in the

https://orcid.org/0000-0003-1696-8203
https://orcid.org/0000-0003-3575-7233
https://doi.org/10.1371/journal.pcbi.1008729
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008729&domain=pdf&date_stamp=2021-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008729&domain=pdf&date_stamp=2021-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008729&domain=pdf&date_stamp=2021-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008729&domain=pdf&date_stamp=2021-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008729&domain=pdf&date_stamp=2021-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008729&domain=pdf&date_stamp=2021-03-03
https://doi.org/10.1371/journal.pcbi.1008729
https://doi.org/10.1371/journal.pcbi.1008729
http://creativecommons.org/licenses/by/4.0/
https://figshare.com/projects/An_antigenic_diversification_threshold_for_falciparum_malaria_transmission_at_high_endemicity/95803
https://figshare.com/projects/An_antigenic_diversification_threshold_for_falciparum_malaria_transmission_at_high_endemicity/95803
https://figshare.com/projects/An_antigenic_diversification_threshold_for_falciparum_malaria_transmission_at_high_endemicity/95803
https://figshare.com/projects/An_antigenic_diversification_threshold_for_falciparum_malaria_transmission_at_high_endemicity/95803
https://github.com/pascualgroup/varRdiv
https://github.com/pascualgroup/varRdiv


accumulate, resulting in a lower number of strains and facilitating further intervention.

This innovation number can be applied to other infectious diseases with fast turnover of

antigens, where large standing diversity similarly opposes successful intervention.

Introduction

High transmission endemic areas present a significant challenge to the control and elimination

of falciparum malaria due to the large reservoir of chronic asymptomatic infections sustaining

transmission. Today the global burden of Plasmodium falciparum is concentrated in these

high transmission endemic areas within fifteen countries, mainly in sub-Saharan Africa

(WHO 2017). A similar reservoir is found in other vector-borne diseases that exhibit a high

prevalence of infection with no clinical symptoms in domestic and wildlife hosts [1–3]. Large

reservoirs of chronic asymptomatic infection arise not just from high transmission rates per

se, but also from accompanying nonsterile specific immunity to pathogens with extreme anti-

genic variation encoded by multigene families [4, 5]. The accumulation and turnover of new

antigenic variants which underlie such nonsterile immunity constitute a major impediment to

intervention efforts for falciparum malaria [6].

One important multigene family in the malaria parasite P. falciparum is known as var. It

encodes for the major antigen of the blood stage of infection, the protein PfEMP1, exported to

the surface of infected blood cells upon expression. Anti-PfEMP1 immunity is crucial to pre-

vent severe disease and clear infection [7]. Each parasite carries 40 to 60 var gene copies across

its chromosomes. This variation enables immune evasion and associated long infection, as

hosts have typically not seen many of the variant surface antigens of an infecting parasite.

Under high transmission rates, local parasite populations exhibit a large pool of gene variants

reaching the tens of thousands [8, 9]. This vast genetic diversity is generated primarily by

ectopic recombination. Laboratory experiments have shown that a naïve infection can gener-

ate about sixty new recombinants per year [10, 11], although this rate has not yet been demon-

strated in nature. In addition, parasites share locally only a few common var genes across

strains [9, 12, 13] and seasons [13]. Spatial diversity in var genes has also been documented [8,

9, 12], indicating that migration from surrounding areas also contributes to new diversity and

to the immunological challenge.

A well-known and important quantity in epidemiology is the basic reproductive number

R0, which establishes a threshold separating fundamentally different population dynamics in

infectious diseases. The high strain diversity of P. falciparum and other pathogens with multi-

gene and multilocus encoding of antigens [14–17] challenges the application of R0. Whereas

its application to pathogens with either no antigenic variation or a low number of genetically

well-defined strains is appropriate, its estimation and even definition become difficult when

antigenic variation is large and dynamic under extensive recombination and no stable strains.

Under these conditions, it is informative to consider the accumulation and turnover rate of

new genes encoding for antigens, as their diversity can influence transmission characteristics

and responses to control.

We present here a complementary number that defines a threshold for parasite antigenic

diversification. Below this threshold, the accumulation of new antigen-encoding genes no

longer occurs, even though they are consistently produced. We introduce the concept for

infectious agents in general, derive an analytical expectation for the rate of generation of “suc-

cessful” new genes for the var system in P. falciparum, and demonstrate the existence of the

predicted analytical threshold in numerical simulations of a stochastic agent-based model
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that incorporates var genes and the acquisition of immunity by individual hosts. We then

investigate the epidemiological and evolutionary factors that influence this diversification rate

analytically. We show that this rate for the accumulation of genetic novelty, we call Rdiv, maps

onto transmission intensity, separating at a threshold a regime in which new genes are able to

accumulate from one in which they are unable to do so despite transmission still occurring

(i.e., R0 remaining above one). We discuss implications for malaria control and elimination,

future directions to estimate and monitor distance to this quantity in high transmission

endemic regions, and its applicability to other infectious diseases.

Results

Theoretical considerations

Consider the genes of a parasite whose mutation generates new antigenic variation during

transmission and infection. Due to immune selection, common antigenic variants would seg-

regate around a frequency of 1/G given an antigenic pool size G. We define the establishment

of a new antigenic variant as its propagation from a few copies to the expected common vari-

ant frequency. Parasite populations should accumulate these new gene variants when they are

produced at a sufficient rate for their lifespans to overlap with each other (Fig 1). Novelty per

se guarantees neither the establishment nor the persistence of the genes. Even under high abso-

lute fitness, new variants need to survive initial drift to establish in the parasite population

[18]. Their accumulation further requires that the rate at which they are generated, Gnew, be on

average larger than that of their loss, given by the inverse of their lifespan, Tnew. In other

words, at least one beneficial gene needs to be produced and become established in the popula-

tion during the typical lifespan of a previously generated new gene. We denote by Rdiv the

expected number of new genes established during the average lifespan of a new gene. This

innovation number should be greater than 1 for new variants to accumulate, namely

Rdiv ¼ GnewTnew ¼ NmpinvTnew > 1 ð1Þ

where N denotes the population size of the parasite (i.e., the total number of infections), μ, the

mutation rate of the genes, and pinv, the invasion probability of a low-frequency variant. Note

that N is different from the number of infected hosts because there could be multiple infections

within the same host. Importantly, the average lifespan of a new gene, Tnew, depends on its

selective advantage under frequency-dependent competition [13, 19]: if fewer hosts have

acquired immunity towards its product, then its expected lifespan would be longer. New vari-

ants are generated through either mutation or ectopic recombination (Methods), and therefore

μ generically refers here to the rate of novelty generation regardless of specific mechanism.

Note that Rdiv is defined as an instantaneous measure of the establishment rate of new genes.
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Fig 1. Schematic illustration of two possible scenarios. Below the diversification threshold, new genes are produced but die before any others arise (A).

Above this threshold, they are produced within the lifespan of other new genes, causing their accumulation (B). Constant Red Queen dynamics between

parasite antigens and the adaptive immune system under high transmission intensity result in high diversity of antigen-encoding genes.

https://doi.org/10.1371/journal.pcbi.1008729.g001
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As such, it does not concern the death rate of pre-existing common genes and is not a turnover

rate. As we discuss later, the lifetime of pre-existing common genes under frequency-depen-

dent selection is much longer than the epidemiological time scales relevant to the invasion of

new, rare ones.

Eq (1) establishes an expectation for the existence of a threshold, whose expression we pro-

ceed to further develop next, to be able to verify it computationally. We first consider the prob-

ability pinv that a new gene survives its initial low frequency and invades. Based on birth-death

processes in the Moran model with selection [20], the invasion probability of a low-frequency

variant is largely determined by its relative fitness advantage over other variants. The fitness of

different variants in a transmission model is essentially given by their effective reproductive

number Reff (i.e., the number of infections they produce via transmission events during their

lifetime). Thus,

pinv � ðRnew=
�Reff Þ � 1 ð2Þ

Eq (2) holds in general for any infectious disease that generates new antigens. To proceed

further, we considered the specifics of Plasmodium falciparum and its multicopy var genes

(typically about 40-60 per genome), whose expression is sequential during the blood stage of

infection [21]. Reff for a given var gene is the product of the epidemiological transmission rate

of the disease (β) and the typical infection duration (τ) of parasites that carry the given gene

(Methods). If we consider that genes are equivalent in transmissibility (i.e., their products are

functionally equivalent in their ability to bind host receptors), an assumption we later relax in

numerical results, fitness differences between variants are only determined by the duration of

infection these genes can typically sustain.

Because only those genes whose product the host has not yet built immunity towards are

expressed, the average duration of infection will equal the number of genes per genome (i.e.,

repertoire size) times the average proportion of susceptible (non-immune) hosts per gene,

�t ¼ dg
XG

i¼1

Sifi ð3Þ

where d is the duration of infection for a given gene in a naive host, g is the repertoire size, G is

the number of different genes in the parasite population (i.e., gene pool size) and fi is the popu-

lation frequency of a given gene. We rewrote Eq (2) using (3) (Methods), to obtain

pinv �
Snew � �S

�Sg
ð4Þ

where the mean number of susceptible hosts for an average established gene is given by

�S ¼
PG

i¼1
Sifi. This expression for the invasion probability shows that a new gene is likely to

invade when it affords a wider host niche than that of established genes (by encoding for epi-

topes that are new given the immunity of the host population). In other words, the available

number of hosts for its expression should be higher on average than that for existing genes. In

addition, the invasion probability of a single gene decreases with increasing repertoire size g,

as the importance of a single gene also decreases.

In order to understand how epidemiological and genetic factors influence Rdiv, we exam-

ined with a simple theoretical model the equilibrium values of �S and N, which enter promi-

nently in the expression for Gnew (Methods). At equilibrium, increasing contact rates (β) via

mosquito bites result in higher parasite population sizes (N) and a lower average number of

susceptible hosts (�S, Fig A in S1 Text). More specifically, �S is mostly determined by β and g,
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whereas parasite population size strongly scales with the diversity ratio (i.e., gene pool size G
over repertoire size, G/g). A lower �S favors invasion of a new variant (i.e., increases pinv), and a

higher parasite population size (N) and a genome with a higher number of unique genes (g)

generate new variants faster. Note that theoretical predictions underestimate �S because they

neglect the higher-level of organization of the genes into different genomes, also under

immune selection [13]. This observation indicates that strain structure under selection can sig-

nificantly reduce the percentage of genes that a host is immune to, especially under high com-

petition and high diversity (see g = 60, and G/g = 100 in Fig A in S1 Text).

An explicit expression for Tnew cannot be obtained analytically because this quantity contin-

uously changes as new genes enter the system and influence the nonlinear dynamics of N, G,

and �S. To gain nevertheless an understanding of how these variables affect Tnew, we approxi-

mated the average lifespan of a new gene on the basis of an adapted diffusion equation [20]

(SI). The diffusion equation for �t requires consideration of how the frequency of a new gene

x(t) varies in time (SI). When applied to our model, the resulting analytical approximation for

�t (Eq. S8-11) shows that the expected lifespan of a new gene grows faster than exponential with

decreasing �S, and surpasses the average time to fixation of a neutral gene (2N) when �S is below

a given value (* 40%) (Fig 2).

Taken together, the theoretical results show that when transmission rate is low, �S is large

and new genes do not have a significant advantage over older ones (Fig A in S1 Text). New
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Fig 2. Theoretical expectation of the average lifespan of a new gene �t . The analytical expression shows that �t , measured in units of N�t,

increases faster than exponential as the average number of available hosts �S decreases. The dashed line represents the time to fixation of a

neutral gene, which means that under small �S, once established, the gene can be maintained in the population for much longer than the

typical epidemiological timescale (or for much longer than the simulation period of 200 years in our model). The average lifespan Tnew
obtained from the computational model will always be considerably smaller than the theoretical expectation �t derived under the assumption

that other factors remain constant, in particular the average number of hosts �S that are susceptible to the invading gene. The general trend of

increased persistence with lower �S will hold however for the full numerical system and for finite time windows.

https://doi.org/10.1371/journal.pcbi.1008729.g002
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genes experience a small invasion probability, and even when they invade, they experience

strong drift, functioning as effectively neutral (Fig 2). As transmission intensity increases, the

selective advantage of new genes also increases as �S decreases. Once �S is below a given value

(0.4 in our simulations), new genes are most likely to be maintained in the population indefi-

nitely. Concomitantly, the increase in gene diversity results in larger parasite population sizes

N (Fig A in S1 Text). The system thus enters a regime of positive feedback for new variants, as

elevated diversity boosts N and therefore also, Gnew, before reaching equilibrium.

Computational model and threshold implications for epidemiology

We can now evaluate the existence of the threshold behavior indicated by the above analytical

argument. To this end, we computed Rdiv from a stochastic agent-based model of malaria

transmission [13, 22] that tracks var evolution and immunity and is described in Methods

[13]. A number of extensions were also considered here to address the generality of the argu-

ment, including distinct major var gene groups with associated differential fitness and con-

strained recombination (Methods). Note that all the simulations are endemic, with R0 larger

than 1. Although Rdiv is defined as an instantaneous measure, we estimated its mean value

from the simulations over a given period of time because of the nonlinear dynamics of the sys-

tem, which modify components of the number as new genes continuously invade. We then

examined how the accumulation of new variants over this period of time varies as a function

of Rdiv. We calculated Gnew according to Eqs (2) and (4) by obtaining �S, N, and μ directly from

the simulations, and Tnew from the average lifespan of all the new variants that are produced

during this time period. The mean Tnew evaluated numerically will always be shorter than that

predicted from the diffusion approximation �t , especially as �S decreases and persistence times

rapidly increase (Fig 2). This numerical value is smaller because the stochastic simulations can

only track lifespan within a finite time period (which places an upper bound on its value), and

because the assumption of constant �S does not apply. Nevertheless, the theoretical trend of

increasing Tnew with decreasing �S and therefore, higher transmission intensity, does apply to

the numerical system.

Results showed that the transmission system naturally falls into two regimes separated by a

threshold at Rdiv = 1 (Fig 3A). Below the transition, new antigenic variants are generated but

do not accumulate or persist (Fig 4A), whereas above it, they are able to accumulate and expe-

rience a continuous turnover rate (see shifting shades of colors in Fig 4B). The transition

between these regimes occurs around the proposed boundary, where the rate of generation of

genes surpasses the average lifespan of new antigenic variants (Rdiv = 1). This threshold is

robust to differences in specific assumptions about the transmission and genetic systems

(including processes of within-host dynamics, functional differences between genes, values of

the recombination and biting rates), as each point in Fig 3A represents a simulation with dif-

ferent model assumptions and parameter combinations (Methods; Table A and Table B in

S1 Text).

Importantly, we found that the quantity Rdiv scales monotonically with the intensity of

transmission measured here as the entomological inoculation rate (or EIR, the number of

infectious bites per person per year) (Fig B in S1 Text), a practical empirical measure from

field epidemiology. The association with Rdiv should hold more generally with any other mea-

sure of transmission intensity. This association implies that the transition between regimes

also occurs as a function of transmission intensity (Fig 3B), and therefore, that the malaria sys-

tem can be pushed below threshold by changing this control variable. It follows that the per-

centage of accumulated new genes also exhibits the threshold behavior with transmission

intensity, as measured here by EIR (See Fig B in S1 Text for more details).
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The transition examined so far represents the behavior of the system for different values of

Rdiv or transmission intensity. Its existence should influence the temporal response of the

malaria system to intervention events that reduce transmission at a given point in time. In par-

ticular, interventions that take the transmission system below threshold should lead to distinct

responses than those that fail to do so. This is illustrated in Fig 5A, where we numerically intro-

duced a transient reduction of the biting rate to lower levels (respectively 30 and 50% of its

original value). New genes cease to accumulate only when Rdiv goes below threshold, whereas

they continue to invade and accumulate following a temporary decrease otherwise (Fig 5A).

We further investigated how the accumulation of new genes influences the outcome of inter-

vention with respect to malaria incidence. When intervention reduces transmission rates, both

prevalence and MOI decrease, whereas �S increases, as expected (Fig 5B and 5C). Importantly,

Rdiv predicts whether prevalence and MOI would be able to recover through the accumulation

of antigenic variation. When Rdiv remains larger than 1, the system is able to partially recover

both its prevalence and MOI in a relatively short period of time depending on the actual Rdiv

values. In contrast, when Rdiv is taken across threshold to values smaller than 1, the system

stays at the low prevalence determined by control levels and does not rebound (Fig 5B and

5C). It is not possible to determine the trajectories of these epidemiological quantities from

their values at intervention, or from monitoring the incidence rates themselves, in the sense

that there is no given, knowable threshold in these quantities that would indicate the discrete

transition.

In summary, by evaluating whether Gnew< 1/Tnew (or equivalently, Rdiv< 1), one can

predict whether the system has a relatively stable antigen-encoding gene pool, or whether

alternatively, new variants continuously enter into it. We have shown that whether new

genes can successfully establish in the population is most tightly linked with the average pro-

portion of susceptible hosts (or the niche) available for existing genes (�S), a measure of the

Fig 3. Numerical simulations reveal a transition between two regimes of antigenic diversity accumulation. (A) The percentage of new genes in the

local parasite population at the end of a given simulation period (200 years) remains negligible when the reproductive number Rdiv for antigen-

encoding new genes is lower than one. By contrast, this percentage increases rapidly above this threshold. Because the time interval over which we

computed Rdiv = Gnew Tnew concerns long transients, we evaluated the rate of generation of new genes Gnew as a mean over this interval (by averaging

the values of N and �S every 180-day interval), and the lifespan Tnew, as an average for all the new genes that invaded during this time (with this interval

placing an upper bound on individual lifespans). (A, B) Each point represents a simulation with different combinations of parameters and assumptions

(including variation in rules of within-host dynamics, in strength of the trade-off between transmissibility and duration of infection, and in values and

seasonality of the transmission rates, Table A and Table B in S1 Text). (B) The percentage of new genes also exhibits the threshold behavior with the

entomological inoculation rate (EIR, the number of infectious bites per person per year).

https://doi.org/10.1371/journal.pcbi.1008729.g003
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population-level immunity. In addition, this measure provides a valuable assessment tool for

evaluating the potential success of interventions by predicting whether incidence rates would

rebound.

Discussion

The concept of Rdiv arises from the interplay of immune memory and antigenic variation at

the population level, as a result of frequency-dependent selection. As such, it differs from the

antigenic diversity threshold previously proposed for the HIV virus and its transition to AIDS,

arising from the race between viral replication and immune responses at the within-host level

[23]. The concept itself and the associated transition regime described here should apply more

generally to other infectious diseases with antigen-encoding multigene families, such as vsg
genes in Trypanosoma brucei and msg genes in Pneumocystis carinii [4]. Because the basic con-

cept is independent of specific consideration of multigene families and their properties, it

Fig 4. Patterns of new gene establishment in simulations below and above the Rdiv threshold of 1. (A) New genes do not accumulate below the

transmission threshold where they essentially follow neutral dynamics. In contrast, they do accumulate at a constant rate under frequency-dependent

selection above this threshold (B). Each color in the stacked area plots refers to a new gene in the population. New genes that account for less than five

infections over the entire period are combined and represented in grey. (C) The distribution of lifespan of new genes generated in the simulation

(measured in log(years)) is shorter below the threshold than above it (D). In addition, new genes with a greater number of new epitopes live longer

above the threshold, whereas below the threshold, they experience similar lifespans (C, D).

https://doi.org/10.1371/journal.pcbi.1008729.g004
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should also be adaptable to other pathogens in which large standing antigenic diversity at the

population level results from multilocus genetic variation [17].

By contrast, in pathogens with sufficiently well-defined strains, the characteristics of their

population dynamics and population genetics would place them below the diversification

threshold defined by Rdiv equal one. Rdiv does not provide additional information in these sys-

tems, and estimates of the force of infection through tracking the transmission of new clones

[24] would be sufficient. For example, genetic variation in measles is largely neutral antigeni-

cally and the effective mutation rates generating new antigens are slow [25]. In seasonal influ-

enza, bottlenecks in transmission constrain the emergence of novelty [26], and so do

mutations with largely deleterious effects [27].

The innovation number Rdiv measures how many rare genes become frequent and estab-

lished in the average lifetime of newly-generated genes. In contrast to R0 < 1 which predicts a

decrease in parasite population size, Rdiv< 1 implies a stasis in overall antigenic diversity. This

is so because Rdiv does not take into account the loss of established common genes, which

occurs rarely given that they can persist under frequency-dependent selection for much longer

times than neutral ones, even in a relatively small population [28, 29]. These persistence time-

scales are considerably longer than the epidemiological ones we are interested in here for the

Fig 5. Rdiv predicts the response of incidence to reductions of the transmission rate. (A) Interventions that push the system below the threshold are

effective at stopping the accumulation of new genes, whereas those that do not, result in the rebound and rebuilding of diversity (A). Light and dark

grey colors indicate genes that originate respectively before and after the intervention. Reductions of transmission rates would result in decreased Rdiv

values (B) and increased �S (C) to different levels. (C) When Rdiv remains above 1, prevalence and Multiplicity of Infection (MOI) rebound relatively

fast, whereas they do not recover when Rdiv drops below 1. Changes in these epidemiological quantities, prevalence and MOI, cannot per se indicate this

transition, as they change continuously with different levels of intervention and do not exhibit a threshold.

https://doi.org/10.1371/journal.pcbi.1008729.g005
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invasion and accumulation of novelty, and therefore our formulations have essentially

assumed a separation of these timescales. Below threshold, the number of new genes would

decrease if one were to track the fate of a given number of them introduced at low frequencies

characteristic of invasions.

For P. falciparum and pathogens with extensive antigenic diversity at the population level,

the proposed concept of a threshold behavior in the accumulation of antigen-encoding genes

has practical implications for overcoming the resilience of highly endemic regions to interven-

tion efforts. Although a decreasing trend in the diversity of strains and underlying genes with

decreasing transmission intensity is well known and expected from both the biogeography and

epidemiology of malaria, the actual form of this relationship and response to interventions are

much less clear. Our results predict the existence of a sharp transition below which the disease

system should effectively respond as a typical low transmission region, not just because of

reduced transmission intensity but also because of much lower antigenic diversity no longer

able to rebuild. Failure to push transmission intensity below this threshold would lead to a fast

rebound in new antigenic variation and the recovery of prevalence and MOI. The crossing of

the threshold would instead provide an indication that the system is now poised for further

intervention with enhanced results. Thus, our new quantity can help evaluate an aspect of

intervention that remains hidden on the basis of typical epidemiological quantities.

Control and even elimination efforts are indeed known to be most successful in bio-

geographical regions of low transmission, such as those at the edge of the distribution of the

disease in Africa and in other continents [30]. Arresting the fast turnover of the local antigenic

pool typical of high endemism would significantly repress disease burden and facilitate its fur-

ther reduction. Concomitant control efforts at a regional level are critical to stem immigration,

as migrant genomes would exhibit higher invasion probabilities than local ones, given their

higher likelihood of encoding new antigens. Monitoring the turnover of var gene diversity

through molecular epidemiology in response to control efforts should inform intervention

evaluation in high transmission regions.

Although the importance of host immune selection in shaping the antigenic variation of P.
falciparum and other pathogens is recognized [19, 31–33], mathematical and computational

models typically evaluate intervention efficacy without explicit consideration of antigenic

diversity (e.g. [34, 35]) and openness of the system to innovation [36]. Our results underscore

the importance of these aspects.

Estimation of the diversification number, Rdiv, would provide general guidelines for inter-

vention evaluation where monitoring incidence rates alone would not suffice. Future work

should consider how to obtain this number from an estimation of key parameters, including

parasite population size, transmission rates, and gene pool size, based on combined data from

molecular and field epidemiology. Parameterization of an agent-based stochastic transmission

model that implements immune selection and recombination explicitly (e.g., [13, 37]) could

be used, which represents a computational challenge (but see [38]). Estimating the viability of

new recombinants will require bioinformatic analyses of population-level var sequence data

for the DBLα portion of the gene [39].

For simplicity, our analytical derivations treated each gene independently, even though var
gene composition in parasite genomes of local populations in regions of high transmission has

been shown to be non-randomly and non-neutrally structured, exhibiting low overlap as the

result of immune selection [9, 13, 22, 40]. Hence, the fate of a viable new antigen-encoding

gene depends on its genomic background, which ultimately determines the strength of compe-

tition among parasites. Comparisons of analytical expectations with numerical simulations

revealed an influence of such population structure on the fate of new genes, and therefore, on

components of Rdiv. Future work should examine extensions of this work that account for this
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further complexity of immune selection operating at different levels of organization. In addi-

tion, our model does not consider cross-immunity or other types of generalized immunity,

which have been proposed to prolong chronic infections of malaria [41, 42]. Because these

forms of immunity do not directly influence whether antigenic diversity is at a selective advan-

tage or not, we focused on variant-specific immunity and on parameters that would influence

the generation and maintenance of var encoded antigenic diversity. Other types of immune

memory would influence strains as a whole beyond their var identity. Future work will exam-

ine further aspects of immunity.

In summary, explicit consideration of a threshold in antigenic diversification should

enhance our understanding of transmission dynamics where large standing pathogen diversity

represents a major challenge to control efforts.

Methods

Analytical derivation of Rdiv

We consider a population of hosts whose number is denoted by Nhost, receiving malaria infec-

tions from a diverse set of parasites, each composed of g genes from a constant gene pool of

size G. One of the two main components of Rdiv is the rate at which new genes are generated,

Gnew. Besides the mutation rate μ and the equilibrium parasite population size N, its expression

requires the invasion probability pinv, we derive below.

Invasion probability of a new variant, pinv. From birth-death processes according to the

Moran model with selection [20], the probability of establishment of a low frequency variant is

determined by its fitness advantage relative to that of other genes, and by the parasite popula-

tion size. That is,

pinv ¼
1 � ðW=WnewÞ

n

1 � ðW=WnewÞ
N ð5Þ

where n denotes the number of copies of new genes, and W, the fitness of a gene. In our case,

n = 1 as new genes originate from a unique mutation or an ectopic recombination event.

When N>> 1, the invasion probability pinv is approximately its initial selective advantage rel-

ative to established gene variants, provided the selection coefficient remains the same. Since

the fitness of each individual gene in a transmission model is essentially given by their effective

reproductive number Reff for existing genes and Rnew for the new genes, we have

pinv � ðRnew=
�Reff Þ � 1: ð6Þ

Reff for a given var gene is in turn the product of the epidemiological contact rate of the dis-

ease (β) and the typical infection duration (τ) of parasites that carry the given gene,

Reff ¼
�b�t ð7Þ

The contact rate β is equal to the product of the transmission rate (b) and the ‘transmissibil-

ity’ or infectivity of the given var gene (i.e., the functionality of the gene, f). Because we do not

model vectors explicitly in the numerical stochastic model, the contact rate (β) refers to the

rate at which a transmission event occurs, with a ‘donor’ host transmitting infection to a ‘recip-

ient’ one (detailed description in section on “the modified var evolution model”).

Different groups of var genes may vary in their binding affinities to host receptors and

therefore in their transmissibility. For simplicity, we consider that all genes exhibit the same

transmissibility and therefore, the same absolute fitness, as we are most interested in estimat-

ing the fate of a new variant as a result of immune (frequency-dependent) selection. (We do
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explore later the effect of fitness differences numerically with the agent-based stochastic

model, described in the section on “the modified var evolution model”).

With (9) for Reff, we can write

pinv �
tnew
�t
� 1

¼
�S � ðg � 1Þ þ Snew

�S � g
� 1

ð8Þ

Numerical evaluation of Rdiv. With Eq (8) (or its equivalent (4)), we can now compute

Gnew = Nμpinv in Eq (1) from the output of our numerical simulations (described below under

the The modified var evolution model). We also obtained from the simulations the other major

component of Rdiv, the mean lifetime of the genes in the system, Tnew, by directly tracking

their fate individually. Although an analytical expression for Tnew was not achievable for this

nonlinear and stochastic transmission system, we considered gene lifetime under simplifying

assumptions, as explained next.

Analytical derivation of �t . The simplifying assumptions are that the system has reached

equilibrium (i.e., parasites get transmitted and die at the same rate), and that only the average

lifetime of a gene varies, with all other variables remaining unchanged, including N and the

average proportion of hosts �S susceptible to an average gene. To differentiate gene lifetime

under these conditions from Tnew itself, we call it �t . An expression for �t is derived by consider-

ing the frequency-dependent selection experienced by a new gene variant entering the system

at equilibrium. We specifically approximate the dynamics of �t on the basis of an adapted diffu-

sion equation [20] (SI).

The modified var evolution model

We used an extended implementation of the agent-based model developed in [13]. Here, we

first describe the specifics of the computational model, and then document the specific

changes implemented in this study, including different transmission scenarios and rules of

within-host dynamics. (Parameter combinations and specific rules are listed in Table A and

Table B in S1 Text).

The computational model is an individual-based, discrete-event, continuous-time stochas-

tic system in which the infection and immune history of each host are tracked individually.

Each infection object consists of a var repertoire, an infected host, the order of gene expres-

sion, and the timings of next events, including transition to expression of the next var gene,

mutation/recombination, and clearance. Upon transition to a different var gene or clearance,

the host gains specific immunity towards the epitopes in the gene. Global events include local

transmission from biting events, new transmission from migrant var repertoires, and birth

and death of hosts. In the numerical implementation of the simulation, all possible future

events are stored in a single event queue along with their putative times, which may be fixed or

drawn from a probability distribution. When an event occurs, it may trigger the addition or

removal of future events on the queue, or changes of their rates, leading to a recalculation of

their putative time. This implementation is adapted from the next-reaction method following

[43], which optimizes the Gillespie first-reaction method [44] and allows for faster simulation

times.

Transmission and within-host dynamics. Local transmission events are sampled at the

rate, Nhost β, in which a donor and a recipient host are sampled randomly from the host popu-

lation. If the donor harbors parasites, then each parasite has a probability of being transmitted
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to the mosquito that is proportional to the functionality of the var gene that is currently under

expression. var repertoires picked up by the mosquito will recombine with another genome

to produce sporozoites. Specifically, if there are n parasite genomes, each genome has a proba-

bility 1/n of recombining with itself, producing the same offspring genome, and a probability

1 − 1/n of recombining with a different genome, producing recombinants. The total number

of var repertoires passed onto the receiver is kept the same as that received from biting the

infectious host. The life cycle of each var repertoire encompasses the liver stage, asexual blood

stage, and the sexual stage. Parasites in a human host are infectious only at the asexual stage.

Since we do not model mosquitoes explicitly, we implement a delay of 14 days between a trans-

mission event and the repertoire becoming infectious, representing altogether oocysts develop-

ment in the mosquito during the sexual stage and the initial liver stage in the receiver host. var
genes within a repertoire express sequentially in a random order, or according to their func-

tional level from high to low, depending on the specific rule (Table A in S1 Text), with a

switching rate of 1/d (with d denoting the mean duration of expression). If the host has prior

immune memory to the gene, the expression switches to the next gene instantaneously. When

the expression switches to a new gene, immunity to the gene previously expressed is added to

the host’s immune memory. The infection ends when the expression of the whole var reper-

toire is completed. Therefore, duration of infection, τ, is not varied a priori as a function of age

but determined by the number of new epitopes to a given host. The immunity towards a cer-

tain epitope wanes at a rate δ = 1/100 per day [45]. Mutation μ and ectopic recombination r
occur randomly during the infectious stage (see below).

Var repertoire structure. The repertoire of an individual parasite is a combination of g
var genes. Each var gene, in turn, is a linear combination of two loci encoding epitopes that are

connected linearly, and each epitope can be viewed as a multi-allele locus with n possible

alleles. The initial conditions for the simulation include g�2 alleles per epitope and g�20 combi-

nations of these genes in the gene pool. A typical simulation starts by initializing the local para-

site population via a given number of transmission events with migrant repertoires whose

composition is sampled randomly from a regional pool of genes, G. Specifically, 20 hosts are

infected with randomly assembled repertoires, and one migrant repertoire is introduced every

day into the population to simulate exposure to all the variants in the gene pool quickly.

Mutation and ectopic recombination during the asexual blood stage of infection.

Mutations occur at the level of epitopes. While infecting a host, each epitope can mutate at a

rate μm, to a new allele so that the total number of alleles, n, increases by one. var genes often

change their physical location and form new variants through ectopic recombination and gene

conversions. These processes occur during both sexual and asexual stages. As ectopic recombi-

nation is observed more often during the asexual stage where parasites spend most of their life

cycle, and our model does not represent the mosquito stage explicitly, we consider ectopic

recombination among genes within the same repertoire during the asexual stage. Two genes

are selected from the repertoire, with a breakpoint located along the gene randomly. Newly

recombined genes have a probability Pf to be functional (i.e., viable), defined by the similarity

of the new variant with its parental genes as in He et al. [13]. Specifically,

Pf ðxÞ ¼ n
xð�� xÞ
�� 1 ð9Þ

(Eq.3 in Drummond et al. [46]), where x is the number of mutations between the recombined

gene and one of the parental genes, � is the genetic difference between the two parental genes

and ν is the recombinational tolerance. If the recombined gene is selected to be non-functional,

then the parental gene is kept. Otherwise, the recombined gene substitutes the parental one
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and a new strain is formed. In the current implementation, each recombination has a 50%

chance to generate a new allele.

Var gene groups and trade-offs. In the model described in He et al. [13], genes differed

antigenically but not functionally. For increased realism, each gene is assigned to either var
upsGroup A or var upsGroup B/C to represent existing differences in recombination rates and

functionality of var gene groups [47]. Ectopic recombination is only allowed to occur within

each group, and genes in upsGroup B/C have higher recombination rates than those in

upsGroup A [10]. Each gene is also assigned an intrinsic growth rate of the parasites f that

express it (Table B in S1 Text), because antigens that better bind to host receptors result in a

higher parasite growth rate [48, 49]. In an additional implementation of the model, genes with

higher growth rates are expressed first, followed in decreasing order by genes of lower growth

rates. Also, genes with higher growth rates are expected to be cleared faster by the immune sys-

tem, translating into a higher switch rate to the next gene, which is controlled by the trade-off

parameter tfd.

Supporting information

S1 Text. Supplementary text for theoretical derivations. Fig A. Comparison between theo-

retical expectations from Eq. (S1) (•) and corresponding values from stochastic simula-

tions (�) for N (A) and �S (B) as a function of contact rate, β, genome size, g, and two levels

of diversity ratio, G/g = 10 or 100. The simplified model predicts N and �S better for smaller g
and G/g, because under these conditions, the non-random arrangement of genes into parasite

genomes plays a lesser role. This non-random arrangement arises from frequency-dependent

selection as described in [13] which reduces overlap between among parasites. The elevated �S
from the simulations compared to the theoretical predictions can be attributed to the increased

fitness brought by such strain structure. Fig B. Relationship between transmission intensity

and Rdiv. (A) The value of Rdiv is associated with transmission intensity as measured here by

the entomological inoculation rate (EIR, the number of infectious bites per person per year).

(B) For simplicity, when a transmission event occurs, our model considers that all bites of an

infected ‘donor’ host result in infectious bites, and that all infectious bites of the ‘recipient’

host result in infection. These two probabilities can be considerably less than 1 in the real

world. In particular, the probability of a mosquito developing sporozoites from a blood meal

ranges from 3 to 80%, while a bite with an adequate volume of sporozoites has a probability of

infecting human hosts of around 10%. Thus, to compare EIR values in our model to those

from the field, we must rescale them and divide them by the product of the competence/trans-

missibility probabilities. Here we showed an example scale that assumes the probability of

mosquito developing sporozoites from a blood meal is 0.55, while a bite with an adequate vol-

ume of sporozoites has a probability of infecting human hosts of 0.1. The resulting range of

EIR encompasses from low to high values, the empirical estimates from South America to

Africa. Fig C. The deterministic trajectory of a new gene variant invading a system that is

previously at equilibrium under a low (0.015, left panels) and a high (0.05, righ panels)

contact rate. Panels in row (A) show the temporal dynamics of the frequency x(t), and those

in row (B) those of which the number of susceptible hosts Snew(t). x(t) increases exponential as

Snew(t) decreases slowly in the first stage of the dynamics; it then plateaus as Snew(t) quickly

decreases. Fig D. Phase diagram of x(t) and Snew(t) from Fig C in S1 Text. Because Eq. (S4)

does not have an explicit solution, we approximate the decrease of Snew(t) to �S as a linear func-

tion of x(t). As shown here, this approximation is quite accurate when x(t) is low. Fig E. Per-

sistence of new genes according to �t . As shown in Eq. (S7), the average lifespan of a new

antigen-encoding gene increases exponentially with the product Nσp. The color gradient in A

PLOS COMPUTATIONAL BIOLOGY Antigenic diversification threshold

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008729 February 19, 2021 14 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008729.s001
https://doi.org/10.1371/journal.pcbi.1008729


represents �t in units of N�t birth-death events. White coloring indicates the parameter range

where the lifespan of a new gene is equivalent to the time to fixation of a neutral gene. When

new genes are highly favoured (B), they quickly replicate and persist at a constant frequency

for a long period of time. Table A. Epidemiological and genetic parameters used in stochas-

tic simulations. Table B. Epidemiological, genetic and within-host dynamics rules varied

in the stochastic simulations.
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