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Diseases originate at the molecular-genetic layer, manifest through altered

biochemical homeostasis, and develop symptoms later. Hence, symptomatic

diagnosis is inadequate to explain the underlying molecular-genetic

abnormality and individual genomic disparities. The current trends include

molecular-genetic information relying on algorithms to recognize the

disease subtypes through gene expressions. Despite their disposition toward

disease-specific heterogeneity and cross-disease homogeneity, a gap still

exists in describing the extent of homogeneity within the heterogeneous

subpopulation of different diseases. They are limited to obtaining the holistic

sense of the whole genome-based diagnosis resulting in inaccurate diagnosis

and subsequent management. Addressing those ambiguities, our proposed

framework, ReDisX, introduces a unique classification system for the patients

based on their genomic signatures. In this study, it is a scalable machine

learning algorithm deployed to re-categorize the patients with rheumatoid
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arthritis and coronary artery disease. It reveals heterogeneous subpopulations

within a disease and homogenous subpopulations across different diseases.

Besides, it identifies granzyme B (GZMB) as a subpopulation-differentiation

marker that plausibly serves as a prominent indicator for GZMB-targeted drug

repurposing. The ReDisX framework offers a novel strategy to redefine disease

diagnosis through characterizing personalized genomic signatures. It may

rejuvenate the landscape of precision and personalized diagnosis and a clue

to drug repurposing.

KEYWORDS

precision medicine, redefined diagnosis, genomic signature, ReDisX, machine
learning, drug repurposing, continuous max flow

Introduction

Transforming the conventional diagnosis strategy for
diseases is emerging to ensure a healthier lifespan (1) and
strengthen drug repurposing (2). In the modern era, the
practices for diagnosing diseases have been progressively
oriented toward precision and personalized, relying on a
molecular genetic basis, especially gene expression-based (3,
4). Since the conventional diagnosis of diseases often remains
insufficient in explaining heterogeneity within a disease and the
homogeneity between multiple diseases (5, 6). Transcriptomic
studies demonstrated that the molecular heterogeneity within
one disease would be highly divergent, for example, colon
cancer (7), breast cancer (8, 9), rheumatoid arthritis (RA)
(5), and coronary artery disease (CAD) (6). Alongside the
heterogeneity within a disease, the homogeneity among different
diseases is also critical to study. For example, RA and
CAD have shared a similar inflammatory pathway (10–
12). Niu et al. discovered four shared canonical pathways,
three shared networks, and three upstream regulators-driven
inflammatory activations across RA and CAD (13). Offering
symptomatic management without considering the more
profound knowledge of underpinning heterogeneity may result
in treatment failure and/or resistance to the drugs (14–15).

It certainly embarks us to investigate the initialization
of the diseases. Any clinicopathological condition or disease
typically originated at the gene level, and the associated altered
physiological states and biochemical balances are manifested
as phenotypes and symptoms (16, 17). Hence, the clinical
symptoms reflect the imbalance of physiological homeostasis.
It usually does not comprise the actual underlying disparities
at the point of origin, which is at the molecular-genetic layer
(16, 17). Therefore, defining the diseases based on clinical
symptoms may not encompass the whole underlying disparities
at the molecular-genetic level. It is even more unclear when the
same gene critically plays a role in manifesting two different
disease phenotypes (13, 18, 19), which may lead to an erroneous

diagnosis and result in decisive treatments (1). It also hinders the
possibility of repurposing some drugs (2). For instance, Aspirin
is typically used for managing analgesia, and it was successfully
repurposed to manage colorectal cancer as both share the same
genetic causes (2).

Enabling precision diagnosis and personalized medicine
using unprecedented molecular-level data plays a significant
role in modern medicine. The deep multi-view learning
approach demonstrated the power of integrated multi-omics
data to identify potential biomarkers for specific disease
types (20). Several other studies also strengthened the
engagement of multi-omics data-driven classifications of the
in-disease expression differentiation that elucidates underlying
pathological diversities (21, 22). Despite having many advanced
tools, most of the available frameworks are merely not adequate
to discover the disease heterogeneity. They mostly rely on
clustering algorithms that group patients by unsupervised
learning upon discovering similar gene expression profiles and
then annotating their pathological properties (3, 4). Clustering
approaches of both types, deep learning (DL) and machine
learning (22) based algorithms have demonstrated their
respective competence in investigating the heterogeneity within
disease and homogeneity between multiple diseases. However,
many existing ML approaches for clustering were slightly out-
of-context here as they only focus on heterogeneity within one
disease and do not encompass cross-disease similarity within
the heterogonous subpopulation. They also fail to specify the
optimal number of clusters to be distinctly discovered.

Here, we have proposed ReDisX (Redefining the Disease X)
framework to address all those ambiguities described above.
It is an integrated ML clustering algorithm relying on a
continuous max flow (CMF) model (23, 24). CMF enables
the clustering of high-dimensional data with a few training
samples without compromising the accuracy (24). It is also less
computationally expensive. However, the probability estimation
with CMF is not so adaptive, which may affect accuracy
sometimes. But, updating the probabilities adaptively in the
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numerical algorithms enhances accuracy (24). CMF uses a
hierarchical clustering approach to pre-label the input patient
data and then predicts the patient labels uniquely. ReDisX re-
categorizes the diseases based on the heterogeneity of individual
gene expression profiles of the patients. Then, it evaluates the
cross-disease similarity in expression level to discover whether
two different diseases share the same or similar gene expression
profiles. This paper considers CAD and RA as our diseases of
interest based on prior research experience (13). The ReDisX is
self-sufficient in evaluating the optimal number of clusters.

Our results revealed an enhanced differentiation capacity
compared to the conventional diagnosis (Figures 2, 4). ReDisX
showed distinct differentiation ability across the diversified
datasets (Figures 2, 4). It showed that a subpopulation
(n = 12) of patients with CAD exhibits higher gene expression
similarity and functional enrichment similarity to the RA
patients (Figure 5). It clustered the similar gene expression
profiles of the subpopulation of CAD and RA consecutively to
classify the heterogeneity within a disease. Interestingly, a hub-
gene was discovered within the CAD and RA subpopulation
related to the drug discovery targeting granzyme B (GZMB)
(Figure 5) (25). Our analyses have endorsed GZMB as
a potential target for developing drugs for those specific
subpopulations of CAD and RA.

ReDisX may offer a clue to repurpose any potential drug
candidates discovered for CAD that can be validated for RA
and vice versa. It reinforces a novel ML approach to redefine the
existing two diseases into a total of eight (three within RA and
five within CAD) distinct categories based on gene expression
signatures. This data-driven novel approach offers an enhanced

resolution in introducing better precision and a personalized
diagnosis strategy.

Materials and methods

Dataset and preprocessing

Gene expression data
Two publicly available datasets, GSE93272 and GSE59867,

were collected from the National Center for Biotechnology
Information Gene Expression Omnibus (NCBI–GEO). The
GSE93272 is gene expression data obtained from a whole blood
transcriptome (26). It contains 275 samples from RA patients
and healthy controls, performed with Affymetrix Human
Genome U133 Plus 2 (GPL570). The whole blood transcriptome
dataset was retrieved from https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE93272. The RA patient’s data within this
dataset was categorized into three groups: (1) the RA patients
without any receiving treatments [pure RA (pRA)], (2) the
RA patients receiving treatments such as methotrexate (MTX,
responsive as MTX and irresponsive as MTX.IR), infliximab
(IFX, responsive as IFX and irresponsive as IFX.IR), and
tocilizumab (TCZ, responsive as TCZ and irresponsive as
TCZ.IR), and (3) the healthy controls (HCs) (26). The dataset
contains a total number of 20,356 genes’ expression values for
each patient, which was further processed and normalized using
Robust Multi-Array Average (RMA). In our analysis, we labeled
all the RA patients with/without drug treatments as RA. We
only used the term pRA while demonstrating the performance

TABLE 1 Representation of the datasets used in our study.

Datasets Species Disease Sample type Size Inclusion Exclusion Remarks PMID

Test GSE93272 Human RA Whole blood 275 RA
(with/without

treatment)
HCs

Treatment
effects

ReDisX does not
get influenced by

the treatment
(see the Section
“Discussion” for

details)

30013029

GSE59867 Human CAD Peripheral blood 436 111 STEMI
patients: with
reported CAD
46 HCs: with a

stable CAD and
without a history

of MI

Four stages of
STEMI follow

up and age and
gender effect

ReDisX does not
influenced by

the stages or age
or gender (see

the Section
“Discussion” for

details)

25984239

Validation GSE15573 Human RA Peripheral blood 33 18 RA
15 HCs

NA NA 19710928

GSE77298 Human RA Synovial tissue 23 16 RA
7 HCs

NA NA 26711533

GSE23561 Human RA, CAD Peripheral blood 35 6 RA
6 CAD
9 HCs

6 MS
8 T2D

MS and T2D out
of our study

interests

21368773

RA, rheumatoid arthritis; CAD, coronary artery diseases; HCs, healthy controls; STEMI, ST-elevation in myocardial infarction; MS, metabolic syndrome; T2D, type-2 diabetes mellitus;
PMID, PubMed identifier; NA, not applicable.
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of ReDisX with/without the influence of drug treatment, as
mentioned in one of the test RA datasets, GSE93272. The
representation of the dataset is shown in Table 1.

The GSE59867 is also a whole blood transcriptome dataset
(27). It contains 436 samples from the CAD patients and healthy
controls, performed with Affymetrix Human Gene 1.0 ST Array
(GPL6244). The data was retrieved from NCBI GEO https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59867. The
samples were collected from peripheral blood from patients
(n = 111) with ST-segment elevation myocardial infarction
(STEMI). The control group consists of 46 individuals either
with reported stable CAD or without any history of MI. The
dataset contains a total number of 20,511 gene expression
values for each patient, which were further processed and
normalized using RMA. The representation of the dataset is
shown in Table 1.

Data preprocessing
Intersections of the genes (m = 17,432) were extracted from

both the datasets, GSE93272 and GSE59867. Top 5,000 High
Variance Genes (HVGs) were filtered out for further analysis,
and the voom (28) was applied separately to estimate the mean-
variance relationship between those two datasets.

Construction of the ReDisX framework
and applications

ReDisX is an ML framework primarily relying on a CMF
model (23, 24). The construction of the ReDisX framework
consists of two main parts, (1) hierarchical clustering for
pre-labeling all the sample points, and (2) part of the pre-
labeling samples would be used in CMF for final labeling for
each sample (please see the Section “Weight function” for
details) (Figure 1B).

Clustering the patients using ReDisX
After sorting out the HVGs, the ReDisX was applied

to cluster the patients based on gene expression similarity
patterns (see Sections “Notations” for notation, “Hierarchical
clustering” for hierarchical clustering, and “The continuous
max flow model” for the detailed construction of the CMF
model) (Figure 1B). Then, each patient was labeled where the
same label represents a higher similarity discovered in their
expression profile.

Notations
We used lower-case letters such as x to represent scalar or

single random variables, bold lower-case letters such as x to
represent a vector variable, bold capital letters such as X, and
letters in calligraphy such as X to denote a matrix variable and
a set, respectively. For example, in this paper, the data set was
denoted as a calligraphic capital letter X = {x1, x2, ..., xn}

and X = (x1, x2, ..., xn) ∈ Rd × n is a matrix of the aligned

vectors, respectively, while xi are d-dimensional variables, and
n is the number of the data samples, xi It is a data point of the
i-th sample, denoted as a vector. We also used || · || to measure
the length of the vector, and it used Euclidean or L2 norm by
default in the following part if there is no other explanation. In
this paper, we used n and K as the number of samples in the
dataset and the number of clusters to be divided, respectively.
The notation C was used to denote the dataset and Ck represents
the k-th cluster. Normalization of the matrix X concerning
dimension was a prerequisite to executing the normalization
function in MATLAB.

Hierarchical clustering
Agglomerative hierarchical clustering is one of the most

popular clustering methods. The detail was investigated by (29).
It aims to construct a hierarchical partition of data samples
using a greedy strategy. In the initial stage, all data samples
were viewed as individual clusters. Each turn takes a pair of two
nearest clusters and merges them into a larger cluster. Thus, the
number of clusters decreased by one after each turn. MATLAB
has also implemented agglomerative hierarchical clustering in
some clusterdata and linkage functions. In our experiments, we
used Ward’s method, which is also known as the average linkage
or minimum variance method, to measure the distance between
two clusters, which is defined as follows,

dis
(
Ci, Cj

)
=

1
|Ci| · |Cj|

∑
xi∈Ci

∑
xj∈Cj

||xi − xj||, (1)

where |Ci| represents the number of samples in the i-th cluster.

The continuous max flow model
The graph models for clustering view the data points as

individual vertex and use edge sets to describe the relation
between different data points. This well-known model, CMF,
was constructed using the max-flow/min-cut theorem (24).
It is used to depart the graph into K-connected components
with minimal cutting edges. The continuous version of the
max-flow/min-cut model was termed CMF, which offered an
efficient numerical method (24). It minimized the cost of edge
cutting and introduced a regional force that could extract the
preliminary information from the dataset with other techniques.
We used the same specification as stated by (24) in this study,
and the region force term was defined in the followings,

RF =
K∑

k = 1

n∑
i = 1

φk (xi) fk (xi) , (2)

where φk (xi) =

{
1 if xi ∈ Ck,

0 otherwise
, {fk} is the regional forces.

We set that fk (xi) = − log
(
pk (xi)

)
+ log

(
1− pk (xi)

)
likes

in (24), where the function {pk} a set of prior conditional
probabilities which has been discussed in the Section “Weight
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FIGURE 1

The schematic illustration of the ReDisX framework and its functional features. (A) ReDisX-based approach to redefine the disease diagnosis
compared to the conventional diagnosis, (B) functional pipeline for the ReDisX-based analyses for RA and CAD datasets, (C) strategic
significance of ReDisX framework over the conventional diagnosis procedure.
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function.” The min-cut problem with region force was to
minimize the following energy,

C =
K∑

k = 1

||∇φk(xi)||1 +

K∑
k = 1

n∑
n = 1

φk (xi) fk (xi) (3)

=

K∑
k = 1

n∑
i = 1

∑
j = i

wij|φk (xi)− φk
(
xj
)
| +

K∑
k = 1

n∑
i = 1

φk (xi) fk (xi) ,

(4)
where

∑K
k = 1 ||∇φk(xi)||1 was defined as the term edge cutting,

and {wij} are the weights of the edge between the data points
xi and xj which was discussed more in the following Section
“Weight function.”

Let (φ1, φ2, ..., φk) ∈ {0, 1}n × K , and F =
(
f1, f2, ..., fk

)
∈

Rn × K , W =
(
wij
)
∈ Rn × K , and D = (dii) ∈ Rn × n

would be explicitly defined in the Section “Weight function,”
then the above cost function could also be written as the
following,

min
8∈{0,1}n × K

C = α||L
1
28||1 + < 8, F > ,

s.t. 81 = 1. (5)

where L = W−D, ||A||1 =
∑

i,j ||Aij|| and α is a
regularization parameter that balances the region force and
min-cut term. However, searching for the optimal solution 8
in discrete space {0, 1}n × K was an NP-hard problem, then
the feasible space of the above problem was relaxed into a
continuous one as Eq. (5) and solved the following problem

min
8∈[0,1]nxK

C = α ||L
1
28||1 + < 8, F > ,

s.t. 81 = 1. (6)

Then, this optimal problem becomes equivalent to the min-
max problem as Eq. (6),

argmin
8∈4

max
|9| ≤ 1

α < 9, L
1
28 > + < 8, F > , (7)

where 4 = {8 ∈ [0, 1]n × K
: 81 = 1}. We also used the

primal-dual method with the projection technique to solve this
problem. The details of the algorithm can be found in (24).

Weight function
We now describe how to evaluate a prior probability that

each data point xi belong to the k-th cluster Ck, denoted
as pk (xi) in Section “The continuous max flow model” In
the pre-labeling stage, each datapoint xi were classified into
the k-th cluster by the Hierarchical method. Among those
data points, part of the would be used as a pre-label for
the CMF model, which would be assigned pk (xi) = 1 and

pj 6= k (xi) = 0. The pre-label would be equal for each cluster,
and the number of pre-labels for each cluster would be the
minimal number of elements in all clusters. For other data
points, we introduced a metric on the data that measures the
rate of connectivity of the points xi and xj based on the
m-steps diffusion process (30). The diffusion process could be
viewed as a Markov chain, and in our experiment, the transition
matrix A ∈ Rn × n, Aij means the probability of the data point
diffuses from xi to xj. Let w

(
xi, xj

)
=

< xi,xj >
|| xi|||| xj||

, then we set

Aij =
w(xi,xj)∑n
j′

w
(
xi,xj′

) . Denote D = (dii) ∈ Rn × n is a diagonal

matrix where dii =
∑n

j = 1 w
(
xi, xj

)
, and Â = D

1
2AD−

1
2 is a

symmetric matrix. Then the m-step diffusion distance between
xi and xj is defined as D2

m
(
xi, xj

)
= Âm

ii + Âm
jj − 2 Âm

ij .
Here Âm

ij could interpret the transition probability through
the m-step diffusion (while Am

ij is the real probability), then we
define the probability of xi belong to cluster k as

pk (xi) =

1
|Sk|

∑
xj∈Sk

rij∑K
k′

1
|Sk′ |

∑
x

j′
∈Sk

rij
, (8)

where Sk is a set of labeled data samples in the k-th group
which we discussed in the preprocessing part, |Sk| is the number

of samples in the corresponding group, and rij =
(Âm

ij )
2

Âm
ii Â

m
jj

represents the similarity between xi and xj. In an actual
implementation, we chose m = 2. Similarly, we also chose the
cosine distance to measure the distance between xi and xj, and
Wij = w

(
xi, xj

)
=

< xi,xj >
||xi|||| xj||

. Considering the computation
cost, we only use the edges between other K-nearest data
points for each data point. We chose K = 10 using the
K-nearest neighbor algorithm (KNN), where K represents
the cluster number.

Cluster evaluation
As the core CMF model firmly considers the graph

connectivity, it tends to merge two similar groups identified by
Hierarchical clustering. Based on the merging cluster property,
the ReDisX framework was deployed twenty times by iterating
the number of clusters from 1 to 20. Further, the unique number
of clusters was evaluated upon merging the graph connectivity
as indicated by the CMF model. Then, the most occurrence
number of clusters was chosen as the optimal number of clusters.

Screening the differentially expressed
genes

The differentially expressed genes (DEGs) were extracted
using the Limma package in R (31), considering the
p-value < 0.05 and log-fold change > 0.05 for both the
datasets GSE93272 and GSE59867. A subpopulation within
both the datasets represents a set of DEGs about their respective
healthy controls. Then, the DEGs were filtered out for both
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datasets to extract the overlapping genes across the other
subpopulations. The sorted overlapping and non-overlapping
genes were considered further for our analyses.

Functional enrichment analysis

The non-overlapping DEGs for both datasets were subjected
to functional enrichment analysis. Those genes were further
functionally characterized using (32, 33) to discover the
maximum enrichment for DisGeNet (34) disease information
and to have the most likely pathways using KEGG (35)
pathway analysis.

Knowledge-based differentially
expressed genes network

In parallel to the functional enrichment analysis, a
knowledge-based network extraction using GeneMANIA (36)
was also performed for both datasets (36). So, a knowledge-
based network consisting of the DEGs was constructed for each
subpopulation within those two datasets.

Hub genes identification

After constructing and analyzing the knowledge-based
networks, the hub genes within each subpopulation were
identified. cytoHubba (37), a dedicated plugin under Cytoscape
(v3.9.1) (38), was used to discover the hub genes. In each
subpopulation, 20 hub genes were identified.

Drug target screening

Those identified hub genes (from each subpopulation of
both datasets) were examined against the drug bank deposited
drug targets (39). Upon screening the pool of hub genes to
discover potential drug targets, they were subjected to fit the
drug-related gene target matching.

Validation of the hub genes

The ReDisX-based hub genes’ features, especially the co-
expression patterns and expression patterns of the DEGs
within those hub genes, were validated using two other
publicly available datasets, GSE15573 (40) and GSE77298
(41). The GSE15573 is a whole blood transcriptome dataset
(40) containing 33 samples from RA patients and healthy
controls obtained by Illumina human-6 v2.0 bead chip
(GPL6102). The raw data was retrieved from https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15573. Then, the

GEO2R tool (42) was applied to check the DEGs for validation.
Similarly, another dataset, GSE77298, a synovial biopsies-
derived transcriptomic dataset, (41) consists of 16 samples from
RA patients and healthy controls obtained using Affymetrix
Human Genome U133 Plus 2.0 Array (GPL570). Raw data
was retrieved from https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE77298. Then, GEO2R (42) was also used to
check the DEGs for validation.

The hub genes network analysis for
cross-diseases subpopulation

STITCH1 (43, 44) database was applied to examine the
hub gene network similarity discovered by cytoHubba (37).
It also examines the interdependence among the hub genes
across the subpopulation of different diseases. The interactions
were identified through text mining, experiments, databases,
co-expression, neighborhood, gene fusion, co-occurrence, and
prediction with a medium confidence level (0.4).

Dataset visualization

Principal component analyses and t-distributed
stochastic neighbor embedding

Principal component analyses (PCA) is one of the most
popular and efficient linear approaches for dimension reduction
(45, 46). PCA’s singular value decomposition technique is an
efficient method for extracting data features in low-dimensional
linear subspace (45, 46). However, PCA exposed its limitations
for high-dimensional data lying on or near a low-dimensional
manifold. Hence, a non-linear technique called t-distributed
stochastic neighbor embedding (t-SNE) (47) was also applied
(47). As Van der Maaten suggested, t-SNE is also limited in
high time complexity (47). In our study, the PCA and t-SNE
were used in a combinational scheme to visualize the gene
expression data from the patient population in a 2D way.
MATLAB (v2021b) was used to execute the functions pca and
tsne in this study.

Drug-associated network analysis

Open Targets platform2 (48) was employed for knowledge
extraction for its association with the target genes across
CAD and RA. Next, we narrowed down our target to the
approved drugs only for the DTGs for the rest of the analyses.
Then, the network-level association of the ReDisX identified
gene and those DTGs were analyzed using GeneMANIA (36).

1 http://stitch.embl.de/

2 https://www.opentargets.org/
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The considered interactions were consolidated pathways, wiki-
pathway, reactome, co-expression, physical interaction, drug-
interaction, predicted, co-localization, pathway, shared protein
domains, and genetic interactions.

Results

We have developed a novel framework, ReDisX, an
integrated ML algorithm relying on the CMF model. It
intends to re-categorize the patient populations and their
clinical conditions based on specific gene expression signatures
(Figure 1A). Our study considered the RA and CAD patient’s
data as we had prior expertise in that regime (13).

The ReDisX considers the gene expression data as an
input to execute further analyses to identify the core of the
core signature genes, which may correspond to the unique
features of a clinical condition for an individual (Figure 1B).
Our study indicated a distinctive classification among the
patients diagnosed with RA and CAD. It also discovers a
subpopulation of patients sharing similar characteristics despite
being heterogeneous and diagnosed as a separate disease.
Ultimately, ReDisX reinforces a fresh data-driven perception to
reconsider the basis of diagnosing the clinical conditions, relying
on precision focus at the molecular genetic level (Figure 1C).
It showed a clue to navigate a druggable target for a disease
where a formula originally discovered for other diseases shares
a strength to be validated.

ReDisX redefines rheumatoid arthritis
patients through acquiring
personalized and precise
molecular-genetic information

ReDisX serves as a core framework to extract the underlying
transcriptional heterogeneity of the RA patient population. To
identify the optimal number of heterogeneous sub-populations
in RA patients, we employed the ReDisX cluster evaluation
in human whole blood transcriptome data (GSE93272), which
measure the mRNA expression (26). ReDisX adopted the
optimal number (k = 3) of heterogeneous sub-populations in
the RA patients and grouped the high similarity patients into
the same cluster (Figure 2D).

As per ReDisX-based patient labeling, differential
expressions (DE) analyses were performed on each sub-
population using Limma in R (31). After excluding the
overlapping DEGs among the subpopulations, a total number
of 308 genes were found to be differentially expressed (p-
value < 0.05, log fold change > 0.05) (Figure 2A). To provide
a higher resolution in the co-expression patterns based on
the ReDisX discovery, we randomly selected 10 up-regulated
genes and 10 downregulated genes for each ReDisX-based

cluster. It showed 60 genes in rows and 275 samples in
columns (Figure 2B).

Further, the network analyses for those DEGs were
conducted using GeneMANIA (36), a Cytoscape function (38).
It is constructed using six established co-expression analysis
tools (49–53). Next, we estimated the Maximal Clique Centrality
(MCC) score that predicts essential nodes within the biological
networks in cytoHubba (37). Higher MCC scores indicated
the more critical hub genes. Then, the top 20 hub genes were
selected from each subpopulation of patients (Figures 2L–N).

The ReDisX framework identified the following hub genes.
SUMO1, PSMD6, SNRPB, H2AZ1, RANBP6, SUCLA2, GPN3,
PGAP4, CENPC, PSMD2, ZNF207, GCFC2, SS18L2, COX6C,
ELOC, TMEM14B, HSF2, IMP3, CDK5RAP1 for the cluster 1
(Figure 2L), ATP5PB, MRPS18C, MRPL36, SRP14, PSMD10,
NDUFB3, TBCA, ZNHIT3, NME1, RPA3, RBX1, MRPL13,
SELENOF, PDCD10, PCNA, ATP5PF, ETFA, SNRPG, ARPC3,
POLR2K for the cluster 2 (Figure 2M), and COX4I1, SKP1,
DNAJC19, NDUFB2, NCBP2AS2, EDF1, IMMT, POLR2G,
COX7C, NUDT1, HIKESHI, CCDC51, NDUFB5, MRPL22,
HINT1, TMEM14C, LSM6, CHCHD2, NDUFS6, NDUFAB1
for the cluster 3 (Figure 2M) were identified and their
corresponding networks were constructed (Figures 2L–N). The
detailed Cytoscape networks are available in Supplementary
Material 2.

Visualization of the gene expression profiles for RA patients
was reduced to 50 dimensions by PCA (45, 46), then further
reduced to two dimensions by t-SNE (47). It returned a final
two dimensions plot consisting of 232 patients’ data (Figure 2E).
Finally, quality control of the data was ensured using a mean-
variance trend (Figure 2C). To support it, Mean Difference
(MD) plots were plotted for each ReDisX-based cluster to
the healthy controls (Figures 2F–H). The volcano plots for
each ReDisX-based cluster compared to the healthy controls
also highlighted the top 50 log2 fold change genes in blue
(Figures 2I–K).

ReDisX output did not interfere with
the drug treatments in the rheumatoid
arthritis dataset

We analyzed the propositions of selecting the particular
dataset and the rationale for the rest of the analyses used
in our study. Our analyses showed that the drug-induced
upregulated or downregulated genes (within the RA patients
dataset) did not significantly interfere with the ReDisX-
discovered DEGs. The deployment of ReDisX merely needs a
dataset to be labeled as any disease per conventional diagnosis.
Now, to investigate whether the drug treatment affects gene
expression, our analyses suggested that the drug treatment
certainly interferes with a certain % of gene expressions in
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FIGURE 2

ReDisX redefines the RA patients through acquiring personalized and précised molecular-genetic information. (A) Heatmap for relative
expression in up/downregulating DEGs identified in GSE93272 (p-value < 0.05, log fold change > 0.05, non-overlapping DEGs with other
subpopulations). (B) Randomly selected 10 up-regulating genes and 10 downregulating genes corresponding to each ReDisX-based cluster
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FIGURE 2

in GSE93272 (p-value < 0.05, log fold change > 0.05, non-overlapping DEGs with other subpopulation). (C) Mean-variance trend after
processed voom in GSE93272. (D) Optimal subpopulations from the total number of 232 RA patients in GSE93272 by ReDisX. (E) PCA and t-SNE
visualization of the total number of 232 RA patients in GSE93272. (F) Mean-difference (MD) plots for the ReDisX-based cluster 1 of RA patients to
the healthy controls [label 1 (red dot) represents the up-regulated genes in the upper panel, the label –1 (blue dot) represents the
down-regulated genes at the lower panel]. (G) MD plots for ReDisX-based cluster 2 of the RA patients to the healthy controls [label 1 (red dot)
represents the up-regulated genes, and the label –1 (blue dot) represents the down-regulated genes]. (H) MD plots for ReDisX-based cluster 3
to the healthy controls [label 1 (red dot) represents the up-regulated genes, label –1 (blue dot) represents the down-regulated genes].
(I) Volcano plot for ReDisX-based cluster 1 compared to the healthy controls, highlighting top 50 log2 fold change genes in blue. (J) Volcano
plot for ReDisX-based cluster 2 compared to healthy controls, highlighting top 50 log2 fold change genes in blue. (K) Volcano plot for
ReDisX-based cluster 3 compared to healthy controls, highlighting top 50 log2 fold change genes in blue. (L–N) cytoHubba-identified hub gene
analysis to the GeneMANIA network for ReDisX-based clusters using the MCC ranking algorithm. The hub genes for cluster 1 (L), cluster 2 (M),
the cluster 3 (N) were shown.

the concerned datasets. However, their occurrence within the
ReDisX-based discovery of DEGs was<10% (mean interference
was 7.35%) in all probable conditions, which is statistically
not so significant to be considered in the function of ReDisX
deployment on the datasets. Based on our additional analyses,
the total estimated interference of ReDisX+ (up-regulated genes
detected by ReDisX) and Drug+ (up-regulated genes by drug
treatment in GSE93272) subset was 10%, ReDisX+ and Drug−
(down-regulated genes by drug treatment in GSE93272) was
4.5%, ReDisX− (down-regulated genes detected by ReDisX)
and Drug+ was 3.8%, and ReDisX− and Drug− was 11.1%
(Figure 3B). Thus, ReDisX discovered 90% of the upregulated
genes irrespective of the drug treatment impacts.

Moreover, to strengthen our claim about ReDisX’s
performance, we further analyzed it with a stack bar analysis
wherein X-axis denotes ReDisX-based clusters and Y-axis
denotes the percentage of RA patients with/without drug
treatment. Our analysis again indicated that the drug treatments
(as included in the RA dataset, GSE93272) do not affect the
ReDisX results. As indicated in (Figure 3C), each ReDisX
cluster contains a mixture of multiple drug treatments. So, the
ReDisX-labeled DEGs are not similar to the DEGs with drug
treatments. It was further supported with a clustering heatmap
(Figure 3D). For example, in the heatmap, the gene at row 1,
ATP6V1F, is downregulated in all the given drug treatments
(IFX.IR, MTX, MTX.IR) and pure RA (pRA). So, it would not
be considered a DEG under the influence of the drug treatment.
However, ATP6V1F is considered a DEG by the ReDisX label.
Consequently, the gene ATP6V1F, for example, would not be
affected by the drug treatment. So, the drug treatment in the
RA dataset did not interfere with the ReDisX results as the
ReDisX-labeled DEGs were not similar to the DEGs with the
drug treatments mentioned in the dataset, GSE93272.

ReDisX distinguishes the
heterogeneous subpopulation among
the coronary artery disease patients

Our results also showed the efficiency of ReDisX in
extracting the underlying transcriptional heterogeneity of CAD

patients. The analysis pipeline was similar to the previous
section on analyzing RA patients. To identify the optimal
number of heterogenous subpopulations in CAD patients,
we employed the ReDisX cluster evaluation in human whole
blood transcriptome data (GSE59867) that measures the mRNA
expression (27). ReDisX adopted the optimal number (k = 5) for
heterogeneous subpopulations in the CAD patients and grouped
the highly similar patients into the same cluster (Figure 4D).

Then, DE analyses were performed on each subpopulation
within the ReDisX-based patient labeling using Limma in
R (31). After excluding the overlapping DEGs among the
subpopulations, a total number of 436 out of 1937 genes
were found to be differentially expressed (p-value < 0.005)
(Figure 4A). To provide a higher resolution in the co-expression
patterns based on the ReDisX discovery, we randomly selected
10 up-regulated genes and 10 downregulated genes for each
ReDisX-based cluster. It showed 100 genes in rows and 436
samples in columns (Figure 4B).

Furthermore, the network analyses conducted for other
filtered DEGs (p-value < 0.05, log fold change > 0.05)
were conducted using GeneMANIA (36). We estimated the
MCC score to predict the critical nodes within the biological
networks (37). Higher MCC scores indicated the more essential
hub genes here as well. Then, the top 20 hub genes were
selected from each subpopulation of patients (Figures 4P–T) for
further analyses.

The ReDisX framework identified the following hub
genes. MRPL21, UQCR10, NDUFB2, COX5B, CHCHD1,
NEDD8, COX7C, CHMP2A, NDUFA8, SLIRP, PSMB3,
NDUFA1, UQCR11, COX6C, COX6B1, ATP5MG, UBL5,
NDUFA2, NDUFA13, ATP5MD for the cluster A (Figure 4P),
H3C2, H3C8, H2AC16, H2BC6, CEP55, DLGAP5, H2BC9,
H2BC5, H1-4, H2BS1, BUB1B, H1-2, H2AC8, H2BC21,
H2AC17, H4C5, H4C4, H2AC14, H4C11, H2BC17 for the
cluster B (Figure 4Q), and TGAM, TNFSF13B, CD86,
FPR3, P2RY13, GZMB, OASL, TNFRSF1B, SASH3, HCK,
FCER1G, FCN1, CST7, LILRB2, LILRB1, TYROBP, MNDA,
FCGR3B, SLAMF8, SLA for the cluster C (Figure 4R),
PPP4R2, TRAPPC6B, RIOK2, ZNF654, IMPA1, RPAP3,
EMC2, LRIF1, FPGT, TMA16, MORC3, PPIP5K2, OTUD6B,
ARMT1, MAP4K3, ETAA1, CDKN2AIP, MTERF3, CETN3,
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FIGURE 3

Cross-dataset validation of ReDisX performance to identify the hub genes, and generosity of ReDisX to identify DEGs. This figure comprises two
distinct sections, (A) indicates the cross-dataset validation of ReDisX performance to identify the hub genes from GSE23561; and (B–E) indicates
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FIGURE 3

the generalized performance of ReDisX to identify the DEGs on the RA dataset, GSE93272, which includes the RA patients with/without
receiving drug treatments. The explanations for the individual legends are following. (A) PCA and t-SNE visualization of ReDisX labeling of the
total number of 13 patients as reassigned by ReDisX in GSE23561 (for text; RA represents the GSE23561 label as RA patient; CAD represents
GSE23561 label as CAD patient) (for color; blue indicate the patient cluster as ReDisX cluster 1; red indicate the patient cluster as ReDisX cluster
2). (B) The Venn diagram for the DEGs discovered by the ReDisX label (ReDisX +/–) and drug treatment group label (Drug+/–) (“+” indicate the
up-regulated DEGs; “–” indicates the down-regulated DEGs). (C) The stacked bar plot that shows the distribution of different drug treatments
within the ReDisX labeled clusters (x-axis: ReDisX clusters; y-axis: percentage of the patients receiving the different drug treatment). The
color-coded legends “drug_treatment” represents the different drug treatment groups as recorded in GSE23561, IFX, MTX, and TCZ indicates
the responsiveness for the corresponding drugs; IFX.IR, MTX.IR, and TCZ.IR means irresponsive to the corresponding drugs, and pRA means RA
patients without treatments. (D) The heatmap for relative expressions of the up/downregulating DEGs identified in GSE93272 indicated each
patient-specific drug group (p-value < 0.05, log fold change > 0.05, non-overlapping DEGs with other subpopulations). (E) The box plot shows
the GZMB expression based on different drug groups (x-axis and the legend show the different drug treatment groups as recorded in GSE23561,
IFX, MTX, and TCZ indicate the responsiveness for the corresponding drugs; IFX.IR, MTX.IR, and TCZ.IR means irresponsive to the corresponding
drugs, and pRA means RA patients without treatments; Control indicates healthy control. The y-axis indicates the GZMB expression).

CMTR2 for cluster D (Figure 4S), LIPH, ADGRG7,
CXCL10, CXCL9, SAMD9L, CALHM6, ARHGAP42,
DDX58, GBP5, EEF2K, WARS1, RSAD2, CCL8, FGG,
ADAMDEC1, CXCL11, GBP4, CCR9, CALB1, OAS1 for
cluster E (Figure 4T) were identified and their corresponding
networks were constructed (Figures 4P–T). The detailed
Cytoscape networks are available in Supplementary
Material 1.

Visualization of the gene expression profiles for CAD
patients was reduced to 50 dimensions by PCA (45, 46),
then further reduced to two dimensions by t-SNE (47). It
returned a final two dimensions plot consisting of 436 patients’
data (Figure 4E).

Finally, quality control of the data was ensured using
a mean-variance trend (Figure 4C). MD plots were plotted
for each ReDisX-based cluster against the healthy controls
(Figures 4F–J). Moreover, the volcano plots for each ReDisX-
based cluster compared to the healthy controls were also
shown, highlighting the top 50 log2 fold change genes in blue
(Figures 4K–O).

ReDisX discovers the
cross-subpopulation homogeneity
among the rheumatoid arthritis and
coronary artery disease patients
embarking on the redefinition of their
diagnosis at molecular-level

ReDisX revealed the cross-subpopulation homogeneity
among the CAD and RA patients by analyzing their
transcriptomic profiles (Figure 5). The extent of the
homogeneity was assessed in terms of the intersection of DEGs
(Figure 5A), functional enrichment analysis (Figures 5B–F)
(32, 33), and the drug bank (Figure 5G) (39) across the
sub-population of CAD and RA.

Redefining the Disease X-based CAD cluster C (12 patients)
of GSE59867 was discovered to be homogeneous to RA patients.

Based on ReDisX-based patient labeling, 648 DEGs were
identified from the GSE59867 CAD cluster C (Figure 5A).
To validate the homogeneity of GSE59867 cluster C to RA,
we employed two publicly available validation datasets for
RA, GSE15573, and GSE93272, retrieved from whole blood
transcriptome. Then, GEO2R (42) was applied to identify the
DEGs with default parameters (p-value < 0.05). A total of 3356
and 2258 DEGs were identified from GSE15573 and GSE93272,
respectively (Figure 5A).

Moreover, a total number of 126 genes were found at the
intersection of GSE59867 CAD cluster C and GSE15573 RA.
It sparked a notion further to investigate the homogeneity
between CAD subpopulation and RA patients, especially to
identify some clues about more precision yet personalized
diagnosis and drug repurposing. Additional GO analysis
is available in (Supplementary Material 2.1). Then, we
conducted Gene Set Enrichment Analysis (GSEA) using
clusterProfiler (54) to ensure that the ReDisX framework does
not lose any essential molecular functions associated with the
identified DEGs from the subpopulation of cluster C of CAD
patients (Figure 5B).

Further to examine the hypothesis above, a total number
of 126 intersecting DEGs of GSE59867 CAD cluster C and
GSE15573 RA were analyzed for their functional enrichment
using Enrichr (32, 33) and also with two other databases,
DisGeNet (34), to identify the enrichment of diseases, and
KEGG (35) for common pathways. In the DisGeNet enrichment
analysis of 126 intersecting DEGs, RA and coronary heart
disease, which implies a broader term for CAD, were observed
in the top 30 enriched Disease Ontology (DO) terms. Also,
in the KEGG analysis of 126 intersecting DEGs, two essential
inflammatory pathways, Chemokine signaling, and Cytokines-
Cytokines receptor interaction were observed in the top two
enriched KEGG terms. Additional GO analysis is available in
(Supplementary Material 2.2). Similar validations were also
conducted for another RA dataset, GSE77298, from synovial
biopsies tissue (Supplementary Material 3).

In parallel to the intersecting DEGs of GSE59867 CAD
cluster C and GSE15573 RA (Figure 5A), the functional
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FIGURE 4

ReDisX distinguishes the heterogeneous subpopulation among CAD patients. (A) Heatmap for relative expression in up/downregulating DEGs
identified in GSE59867 (p-value < 0.005, non-overlapping DEGs with other subpopulations). (B) Randomly selected 10 up-regulating genes and
10 downregulating genes correspond to each ReDisX-based cluster in GSE59867 (p-value < 0.005, non-overlapping DEGs with other
subpopulations). (C) Mean-variance trend after processed voom in GSE59867. (D) Optimal subpopulations from the total number of 390 CAD
patients in GSE59867 by ReDisX. (E) PCA and t-SNE visualization of the total number of 390 patients in GSE59867. (F–J) MD plots for
ReDisX-based clusters. The ReDisX-based cluster A (F), cluster B (G), cluster C (H), cluster D (I), and the cluster E (J) of the CAD patients to the
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FIGURE 4

healthy controls were shown to have up/down-regulated genes (red dot represent the upregulated genes in the upper panel and the blue dot
represents the downregulated genes in the lower panel). (K–O) Volcano plots for the ReDisX-based clusters compared to the healthy controls
were highlighted using the top 50 log2 fold change genes in blue. ReDisX-based cluster A (K), cluster B (L), cluster C (M), cluster D (N), and
cluster E (O) were shown to have a comparative difference of those top 50 log2 fold change genes to the healthy controls. (P–T)
cytoHubba-identified hub gene analysis to the GeneMANIA network for ReDisX-based clusters using the MCC ranking algorithm. The hub genes
for cluster A (P), cluster B (Q), cluster C (R), cluster D (S), and cluster E (T) were shown.

enrichment of a total number of 648 DEGs of GSE59867 cluster
C was analyzed using Enrichr (32, 33) with two databases,
DisGeNet (34) and KEGG (35). In the DisGeNet enrichment
analysis of those DEGs, we observed that RA was in the top 30
enriched DO terms. Also, In the KEGG enrichment analysis of
those DEGs, we observed that RA, Chemokine signaling, and
Cytokines-Cytokines receptor interaction were in the top 10
enriched KEGG terms.

To identify whether any distinguished subpopulation shares
drug-related targets and/or pathways, we employed the drug
bank (39) to retrieve the drug-gene target database to analyze
the drug-related hub genes of cluster C of GSE59867 CAD.
Of them, 4 genes (TNFRSF1B, CD86, GZMB, and TNFSF13B)
were identified as the drug-related hub genes (Figure 5G,
highlighted in light green). Our analysis indicated that one
of the drug-related hub genes, GZMB was under-expressed in
the ReDisX-based cluster 1 of RA patients and the ReDisX-
based cluster C of CAD patients. The gene GZMB encodes
the granzyme B, secreted by natural killer cells and cytotoxic
T-lymphocytes to induce inflammatory reactions by processing
cytokines and imparting into chronic inflammations, including
RA (55) and cardiovascular diseases (25, 56). It plausibly
indicated a notion of homogeneity discovered across the
subpopulation of RA and CAD patients. Our results also
indicated that heterogeneous subpopulations in both RA (p-
value = 0.044) and CAD (p-value = 0.015) were under-expressed
compared to their controls (Figures 5H,I). The analysis was
validated using GEO2R (42) differential expression analysis in
GSE15573 (Figure 5J).

Further, the STITCH analysis indicated a strong inter-
relationship among the total identified 40 hub genes (20 hub
genes each) from both the diseases, cluster 1 of RA and
cluster C of CAD (Figure 6A). The STITCH-based interactions
were derived from text mining, experiments, databases, co-
expression, neighborhood, gene fusion, co-occurrence, and
prediction with a medium confidence level (0.4). To further
validate our result in whole blood tissue and the extent of
the applicability in RNA-seq, we specified the interaction
to be constructed from the whole blood RNA-seq data
retrieved from the Expression Atlas using the URL, https:
//www.ebi.ac.uk/gxa/baseline/experiments (57) with medium
confidence level (0.4). It suggested a prominent connected
component, GZMB, and some discrete nodes such as SASH3
and SLAMF8 (Figure 6A).

GZMB-related drugs target gene
networks across coronary artery
disease and rheumatoid arthritis

To evaluate the association of GZMB and its potential
association with the drug target genes across CAD and RA,
we employed the Open Targets platform (48). It facilitated the
discovery of the available approved drugs and their association
with the target genes (DTGs) of the diseases of interest, such as
CAD and RA. A total of 189 DTGs for RA and 217 DTGs for
CAD were identified (Figure 6B). The Venn diagram analysis
indicated that 73.02% of the RA-related DTGs intersected with
CAD-related DTGs (Figure 6B). On the other hand, 63.59%
of the CAD-related DTGs intersected with RA-related DTGs
(Figure 6B). The detailed gene list is available in Supplementary
Material 4.

To investigate the network-level association of GZMB
and those 268 unique DTGs (as shown in Figure 6B),
GeneMANIA (36) was employed. The considered interactions
were consolidated pathways, wiki-pathway, reactome, co-
expression, physical interaction, drug-interaction, predicted,
co-localization, pathway, shared protein domains, and genetic
interaction. This analysis extracted a total number of 36
additional genes out of the GeneMANIA knowledge base.
Altogether it returned a total number of 305 genes and 18,138
interactions within the reconstructed network (Supplementary
Material 5). Further, we have narrowed our analyses by
focusing on the GZMB-related DTGs in CAD and RA. It
produced a network with the selected DTGs sharing direct
interaction with GZMB (Figure 6C). It constructed the
network containing a total number of 51 genes and 755
interactions (Figure 6C).

Discussion

Diagnosis of a disease is used to get a universal consideration
across the patients. Identifying the clinicopathological variables
associated with the patients looks straightforward, but it is
one of the trickiest and most sensitive concerns to be precisely
addressed in terms of physiological and clinical perspectives.
The current practices of classifying clinicopathological
variables among the patients, also referred to as classifications
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FIGURE 5

ReDisX-based discovery of the subpopulation homogeneity across the RA and CAD patients. (A) Venn diagram of three sets of DEGs, GSE15573
(RA), GSE93272 (RA), GSE59867 (CAD) cluster C. (B) GSEA of ReDisX-based cluster C in GSE59867. (C) Disease Ontology (DO) enrichment using
DisGeNet for the intersecting DEGs of GSE59867 (CAD) cluster C and GSE15573 using Enrichr. (D) DO enrichment of GSE59867 (CAD) cluster C
DEGs. (E) Pathway enrichment for the intersecting DEGs of GSE59867 (CAD) cluster C and GSE15573 by KEGG. (F) Pathway enrichment for
GSE59867 (CAD) cluster C DEGs by KEGG. (G) The list of drug-gene target-related identified hub genes from cluster C of GSE59867 (CAD).
(H) Boxplot of GZMB expression in GSE59867, Control (blue), and ReDisX-based cluster C (yellow). (I) Boxplot of GZMB expression in GSE93272,
Control and ReDisX-based cluster C (blue). (J) The expression value of GZMB within the patient and healthy controls from GSE15573.
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FIGURE 6

Network analysis and GZMB-related drugs targets. (A) The network analysis for the hub genes from cluster C of GSE59867 (CAD) and cluster 1
of GSE93272 (RA) hub genes using the STITCH database. The large nodes represent the known protein structures, wherein the small nodes
represent the unknown protein structures. The identified subpopulation-differentiation marker, GZMB, was marked within a red box. The colors
of the nodes and edges were predefined by STITCH. (B) Using the Open Target platform, the Venn diagram for the extracted drug-target genes
(DTGs) of CAD and RA (blue). (C) Network-level association of GZMB and the related DTGs. The gene GZMB, the ReDisX identified gene of
interest, the CAD-associated approved drug targets (purple), the approved drug targets for CAD and RA (green), and the approved drug targets
for RA (blue) share a direct correlation. GeneMANIA predefined the colors of the edges.
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of diseases, are typically relied on medical investigations
such as physical and visual examinations, estimation of
biochemical parameters, medical imaging methods, and of
late, a few genomic-markers-based diagnostic approaches,
which are although not widely and commonly practiced.
Often the genomic disparity among the individual gets
overlooked. It is something like a one-size-fits-all concept.
However, with the advancement of the data-driven healthcare
revolution and leveraging the high-throughput omics data,
we could further investigate the issue as mentioned earlier to
have better resolution in assessing the clinical conditions
rather than a “typically classified disease and its same
related treatments for all” for each individual. It may offer
us a clue to identify the real root cause at the molecular
layer and personalized or customized treatment plans.
Our study supported our core rationale by introducing a
functional concept of redefining diseases (with the working
example of RA and CAD datasets, GSE93272 and GSE59867,
respectively) based on individualized molecular characteristics
using the ReDisX framework. Interestingly, our results
indicated some exclusive subcategories featuring distinct
molecular-genetic signatures within the “conventionally
classified” disease category. ReDisX has tried identifying those
distinct subpopulations upon thoroughly analyzing those
signatures to reassign their clinical category focusing on
precise identification.

Rationale, and quality assessment of
ReDisX performance on the selected
datasets

The rationale of using blood-based
transcriptomic data to deploy ReDisX

We used two disease conditions, RA and CAD, in our
study. RA is diagnosed mainly by blood-based examination
or synovial tissue examination. And CAD is typically
diagnosed by CT-imaging techniques supported by blood-
based examinations. In both cases, specific markers are
expected and usually found to be elevated or depleted in the
patients. Analyzing the blood from the patients should report
those dysregulations of the blood-based factors instituted
through their corresponding transcriptional mechanisms.
Hence, analyzing the blood-based transcriptome must aid
in reporting those anomalies. It could be argued that high-
throughput gene expression analysis of specific cell types or
tissue subsets could theoretically have been more informative
than whole blood and peripheral blood transcriptome analysis
(58, 59).

Nevertheless, available methods for subset-specific
expression profiling are not quite adequate for extensive
studies and the choice of the cell types to be analyzed is also not

so determined. A certain extent of population-dependent effects
is unavoidable (58). Recently, it has been strongly endorsed
that blood-based transcriptome analyses are more efficient
in capturing the global gene expression landscape and can
be served to facilitate the detection of deregulated genes or
gene products. Whole blood transcriptome can significantly
predict tissue-specific expression levels for ∼60% of the genes
on average across 32 tissues (60). The tissue-specific expressions
inferred from the blood transcriptome are almost as good
as the measured tissue expression in predicting disease state
in many complex disorders (60). It is advantageous in two
significant ways; one, it is sufficient to capture the global gene
expression landscape much earlier and can serve as a well-
accepted reporter for clinical conditions of the patients, and
two, it is minimally invasive, more generalized, and technically
less complicated. It also overcomes the fixed snapshot of
localized tissue-specific sampling with a time stamp and offers
a more dynamic global snapshot of the clinical conditions
of an individual.

In our study, the analyses and validation of hub gene
identification were not varied across blood and synovial
tissue samples. To identify the core hub genes for RA, we
employed ReDisX using a blood-based test dataset, GSE93272,
and validated the results with two other validation datasets
obtained from blood and synovial tissue, GSE15573 and
GSE77298, respectively. In all cases, the results were consistent
(Figure 5A and Supplementary Material 3). So, we may
suggest that ReDisX-discovered marker hub genes for RA
were well discernable from the blood transcriptome. Our
method typically intends to devise a minimalistic approach
yet high yield precision performance. High-quality RNA can
also be extracted from blood samples. It is beneficial for
extensive population studies while reducing technical and
source variability that may limit the reproducibility of results
and introduce a systematic bias in multicenter studies. Thus,
for the long-term objective-wise, our study is more suitable
in the context of easy-to-use and quick support before
undergoing a confirmatory diagnosis for receiving further
treatment. Aligning this motivation, the scope of blood-based
transcriptome analyses should be more suitable.

The quality assurance of ReDisX performance
We have used two datasets, GSE93272 (retrieved from

whole blood gene expression of RA patients) and GSE59867
(retrieved from peripheral blood samples of CAD patients), as
the primary datasets for testing on which the performance of
ReDisX been reported. Two other datasets, GSE15573 (retrieved
from peripheral blood samples of RA patients) and GSE77298
(synovial biopsies of RA patients and healthy controls), were
used for statistical validation purposes. It was to indicate
that ReDisX output did not interfere with the origin of
sampling. The discovery of hub genes was consistent across all
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datasets. Further, we have performed an additional validation
study for the ReDisX-discovered hub genes on the validation
dataset, GSE23561. We have chosen this dataset as it contains
peripheral blood gene expression profiles for both the concerned
diseases, RA and CAD. The representation of the datasets is
shown in Table 1.

Our additional dataset analysis also exhibited consistency
with the earlier ReDisX-discovered hub genes, including
identifying GZMB as a predictive subpopulation differentiation
marker for both RA and CAD populations (Figure 3A).
The performance of ReDisX on the gene expression profiles
for RA and CAD from the dataset GSE23561 showed the
consistent discovery of hub genes as did earlier within cluster
C of the CAD dataset, GSE59867. Next, it re-assigned the
patients with a new label. Figure 3A indicates the cross-
dataset validation of ReDisX performance to identify the
hub genes from GSE23561. The RA and CAD patients were
reassigned into new groups. Group 1 (blue) indicated the
inclusion of RA and CAD patients as they were presumed to
consist of similar hub genes despite being labeled differently
by the conventional diagnosis as initially mentioned in the
dataset, GSE23561. Group 2 (red) includes only a group of
patients labeled as CAD in the dataset. ReDisX was applied
to the dataset for all the patients and distinguished two
unique groups that varied from the original classification.
This new stratification of patients was based on discovering
some significant hub genes that may function as subpopulation
differentiation markers. Hence, we may assume that ReDisX-
discovered hub genes are not dataset-specific; instead, they
can be widely deployed for disease cases. It may also
indicate the generosity of the ReDisX framework. A GEO2R
analysis relying on the ReDisX-based labels in GSE23561
asserted the validation of the GZMB as a subpopulation
differentiation marker as discovered by ReDisX. GZMB was
statistically significant as a subpopulation differentiation marker
at p-value < 0.05 and | log-fc| > 1 (Supplementary
Material 6). So, this additional analysis supports the generosity
of ReDisX-discovered hub genes and the importance of GZMB
as hypothesized.

ReDisX offers better precision and
personalized diagnosis strategy

Diagnosis of diseases usually relies on biochemical and
pathological assessment, imaging techniques, and molecular
analyses (61). In many instances, especially for complex
diseases, it is inadequate to explain the heterogeneity among
the patients within the same disease and homogeneity across
the patients from different diseases (5, 6, 13). Therefore,
redefining the diseases to elucidate the heterogeneity within a
disease and homogeneity across the diseases will significantly

ensure precision diagnosis and personalized treatments
(62, 63). So, it ensures precision and a personalized model
of identifying patients’ clinicopathological conditions. Many
computational and experimental studies have evolved in
this avenue (3, 4, 22). They mostly attempted to address
the heterogeneity within the patients under the same
disease and homogeneity across the patients from different
diseases. However, an interesting question about the extent
of homogeneity amidst the heterogenous sub-population
of different diseases remains unexplored. The consequent
similarities and dissimilarities at the molecular level have
not yet gained comprehensive attention. Therefore, in
this study, we have introduced ReDisX, a robust, scalable,
and pathologically relevant computational framework to
characterize the patients based on specific molecular-genetic
signatures. We have systematically deployed the ReDisX
framework considering two disease cases, RA and CAD. We
have analyzed their transcriptional profiles to characterize the
pathological similarity of their subpopulation. In the future, it
perhaps guides us to extend this foundation to other diseases
to redefine their clinicopathological status aiming toward
precision diagnosis and identifying personalized targets for
therapeutic interventions.

Our proposed framework, ReDisX, could differentiate
the disease heterogeneity among the patients by optimally
clustering them based on individual gene expression profiles.
One of our past studies indicated that RA and CAD
used to share inflammatory pathways (13), and both of
them consist of several subtypes (6, 64). However, the
detailed characteristics of the subpopulations of both RA
and CAD were not yet fully explored. Our data suggested
that the ReDisX could identify a distinct subpopulation in
RA and CAD that were susceptible to mispronounced by
the standard diagnosis criteria (as the data was captured
originally at the point of diagnosis) without the ReDisX-based
recategorization (Figures 2A,B, 4A,B). On the other hand,
our results also indicated an identified homogeneity across the
subpopulation of CAD to the RA patients (Figures 5, 6A).
These characterizations were also validated using two other
validation datasets, strengthening our hypotheses (Figure 5A
and Supplementary Material 3). The heterogeneity mentioned
above and homogeneity were not identified with the original
diagnosis strategy mentioned in the dataset features. Therefore,
the conventional modes of diagnosing diseases and categorizing
the patients overlook certain minute discrepancies at the
individual molecular-genetic signature level. It may indicate
a potential cause for failure of diagnosis of those specific
subpopulations of patients; therefore, their receiving treatments
might induce either inefficiency or some adverse effects. In
many acute or severe clinical conditions, such inadequacy in
characterizing the actual cause might significantly delay the
treatment process or prognostic outcomes. On this verge, our
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proposed framework, ReDisX, showed an enhanced efficiency
in accessing minute details of the molecular signatures in
characterizing the patients.

ReDisX supports advancing the
screening of precise druggable target
genes

Based on the ReDisX framework, our results suggested that
GZMB was under-expressed in the subpopulation of both the
diseases RA and CAD (Figure 5). A study by Joehanes, R.
et al. concluded that CAD patients with GZMB expressions
exhibited a significant negative fold change (FDR < 0.05)
compared to their healthy controls (25). Although there was
no solid evidence showing the direct pathological relationship
between the GZMB under expression and the occurrence of
CAD and RA, we have identified some diseases linked to
GZMB and correlated with CAD and RA. For example, CAD
was found to be correlated with Moyamoya Disease (MMD)
(65) and pneumonia (66). Furthermore, Xing Peng et al.
discovered that MMD patients with downregulated GZMB
were also enriched with the downregulated genes of CAD
(65). MMD is defined as an occlusive intracranial arteriopathy
with abnormal cerebral vascular collateral networks and is
primarily known to involve intracranial arteries, but systemic
arterial involvement, especially endothelial hyperplasia, was
also reported (67). Cases of stenoses in the left coronary
artery and renal arteries were reported, which were further
confirmed with the arterio-angiography examination (68).
The association between coronary heart disease and MMD
has been studied in other research. Many studies suggested
having common etiological factors between CAD and MMD
(68–78).

Interestingly, a recent case report by James Livesay and
Jeffrey Johnson indicated a direct incidence of STEMI in
an MMD patient. Perhaps, to the best of our knowledge,
this is one of the first-in-class direct case reports of CAD
in a Caucasian female with reported MMD, presenting with
cerebral vasculature complications (79). They emphasized a
critical notion that extracranial vascular complications in MMD
patients are rare but can significantly impact a patient’s overall
morbidity and mortality. Thus, clinicians should be aware
of the cardiovascular complications, including the coronary
plaque progression seen in MMD patients, and assess for
adequate medical management. Another contemporary study
by Peng et al. (79) stated that CAD used to share many
clinical symptoms with MMD, including progressive narrowing
or occlusion of involved arteries. MMD has emerged partially
analogous to CAD on the peripheral blood transcriptomic
level plausibly due to the underlying inflammations (79). In
addition, cases of CAD in patients with MMD have been
extensively reported (65, 72, 77, 79, 80). It may indicate

that MMD is a systemic vasculopathy wherein both the
circulating inflammatory factors and the imbalance of cell
populations in the blood are responsible for the progressive
narrowing or occlusion of the involved arteries. MMD
could likely lead to occlusion of coronary arteries through
certain systemic etiologic factors in the blood. Many other
studies also supported a correlation between MMD and CAD
(67, 79).

Now, concerning the RA cases, a recent report showed
that a patient with a history of RA for 15 years also suffered
from cerebral rheumatoid vasculitis (81). A meta-analysis
of 23 studies found that the patients with RA shared a
higher risk (∼1.68 times) of hemorrhagic stroke than normal
individuals (82). It suggested that underexpression of GZMB
may be a risk factor for RA patients developing MMD,
but further investigation should be conducted to support
this hypothesis. It also intrigued a sense of investigating
GZMB as a potential drug target, especially for the niche
subpopulation identified across the RA (cluster 1) and CAD
(cluster C) patients wherein GZMB was under-expressed.
Consequently, our results suggest that the patient-specific
individual differential expression features of GZMB may explain
the plausible underlying inflammatory mechanisms across those
clinical conditions.

Studies also showed that excessive GZMB is related
to inflammation (83), a common pathological characteristic
of CAD and RA (84–86). However, those investigations
did not consider minute fluctuations observed within some
subpopulations of the CAD and RA patients who significantly
exhibited GZMB under expression. Interestingly, our results
characterized those distinct subpopulations of both CAD
and RA as having GZMB under expression (Figures 5H,I).
Our study validated this claim with another RA dataset
(Figure 5J). The study by Joehanes R. et al. supported
this indication (25). The inhibition strategy for GZMB
overexpression cases was considered a new therapeutic target
for CAD and RA. Yue Shen et al. demonstrated that the
under-expression of GZMB protected against Ang II-induced
cardiac hypertrophy and cardiac fibrosis, microhemorrhage,
inflammation, and fibroblast accumulation (85). Cui-Xia
Bao et al. show that GZMB gene silencing inhibits the
MAPK signaling pathway by regulating the expressions of
inflammatory factors (55). Inherently, this demands our
attention to investigate further those subpopulations of GZMB
overexpression and underexpression and associated different
clinicopathological statuses. After distinguishing its expression
profiles within the subpopulation, it also sparked an idea to
differentially employ GZMB as a drug target for personalized
therapeutic intervention. Altogether, it essentially re-emphasizes
that it is necessary to redefine the disease to navigate
the hidden heterogeneity and cross-disease homogeneity to
offer better precise categorization, diagnosis, and treatment
for the patients.
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ReDisX endorses the GZMB as a robust
prognostic subpopulation
differentiation marker to devise a
personalized druggable target

GZMB (granzyme B) is a serine protease encoded by the
GZMB and is commonly found in the natural killer (NK) cells
and cytotoxic T cells (CTLs) (87). It has been reported to
participate in different inflammatory signaling pathways such
as inducing cell death, apoptosis (88), and suppression of viral
replication (89). It has also been reported as a drug-gene
target for tumor therapy (90), especially with cisplatin (39) and
mannose (39). It is also reported that GZMB injures endothelial
cells in patients with immunological dysregulation, such as
recipients of allograft transplantation. It could be of viral origin
or any other exogenous factors. It is a deep concern, and there
is enough evidence claiming that direction especially discussing
the role of GZMB in acute coronary syndrome after heart
transplantation wherein the acute graph versus host disease
driven by donor T cells and an inflammatory cytokine storm
could be expected, which results in target tissue destruction via
apoptosis (91–93).

However, on the other side, several studies have strongly
suggested the link between GZMB and atherogenesis,
which is one of the primary mechanisms contributing
to developing CAD in patients without any reported
transplantation and/or involvement of donor T-cells. For
example, Chamberlain, C., and Granville, D., suggested
that in atherosclerosis, immune-mediated cellular apoptosis
plays a crucial role, and GZMB interferes there (94). In
their study, CAD patients were defined as patients showing
significant coronary stenosis diagnosed by selective coronary
angiography. The authors excluded patients with acute
coronary syndrome, acute inflammatory disease, acute renal
failure, hematological disorder, malignancy, and patients taking
immunosuppressive medicine (94). The authors reinstated that
the perforin/granzyme system usually induces apoptosis of
infected cells and cancer cells.

Conversely, they also emphasized that plasma GZMB was an
independent factor for the severity of CAD. On the other hand,
the administration of serine protease inhibitor was reported
to attenuate atheromatous plaque formation in apoE-knockout
mice (95) and vascular injury after allograft transplantation (96).
So, serine proteases (like GZMB) may play an essential role in
atheromatous plaque formation in certain patients. In another
study, Saito, Y et al. indicated that GZMB induces apoptotic
cell death and degrades the extracellular matrix, weakening the
fibrous cap of atheromatous plaques (97).

However, there is no clinically recognized universal
baseline for the GZMB expression pattern within the same
or different diseases. Overexpression of GZMB was found
to promote CAD (98, 99), wherein under-expressed GZMB

was correlated with CAD (25) pathophysiology. It is a
contradictory role of GZMB in CAD. Similar contradictory
functions of GZMB were also reported in RA patients.
For instance, the up-regulated GZMB was reported as an
indicator of inflammatory diseases such as RA (83), and in
another research, the downregulation of GZMB by shRNA-
mediated silencing was shown to promote RA in a rat
model (55). It was found that GZMB silencing inhibited the
MAPK signaling pathway by interfering with the expression
of several inflammatory factors such as bcl-2, caspase, and
certain angiogenic factors such as VEGF and bFGF. Indeed,
a gene and its contradictory behaviors instigate an ambiguity
in prognosis and consider that candidate for therapeutic
development. It induces a layer of obscurity about devising
inhibitors or activators to modulate GZMB within the same
diseases and for different diseases, such as RA and CAD.
Such complications represent the lack of understanding
of the heterogeneity of GZMB across the subpopulations.
Another recent single-cell study has also shared a similar
view to consider the clinical identifications of RA based on
different subsets of markers and reported the potential of
GZMB as a subpopulation differentiation marker (100). So,
it implies a solid motivation to utilize this gene, GZMB, as
a prognostic marker or therapeutic target on a personalized
basis. Added to their findings, determining the allocation of
those markers across the RA patients at a personalized level
would undoubtedly be an essential direction. The extent of
the variations and discrepancies in their expression patterns
prevails across the distinct subpopulation of RA patients is
a prominent study scope. It will be even more interesting
to navigate such similarities across the subpopulation of
different diseases or dissimilarities within the same disease.
Interestingly, our proposed framework, ReDisX, addresses the
expression pattern variation of GZMB across the different
subpopulations of patients.

ReDisX performance was not influenced by the
drug treatment in the rheumatoid arthritis
dataset, GSE93272

GZMB was found to be upregulated among the RA patients
receiving the drug treatments but not for the other RA patients
without drug treatments. However, in some subpopulations
of RA patients where GZMB was found to be downregulated
even after the drug treatments. Those specific cases were
merely not attended by the drug-labeled-based classification
alone. However, with the ReDisX, we could identify those
subpopulations distinctly within the RA dataset. To connect
the clinical impact, we may presume (hypothetically) that
if any therapy is targeted for GZMB to manage the RA
cases, that distinct subpopulation may not respond adequately
to that specific treatment. For example, in the RA dataset,
some patients with GZMB downregulation used to receive
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drug treatments such as IFX.IR, MTX, MTX.IR as per the
study description.

Nevertheless, they also share a similar extent of GZMB
expression as other RA patients do without receiving any
treatments. So, it may indicate that those subpopulations
of RA patients receive either the wrong or inadequate
treatments. Eventually, the RA patients without receiving drug
treatments showed non-significant downregulation of GZMB
(at adjusted P-value 7.438697e-01 by ANOVA) (Supplementary
Material 7), as our additional box-plot analysis indicated
(Figure 3E). On the other hand, ReDisX discovered a
subpopulation within RA that shows statistically significant
downregulation of GZMB. So, ReDisX helps to provide
additional information on the same dataset wherein the
drug treatment labeling is limited to indicate that precision
information. With the evidence from both aspects of GZMB,
we may pursue that GZMB may be involved in forming
atherosclerosis in a group or subgroup of patients with
immunological disorders. In our study, we included RA patients,
which are usually reported to have an immunological imbalance.
Hence, GZMB may function as an essential mediator to connect
RA and the emergence of coronary atherosclerosis in the
subgroup of RA patients. Thus, the role of GZMB can be
established as a predictive subpopulation differentiation marker.

In our study, the ReDisX framework validates the potential
of GZMB as a subpopulation differentiation marker within
the same disease, e.g., under expression of GZMB in cluster
1 of RA patients and overexpression of GZMB in clusters 2
and 3 of RA patients. Furthermore, it also demonstrated the
homogeneity of GZMB expression across different diseases. For
example, the under-expression of GZMB in cluster 1 of RA
patients shared a similar expression pattern with cluster C of
CAD patients, further supported by the functional enrichment
analysis. These disparities strengthen the indication of the
sensitivity of the strategies for therapeutically modulating
GZMB expressions. Thus, it is highly recommended not to use a
GZMB inhibitor/activator for all the patients suffering from RA
and CAD, respectively.

A study reported the generic use of GZMB inhibitors
to manage RA (55). However, our study flags a concern
here and suggests the use of GZMB inhibitor to be devised
on a personalized basis upon evaluating its specific patterns
within the patient subpopulation. Similarly, it can also apply
to CAD patients too. Additionally, the ReDisX framework
suggests the specific drug designated for a subpopulation of RA
patients with GZMB under-expression can be repurposed for the
subpopulation of CAD patients having GZMB under-expression
but never be used for the subpopulation of RA patients with
GZMB overexpression. Hence, ReDisX demonstrated a data-
driven ability to designate the GZMB as a potent subpopulation
differentiation marker for RA and CAD. It also indicated a
way to precisely deploy them for therapeutic development and
a plausible strategy to repurpose those therapeutics backed by
personalized gene-expression data.

ReDisX suggests GZMB as a strategic
focus for drug repurposing

GZMB inhibitors have been reported as therapeutics to
manage inflammations related to RA (55) and CAD (97, 101).
However, the contradictory dual role of GZMB has made
the discovery process and its clinical application ambiguous
(102). Studies have reported that GZMB overexpression and
underexpression are linked to different clinical conditions, such
as RA, CAD, and MMD (55, 65, 97). It certainly makes the
strategic development of therapeutics and/or discovering drugs
against GZMB challenging. On the other hand, GZMB has
been repeatedly endorsed as a prominent prognostic marker for
many inflammatory pathways, especially related to RA, CAD,
and angiogenesis (55). Hence, having a straightforward strategy
to deal with GZMB is essential. ReDisX-based indication
on GZMB and its prominent role as a prognostic marker
has been further strengthened by the Open Target analyses
(Figure 6C). It intensifies that the ReDisX-based identification
is not only computationally validated; instead, it has a
solid connection to be a potential personalized druggable
target. It has also gained scientific support from different
experimental studies and a presumed knowledge base (see
“Results” Section for details). It motivates us to devise a
strategy to deal with those ambiguities. So, ReDisX perhaps
offers a plausible solution to designate the discrepancies of
GZMB to be deployed as a prognostic marker and a target for
therapeutic development.

ReDisX is the robust, scalable,
reproducible framework

ReDisX characterizes heterogeneous subpopulations
within a disease and homogenous subpopulations across
different diseases. This study used RA and CAD as examples
of stretching in connection with one of our prior studies
(13). We have established our ReDisX framework as a
proof of concept. It is scalable and can be deployed in
other disease cases, provided the input data are in the same
format (as described in Section “Materials and methods”).
In this study, the considered dataset for CAD represented
STEMI which is a large vessel disease unlike typical cases
of RA. However, deploying our ReDisX framework and
demonstrating its functions requires at least two datasets
belonging to the different diseases labeled by the conventional
diagnosis with a certain extent of the pathophysiological
connection between them. And our primary investigative
motivation was to distinguish the genomic signature from
the personalized genomic data aiming to differentiate one
patient from another and/or a patient subgroup from another
subgroup despite being in the same and/or a different group
as conventionally labeled. It also indicated patient-specific
similarity in genomic signatures across two disease groups

Frontiers in Medicine 21 frontiersin.org

https://doi.org/10.3389/fmed.2022.931860
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-931860 August 18, 2022 Time: 11:12 # 22

Yip et al. 10.3389/fmed.2022.931860

as typically labeled. It strengthens further a direction of
investigation to identify certain shared features such as
common drug targets or any lead drug candidate to be
repurposed for a specific group of individuals. Surprisingly,
both diseases seem far apart from the vascular anatomy
angle, but several studies indicated their strong relationship
regarding pathophysiological influences. For instance, in 2021,
in a review published in The Lancet Rheumatology (103),
Hansildaar R et al. indicated the occurrence of rheumatoid
arthritis (RA) as a strong independent cardiovascular risk
factor. Patients with RA were reported to have a 2X higher
risk of developing atherosclerotic cardiovascular disease
than the general population. Our concerned CAD dataset
certainly belongs to this category of cardiovascular diseases.
The authors also added that despite sharing completely
different pathogenesis, the underlying pathophysiological
mechanisms in systemic inflammation might overlap to
a certain extent. Following the recognition that systemic
inflammation has a critical causative role in cardiovascular
disease, anti-inflammatory therapy in both conditions and
urate-lowering therapies in gout are expected to lower the
cardiovascular burden of patients. Several other studies
also reported the role of inflammation and its mediators in
atherosclerosis plaque development to promote CAD and
suspected some of those inflammatory pathways might share
a connection to contribute to the systemic inflammatory
status in RA (104–106). So, the basis of different vascular
architectural manifestations for RA and CAD may not affect
the rationale for our study or the performance of ReDisX.
The selection of datasets was independent of those minute
anatomical considerations as it only aims to classify the
conventionally labeled patient populations (RA and CAD,
for example, used in this study) by ReDisX-discovered
genomic signature. Methodologically, the infrastructure
of ReDisX considers the ward’s distance in Hierarchical
clustering and graph connectivity of the CMF model,
wherein the ward’s distance is an established formula, and
the hyperparameters in the CMF model were chosen as stated
in the original paper (23, 24). Hence, the reproducibility
of the ReDisX could be ensured as long as the pre-labeling
seeds are consistent.

The current molecular pathological studies practice analyzes
the tissue-of-origin for any diseases (107). For example, the
diagnosis of RA is typically made from synovial tissues (108),
wherein cancers are diagnosed from tissue biopsies in the
case of solid tumors (109). However, liquid biopsies are
widely practiced (110). Eventually, the sampling procedures
within the clinical setup gradually incline toward non-invasive
or minimally invasive ways while capturing the maximum
information of the concerned underlying pathological
conditions (110). So, keeping that vision, we put our effort
into establishing our model with the blood sample, which is
comparatively less invasive (26, 27, 40) and more accessible

to be retrieved from patients, and holds the potential to be a
more expansive repertoire of the clinicopathological as well as
molecular genetic conditions or biomarkers. However, based
on our study objectives, we need to choose a suitable tissue to
analyze all diseases. Some potential issues such as whole blood
(111, 112) and the gut microbiome (113), are suitable for our
study. The ReDisX framework could be extended and improved
in the future using multimodal data besides mRNA expressions
such as methylation and miRNA interference.

Conclusion

ReDisX demonstrates a scalable data-driven framework
to characterize the genomic signature uniquely and
redefines the disease diagnosis strategy. It indicates a
high-resolution precision and personalized diagnosis. It
logically distinguishes the subpopulation heterogeneity
within a disease and homogeneity across different diseases.
It supports the personalized screening of DTGs. Our study
with RA and CAD explains its efficiency in characterizing a
subpopulation differentiation marker, GZMB augmenting it
as a potential personalized druggable target. Discovering the
RA-characteristics-dominant CAD subpopulation supports one
of our primary intentions to redefine the disease diagnosis with
a personalized molecular signature. It offers a new insight to
understand the disease and revise our consecutive treatment
plans. In addition, this study also suggests GZMB as a strategic
focus for drug repurposing.

ReDisX framework is scalable and methodologically flexible
to be further improved. We desire to deploy it to other
complex disease cases and enhance the core algorithms by
incorporating multimodal data. However, the clinical prospects
of disease redefinition by ReDisX are yet to be validated in
terms of the quality of precision diagnosis and efficacy of the
recommended repurposed drug candidates against the indicated
clinical conditions. Last, it elucidated a novel perspective to
rethink diagnosing diseases and the emergence of personalized
therapeutic development.

Strengths of our study

1. ReDisX framework is scalable and can be adapted to
different biomedical applications.

2. It is a first-in-class CMF-based ML algorithm that precisely
discovers signature gene expression features from the given
patient data, and also, the small sample size does not
affect the accuracy.

3. It discovers distinct heterogeneous subpopulations
within a disease and homogenous subpopulations across
different diseases.
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4. It offers a clue to discovering new therapeutic targets and
drug repurposing.

5. It can adopt a small sample size and return accurate
predictions, consistent with many experimental studies.

Limitation of our study

1. Hyperparameters used in ReDisX are data sensitive.
It demands fine-tuning for different input data from
different diseases.

2. Removal of cross-platform batch effect is susceptible to
affect the accuracy of the analyses. Thus, it may require
very careful preprocessing of input data.

3. The study’s current proposition, including mRNA
gene expression data, could partially explain the body’s
underlying mechanism.

4. The proposed framework of ReDisX is based on a
single omics analysis algorithm, and its impact in the
case of multi-omics input across multi-tissue data is
not optimized yet.

5. The generalization of our proposed method is still
subjected to be validated before any clinical applications.
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