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Abstract: Seasonal weather systems that establish prevailing winds and seasonal rainfall on a
large scale largely determine insect migration patterns, especially for micro-insects with completely
windborne migration. Recent studies indicated that the summer migration of the brown planthopper
(BPH, Nilaparvata lugens) in eastern China is related to the strength and position of the Western Pacific
Subtropical High-Pressure (WPSH) system and its associated wind and rainfall patterns. Compared
with the BPH, the white-backed planthopper (WBPH, Sogatella furcifera) has a similar diet, analogous
body size, and strong long-distance migration ability. Thus, the migration pattern for the WBPH
can be speculated to be similar to that of the BPH. However, the migration pattern of the WBPH
and how this pattern relates to climatic conditions have scarcely been described. Based on almost
three decades of data (1977–2003), it was suggested that the WBPH in southern China (south of
approximately 27◦ N) migrates into the middle and lower reaches of the Yangtze River after the
abrupt movements of the WPSH in mid-June, similar to the BPH. By contrast, the emigration of the
WBPH in southern China begins in late May. Further analysis indicated that the migration of the
WBPH in late May and early June was short or unsuccessful due to heavy precipitation during the
preflood season in southern China from late May to middle June. The results herein demonstrate the
differences in migration patterns between two rice planthoppers in the eastern Asia migration arena.
We also provide new information that could assist with forecasting outbreaks and implementing
control measures against these migratory pests.

Keywords: Sogatella furcifera; Western Pacific Subtropical High-Pressure; insect migration; seasonal
atmospheric circulation

1. Introduction

Responding to seasonal changes in habitats and resources, trillions of insects migrate through
the atmosphere every year [1]. These long-distance movements transport vast quantities of energy,
nutrients, pathogens, and parasites, while the migrants themselves often provide ecosystem services
(pest control, pollination) or disservices (crop pests, disease vectors) [1–4]. Generally, flying insects
have a small body with limited flight ability; thus, they take the advantage of high-speed airstreams
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to perform their seasonal migration and their journey can be up to hundreds of or thousands of
kilometers [4,5]. In addition, migrating individuals terminate their migration in some weather
events, such as rain, strong convergence, and cold temperatures, resulting in a large number of
individuals concentrated on the ground in either favorable or unfavorable conditions [6]. Therefore,
the long-distance migration of insects is greatly affected by meteorological factors and weather systems,
and the extraordinary adaptations of insects for dealing with atmospheric conditions during their
migratory flights have captivated entomologists for decades [7].

Seasonal weather systems that establish prevailing winds and seasonal rainfall over thousands of
square kilometers, or even large portions of the earth for days or weeks, largely control insect migration
patterns, especially for micro-insects with completely windborne migration [7–9]. As synoptic wind
patterns shape the insect migration pathway and rain zones terminate insect migration, annual
variation in seasonal weather systems regulates the timing and intensity of insect migration events
and determines the abundance of the subsequent population build-up [3,8,9]. Understanding the
relationship between seasonal weather systems and insect migration is therefore of great importance.

The brown planthopper (BPH, Nilaparvata lugens) and the white-backed planthopper (WBPH,
Sogatella furcifera), collectively known as rice planthoppers (RPHs), have periodically erupted across
Asia since the 1960s. Outbreaks can result in heavy rice loss and almost total crop failure in many
paddies [10–13]. Neither RPH species can overwinter in the temperate regions of China, Korea, and
Japan and outbreaks in these regions each summer are initiated by several waves of windborne
spring or summer migrants originating in winter-breeding areas in Indochina [11,14–16]. Recently, the
interaction of BPH migration and synoptic weather patterns driven by the semi-permanent Western
Pacific Subtropical High-Pressure (WPSH) system was well described in our previous works [8,9]. The
WPSH is one of the most important atmospheric circulations that influences the weather and climate
in eastern Asia [17,18]. The seasonal movement of the WPSH consists of a northward advance and a
southward retreat that controls the annual position of rain belts in eastern Asia [17,18]. In spring, the
WPSH moves gradually toward the north, which produces several continuous precipitation events
in southern China in April and May. This period is called the preflood season in southern China.
During the summer season, the WPSH hops abruptly northwards in two steps. This ‘first abrupt
jump’ occurs in mid-June when the WPSH expands northward abruptly from southern China to the
Yangtze River basin, indicating the Meiyu season in the latter region (and much further afield in Korea
and southern Japan) [17,18]. The BPH aerial transport and concentration processes are related to the
strength and position of the WPSH and its associated wind and rainfall patterns [8,9]. Major zonal
rainfall belts and their associated downdrafts, rain, and cold temperatures form a barrier to BPH
flight and promote concentration and landing (e.g., Crummay and Atkinson 1997; Hu et al. 2007,
2019) [8,19,20]. The development of strong southwesterly winds, particularly the development of
nocturnal low-level jets, provides rapid aerial transport (e.g., Hu et al., 2007, 2019) [8,20]. In particular,
BPHs from southern China (south of approximately 27◦ N) migrate into the Lower Yangtze River in
June and July and synchronize with the ‘first abrupt jump’ of the WPSH [8,9]. Using BPH abundance
in source areas in the northern part of southern China (approximately 23.5–27◦ N, green oval area
in Figure 1) and WPSH intensity or related sea surface temperature anomalies, some models were
developed to predict planthopper numbers migrating into the key rice-growing area of the Lower
Yangtze Valley [8]. Compared with the BPH, the WBPH has a similar diet, analogous body sizes, and a
strong long-distance migration ability; thus, the migration pattern of WBPHs can be speculated to be
similar to that of BPHs.

The body size of BPHs and WBPHs is similar, and both species also have similar population
dynamics in the central Indochina peninsula [16]. Nevertheless, the WBPH first moved into southern
China in larger numbers, compared with the BPH under the same weather conditions, and thus, the
WBPH established populations earlier than the BPH in southern China [16]. Subsequently, the WBPH
emigrates from the northern part of southern China starting in late May, approximately one month
earlier than BPH [21]. Thus, questions arise as to whether the northward migration of WBPHs in
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eastern China was similarly affected by the WPSH and which weather system plays a key role in
WBPH migration, if not the WPSH. This paper presents long-term WBPH light traps (1977–2003, the
same years as the previous work on BPH migration) and meteorological data to investigate this issue.
We investigate links between seasonal weather systems and WBPH migration patterns that are relevant
for forecasting migration events. Such information is necessary for migratory pest control.
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Figure 1. Locations of 222 county plant protection stations (PPS) with white-backed planthopper
(WBPH) data (black cross symbol). The representative stations, with complete data from 1978–2003,
were selected for further detailed analysis and are represented by red triangles, namely, Longzhou
(LZ), Zhaoqing (ZQ), Shantou (ST), Qujiang (QJ), Quanzhou (QZ), Yongfu (YF), Ziyuan (ZY), Tianzhu
(TZ), Ji’an (JA), Fuqing (FQ), Jianli (JL), Dongzhi (DZ), Huizhou (HZ), Huangyan (HY), Gaochun (GC),
Fengxian (FX), Nantong (NT), Gaoyou (GY), Huaiyin (HYI), and Ganyu (GYU). From 16 May to 15 July,
most WBPHs come from the northern part of southern China (approximately 23.5–27◦ N, green oval
area), and we selected Yongfu as a hypothetical starting point. The stations located northeast of Yongfu
were selected as the WBPH landing areas (blue dots).

2. Materials and Methods

2.1. Light-Trap Data

To compare with the previous study, [8], on the BPH migration pattern linked to the WPSH, a
similar 27 year dataset of daily WBPH light-trap data (1977–2003) was used in this study (Figure 1).
This dataset was collected from standardized 20 W blacklight (UV) traps located at plant protection
stations (PPS) of 222 counties in China. Furthermore, data from 20 stations, that had complete data
coverage from 1978 to 2003, were used for further detailed analysis (Figure 1).
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2.2. WBPH Migration Volume and Concentration Zone

The southward migration was not studied in this study. Therefore, the light-trap data from 1
April–30 August of each year in 1977–2003 were selected. To represent WBPH migration activity,
the total catch for each five-day period for each station were summed. Then, we calculated the 90th
percentile value of catches (termed ‘WBPH90th’) in each of the 810 five-day periods from 1 April–30
August (the 30 5-day periods × 27 years). Finally, the seasonal variation in WBPH immigration volume
was presented by using the mean value of 27 years for each 5-day period (Figure 2a).
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Figure 2. (a) The mean latitude of the WPSH ridge between 110◦ E and 120◦ E and the mean
seasonal variation in 5-day WBPH catches in eastern China. The ‘two abrupt jumps’ of the WPSH are
meteorologically defined (e.g., Tao & Wei 2006; Ding et al. 2007) [17,18] and denote the beginning and
end of the Meiyu season in the Yangtze River Valley. (b) The location of the WBPH concentration zone
in 5-day periods in eastern China, represented by the relative density of traps per unit of latitude for
each 5-day period in a WBPH concentration zone. Any given WBPH trapping station in any 5-day
period was defined as a planthopper ‘concentration zone’ if the number of WBPHs in the 5-day catch
was greater than or equal to the WBPH90th (i.e., the 90th percentile value in that period of that year. (c)
27 year (1977–2003) mean winds at 850 hPa height in 5-day periods between 110◦ E and 120◦ E. (d) 27
year (1977–2003) mean precipitation in 5-day periods between 110◦ E and 120◦ E.
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To explore the seasonal variation in the location of WBPH concentration zones (i.e., a station
that experienced a major WBPH immigration), the latitude-time cross-section of the relative 2-D
binned kernel density of stations in a concentration zone was estimated. First, any given WBPH
trapping station in any 5-day period was defined as a planthopper ‘concentration zone’ if the number
of WBPH in the 5-day catch was greater than or equal to the WBPH90th (i.e., the 90th percentile
value in that period and that year). A total of 10,978 records of stations in a ‘concentration zone’ in
all 810 periods (the 30 5-day periods × 27 years) were extracted from all records of 222 stations from
1977–2003. Second, based on these 10,978 records, the latitude-time cross-section of the 2-D binned
kernel density of stations in the concentration zone was estimated by using the ‘bkde2D’ function
(http://stat.ethz.ch/R-manual/R-devel/library/KernSmooth/html/bkde2D.html) in R software (version
3.4.1, https://www.r-project.org/).

2.3. Meteorological Data and WPSH Indices

All global-gridded meteorological data with a spatial resolution of 2.5◦ (i.e., 144 points in longitude
and 72 points in latitude) were downloaded from National Oceanic and Atmospheric Administration’s
(NOAA) Earth System Research Laboratory (ESRL, http://www.esrl.noaa.gov/). Among these data,
the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data include monthly and
five-day precipitation means since 1979. The monthly and daily geopotential height, u-winds, and
v-winds were derived from the National Centers for Environmental Prediction (NCEP)/National Center
for Atmospheric Research (NCAR) reanalysis data from 1948 to 2011.

The monthly indices of WPSH (110◦ E to 180◦ E) from 1951 to 2010 were downloaded from the
China Meteorological Data Sharing Service System (CMDSSS, http://cdc.cma.gov.cn/). There are five
WPSH indices used to describe the area, intensity, mean ridge, westward extension, and north edge.

The five-day mean ridge of the WPSH was calculated using daily NCEP/NCAR reanalysis data.
The WPSH was described by the region of 5860 gpm at 500 hPa. The area and the mean geopotential
height of this region are defined as the area and intensity indices of WPSH. The mean latitudinal position
of the WPSH ridge, the longitude of the westernmost point, and the latitude of the northernmost point
were defined as the mean ridge, the westward extension, and the north edge indices of the WPSH,
respectively. The ridge of the WPSH is also defined as the boundary between the east wind and the
west wind (WEB). Thus, the five-day latitude location of the WPSH ridge was derived from the WEB,
which was calculated by the following equation [8,17,18,22]:

u = 0;
∂y
∂x

= 0 (1)

where u is the speed of the zonal wind and coordinate (x, y) is its location in the 2-D dimension of
u-wind grid data. The location of the five-day mean ridge was calculated by the Grid Analysis and
Display System (GrADS, version 2.0.2, http://grads.iges.org/grads/).

2.4. Spatial Exploration of Correlations Between WBPH Catches and WPSH Indices, Precipitation

To explore the spatial distribution of WBPH immigration in China, we interpolated the raster
surfaces of WBPH catches from the PPS locations using the natural neighbor method in ArcGIS
software (version 10.2, http://www.esri.com/). We tested for correlations between WBPH catches and
WPSH indices at 20 PPS using Pearson correlations. Results of the correlations were visualized using
R software.

Four representative sites with interannually complete data from 1977–2003, including Qujiang,
Quanzhou, Yongfu, and Ziyuan (the red triangles in the green oval area in Figure 1), and the WBPH
catches from these four sites were summed as the average volume of WBPH migration in the northern
part of southern China during 16 May–15 June each year. The precipitation of this period in each
year was derived from five-day CMAP data. A spatial map of correlation coefficients between the

http://stat.ethz.ch/R-manual/R-devel/library/KernSmooth/ html/bkde2D.html
https://www.r-project.org/
http://www.esrl.noaa.gov/
http://cdc.cma.gov.cn/
http://grads.iges.org/grads/
http://www.esri.com/
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immigration levels in the northern part of southern China and the precipitation from 1979–2003 was
calculated and visualized by using GrADS.

2.5. Regression Models of WBPH Immigration Volume Against Distance

We explored the relationship between the WBPH immigration volume at each station and the
migration distance from southern China using linear models. The WBPH immigration volume at a
station was defined as the total number of light-trap catches during a month long period, 16 May to
15 June for Period I or 16 June to 15 July for Period II. These two periods correspond to two major
emigration waves (see Results section). These immigration volumes were log transformed with a log
base of 10 to follow a normal or near normal distribution before modeling. Yongfu station, in the
northern part of southern China, was defined as the hypothetical starting point. The stations located
northeast of Yongfu were selected as the WBPH landing area (blue dots in Figure 1). The migration
distances from Yongfu to each site were calculated using the following equation:

C = sin(LatA) × sin(LatB) × cos(LatA− LonB) + cos(LatA) × cos(LatB) (2)

Distance = R×Arccos(C) × π/180 (3)

where (LonA, LatA) represent the longitude and latitude of the first site A (i.e., Yongfu), (LonB, LatB)
represent the longitude and latitude of another site B, and R is the radius of the earth.

3. Results

3.1. Association of the WPSH System with the Northward Migration of the WBPH

The seasonal expansion of WBPHs in eastern China is schematized in Figure 2a,b. Just before
June, the migration intensity increased over time (Figure 2a), but the concentration zone remained
in southern China before mid-June (Figure 2b). This indicated that southern China was the area
most seriously affected by the WBPH. The migration occurred after mid-June and the concentration
zone shifted toward the Lower Yangtze River Valley (Figures 2c and 3). This step synchronized with
the following events: (i) The southwesterlies expanded to the north and the winds strengthened in
eastern China (Figure 2c), (ii) the rainfall belt moved to the Lower Yangtze River Valley (Figure 2d),
and (iii) the ‘first abrupt jump’ of the WPSH occurred (Figure 2a). Here, the first two events, the
movement of the rainfall belt (a barrier to RPH migration) and the expansion of the southwesterlies
(rapid aerial transport), would directly affect WBPH migration. However, these two events were
determined or indicated by the third event, the ‘first abrupt jump’ of the WPSH, expanding abruptly
northward from southern China to the Yangtze River Valley, heralding the Meiyu season in the latter
region. In summary, the wave of WBPH migrants into the Lower Yangtze River Valley depends on the
development of the WPSH, which regulates southwesterly airstreams and the location of rain belts.
For more detail, Figure 3 shows that the northward shift of the WBPH concentration zone coincided
with the expansion of the WPSH. The concentration zone was located north of the WPSH ridge close to
the 5860 gpm contour at 500 hPa altitude, whereas the WPSH ridge itself was located south of 30◦ N
(Figure 3). As the WPSH moved northward in June and July, the WBPH concentration zone showed a
corresponding northward shift (Figure 3).
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Figure 3. The spatial distribution of WBPH immigration intensity (yellow to brown areas), based on
mean catches from 1977 to 2003 and the mean WPSH range for five-day periods from April to July.
The raster surfaces of WBPH catches from 222 county PPS sites were interpolated using the natural
neighbor method in ArcGIS. The range of the WPSH is shown using a 500 hPa geopotential height
contour. The red solid lines show the contour at 5880 gpm, the blue solid lines show the contour at
5860 gpm, and the cyan dashed lines show the ridge line of the WPSH.

From monthly correlation coefficients between WBPH cumulative light-trap catches at the 20 PPS
stations and WPSH indices (Figure 4), it was shown that WBPH catches in PPS sites in the Yangtze
Valley (Jianli, Huizhou and Dongzhi) were significantly correlated with WPSH intensity. This result
also indicated that the WBPH migration volume in the Yangtze River Valley was influenced by the
WPSH intensity in June. In addition, there is another cluster of grids in Figure 4 with significant
correlations in the intensity index panel, i.e., the WBPH catches in PPS sites in the northern part
of southern China (Zhaoqing, Shantou, Quanzhou, Ziyuan, Qujiang, and Fuqing) were correlated
significantly with WPSH in August, albeit negatively. This cluster of grids was not considered in this
study. Due to the significant correlation between the intensity and area indices of WPSH (Pearson’s
correlation coefficient r = 0.93, p < 0.0001, in 1977–2016) [9], some similar patterns of grid clusters also
appeared in the area index panel, but these patterns were less significant (Figure 4).

Insects 2019, 10, x 7 of 12 

 

Figure 3. The spatial distribution of WBPH immigration intensity (yellow to brown areas), based on 
mean catches from 1977 to 2003 and the mean WPSH range for five-day periods from April to July. 
The raster surfaces of WBPH catches from 222 county PPS sites were interpolated using the natural 
neighbor method in ArcGIS. The range of the WPSH is shown using a 500 hPa geopotential height 
contour. The red solid lines show the contour at 5880 gpm, the blue solid lines show the contour at 
5860 gpm, and the cyan dashed lines show the ridge line of the WPSH. 

From monthly correlation coefficients between WBPH cumulative light-trap catches at the 20 
PPS stations and WPSH indices (Figure 4), it was shown that WBPH catches in PPS sites in the 
Yangtze Valley (Jianli, Huizhou and Dongzhi) were significantly correlated with WPSH intensity. 
This result also indicated that the WBPH migration volume in the Yangtze River Valley was 
influenced by the WPSH intensity in June. In addition, there is another cluster of grids in Figure 4 
with significant correlations in the intensity index panel, i.e., the WBPH catches in PPS sites in the 
northern part of southern China (Zhaoqing, Shantou, Quanzhou, Ziyuan, Qujiang, and Fuqing) were 
correlated significantly with WPSH in August, albeit negatively. This cluster of grids was not 
considered in this study. Due to the significant correlation between the intensity and area indices of 
WPSH (Pearson’s correlation coefficient r = 0.93, p < 0.0001, in 1977–2016) [9], some similar patterns 
of grid clusters also appeared in the area index panel, but these patterns were less significant (Figure 
4). 

 
Figure 4. Monthly correlation coefficients between cumulative light-trap catches of WBPHs (after log 
transformation) at the 20 PPS sites and WPSH indices. Sites are listed geographically, from north to 
south, and positive and negative correlations significant at the 1% and 5% levels are labeled with ‘A’ 
and ‘a’, respectively. 

3.2. Short Migration Distance of the WBPH in Late May and Early June 

A previous study suggested that the WBPH emigrates from the northern part of southern China 
starting in late May [21], but the concentration zone of WBPHs shifted to the Lower Yangtze River 
until the ‘first abrupt jump’ of the WPSH happened in mid-June (see the previous section). Therefore, 
we assumed that the emigration of WBPHs in late May and early June (i.e., the fourth migration step, 
see Figures 2a and 3) was unsuccessful or of a short distance. The migration distance of the WBPH in 
two periods (Period I: 16 May to 15 June; Period II: 16 June to 15 July) was compared by analyzing 
the number of light-trap catches at each station along its migration pathway. Yongfu station, in the 
northern part of southern China, was used as the starting point, and the number of light-trap catches 
decreased as the linear distance from the starting point (i.e., Yongfu) increased in both periods. The 
decrease rate in Period I was much faster than that in Period II (Figure 5). The absolute value of the 
slope in the fitted linear model for Period I (slope value = −0.15, Standard Error (S.E.) = 0.009, t = 16.5, 
p < 0.0001) was larger than that for Period II (slope value = −0.02, S.E. = 0.006, t = 3.265, p = 0.0011) 
(Figure 5). This result indicated that the migration distance of the WBPH in Period I was significantly 
shorter than that in Period II. The spatial distribution of WBPH immigration in Period I also showed 
that most WBPH catches were found in the northern part of southern China due to their short-
distance migration (Figures 2c, 3, and 5). 

Figure 4. Monthly correlation coefficients between cumulative light-trap catches of WBPHs (after log
transformation) at the 20 PPS sites and WPSH indices. Sites are listed geographically, from north to
south, and positive and negative correlations significant at the 1% and 5% levels are labeled with ‘A’
and ‘a’, respectively.
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3.2. Short Migration Distance of the WBPH in Late May and Early June

A previous study suggested that the WBPH emigrates from the northern part of southern China
starting in late May [21], but the concentration zone of WBPHs shifted to the Lower Yangtze River
until the ‘first abrupt jump’ of the WPSH happened in mid-June (see the previous section). Therefore,
we assumed that the emigration of WBPHs in late May and early June (i.e., the fourth migration
step, see Figures 2a and 3) was unsuccessful or of a short distance. The migration distance of the
WBPH in two periods (Period I: 16 May to 15 June; Period II: 16 June to 15 July) was compared by
analyzing the number of light-trap catches at each station along its migration pathway. Yongfu station,
in the northern part of southern China, was used as the starting point, and the number of light-trap
catches decreased as the linear distance from the starting point (i.e., Yongfu) increased in both periods.
The decrease rate in Period I was much faster than that in Period II (Figure 5). The absolute value of the
slope in the fitted linear model for Period I (slope value = −0.15, Standard Error (S.E.) = 0.009, t = 16.5,
p < 0.0001) was larger than that for Period II (slope value = −0.02, S.E. = 0.006, t = 3.265, p = 0.0011)
(Figure 5). This result indicated that the migration distance of the WBPH in Period I was significantly
shorter than that in Period II. The spatial distribution of WBPH immigration in Period I also showed
that most WBPH catches were found in the northern part of southern China due to their short-distance
migration (Figure 2c, Figure 3, and Figure 5).Insects 2019, 10, x 8 of 12 
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Figure 5. The relationship between the WBPH immigration volume and migration distance. Yongfu
station in Guangxi was used as the starting point. PPS sites located northeast of Yongfu were selected
and the distances from Yongfu to each selected station were calculated.

3.3. WBPH Migration is Hindered in the Preflood Season from May to June in the Northern Part of
Southern China

The rain belt mostly stayed in southern China in May and June before it shifted to the Yangtze
River Valley, and this period is locally named the preflood season. Hence, we assumed that the
WBPH emigration was hindered by this continuous large-scale rainfall in southern China, and, thus,
the correlation between them was tested. WBPH from four representative sites (Qujiang, Quanzhou,
Yongfu, and Ziyuan) were summed as the average volume of WBPH migration in the northern part of
southern China during 16 May–15 June each year. A spatial map of correlation coefficients between
the immigration levels in the northern part of southern China and the precipitation from 1979–2003
revealed a significant correlation between catches and rainfall in the region immediately to the north
(see the red region in Figure 6). These four stations are located at the southern fringe of the rain belt,
which thus forms a natural barrier to migration at this time (Figures 2d and 6).
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Figure 6. Simultaneous correlation map between WBPH immigration volume in the northern part
of southern China and precipitation during 16 May–15 June. The light-trap catches from four PPSs,
namely, Yongfu (YF), Quanzhou (QZ), Ziyuan (ZY), and Qujiang (QJ), during 16 May–15 June were
summed each year as the WBPH immigration volumes in 1978–2003. The light and dark red areas
indicate significance at the 1% and 5% levels, respectively.

4. Discussion

To explore the link between insect migration and seasonal weather systems, the northward
migration pattern of the WBPH in eastern China was described in this study. It revealed that the WBPH
migrated from southern China into the Yangtze River Valley after ‘the first abrupt jump’ of the WPSH
in mid-June. This result is consistent with our previous studies on BPH migration [8,9]. Therefore,
this study presented another case for how the seasonal WPSH weather system shapes the route and
timing of insect migration. The seasonal weather system can influence insect migration, largely because
it establishes the prevailing winds and seasonal rainfall over thousands of square kilometers or even
large portions of the earth for days or weeks. Here, after the ‘first abrupt jump’ of WPSH in mid-June,
the wide zonal rainfall (a barrier forcing RPH landings) moved to the Yangtze River Valley, while the
southwesterly airstream (a high-speed vehicle for RPH migration) strengthened and expanded to the
Yangtze River Valley [8,9]. In this study, the WBPH could not migrate further north before mid-June,
mostly because its emigration in southern China was hindered by heavy rainfall, which also signified
that the seasonal weather system and its associated weather conditions are vital for insect migration.

Although both the BPH and the WBPH migrate into the Yangtze River Valley after mid-June, the
timings of their immigration peaks in the Yangtze River Valley are different. In mid- and late June,
most BPH migrants came from the southern part of southern China (south of the Tropic of Cancer,
~ 23.5◦N), and its concentration zones were located in the northern part of southern China and the
Yangtze River Valley. The number of migrants decreased as the migration distance increased, so BPH
catches in the Yangtze River Valley were much smaller than those in the northern part of southern
China [8,14]. In contrast, this study showed that WBPH migrants during these times were from the
northern part of southern China. The migration distance to the Yangtze River Valley for the WBPH
is much shorter than that of the BPH from the southern part of southern China, and thus, a larger
percentage of WBPH individuals, compared to BPH individuals, were able to reach the Yangtze River
Valley. Due to interspecific competitive disadvantage [23–26], the WBPH population in southern
China was soon replaced by the BPH population, and a few WBPH migrated into the Yangtze River
in July. The immigration peaks of the WBPH in the Yangtze River Valley occurred only in late June
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and early July. In contrast, the immigration peaks of the BPH in the Yangtze River did not occur
until most arrivals had migrated from the northern part of southern China in July [8,9,27]. Therefore,
the population dynamics of these two RPH species were still different in the Yangtze River Valley.
The WBPH population settled earlier than the BPH population [26–29]. However, the WBPH is at
a competitive disadvantage when both RPH species are established in the same habitat [23–25,30];
therefore, the growth of the WBPH population did not last long in the Yangtze River Valley (Figure 2a),
and WBPH populations decreased and were replaced by BPH [31]. As a consequence of this, the
WBPH was not a serious threat to rice crops in this region and was not paid much attention by farmers,
agricultural managers, or scientists there [31].

In southern China, farmers practice a double-cropping rice system and the early season rice is
planted in late March or early April. At the same time, the WBPH migrates into this area from countries
to the south, such as Vietnam, Laos, and Thailand [16,19,32,33]. More specifically, the first migrants
arrive in the southern part of southern China in late March [16,34] and the northern part of southern
China in mid- and late April [21,35]. However, BPHs arrive at the above regions approximately one
month later [14,16,27]. There is a lack of competitors and natural enemies, and the verdant and juicy
early season rice plants at the tillering stage are suitable for the WBPH, so the WBPH population
grows very fast [32]. In this study, it was shown that the WBPH emigration was unsuccessful or only
covered a short distance due to the heavy rainfall during the preflood season. Finally, the maximum
number of WBPH light-trap catches occurred in southern China in early June (Figure 2a). Therefore,
the occurrence of the WBPH was more serious than that of the BPH [32].

5. Conclusions

In this study, the migration pattern of the WBPH was described. Due to the similar body sizes
of the WBPH and the BPH, both their migration patterns are influenced by the WPSH. Both RPHs
in southern China (south of approximately 27◦ N) migrates into the middle and lower reaches of
the Yangtze River after the abrupt movements of the WPSH in mid-June. Nonetheless, considering
the differences in their interspecific competition ability and life cycle, these two species had different
population dynamics in different regions. The migration of the WBPH in late May and early June was
short or unsuccessful due to heavy precipitation during the preflood season in southern China from
late May to middle June, resulting that the threat of WBPHs to rice was more serious than that of BPHs
in southern China. Nevertheless, our study improves our understanding of the relationship between
insect migration and seasonal atmospheric circulation.
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