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Abstract: Mild traumatic brain injury (TBI) often results in pathophysiological damage that can
manifest as both acute and chronic neurological deficits. In an attempt to repair and reconnect disrupted
circuits to compensate for loss of afferent and efferent connections, maladaptive circuitry is created
and contributes to neurological deficits, including post-concussive symptoms. The TBI-induced
pathology physically and metabolically changes the structure and function of neurons associated
with behaviorally relevant circuit function. Complex neurological processing is governed, in part,
by circuitry mediated by primary and modulatory neurotransmitter systems, where signaling is
disrupted acutely and chronically after injury, and therefore serves as a primary target for treatment.
Monitoring of neurotransmitter signaling in experimental models with technology empowered with
improved temporal and spatial resolution is capable of recording in vivo extracellular neurotransmitter
signaling in behaviorally relevant circuits. Here, we review preclinical evidence in TBI literature
that implicates the role of neurotransmitter changes mediating circuit function that contributes
to neurological deficits in the post-acute and chronic phases and methods developed for in vivo
neurochemical monitoring. Coupling TBI models demonstrating chronic behavioral deficits with
in vivo technologies capable of real-time monitoring of neurotransmitters provides an innovative
approach to directly quantify and characterize neurotransmitter signaling as a universal consequence
of TBI and the direct influence of pharmacological approaches on both behavior and signaling.

Keywords: traumatic brain injury; neurotransmitters; circuits; behavior; morbidity; electrochemistry;
glutamate; dopamine; post-concussive symptoms; microbiota

1. Introduction: Acute Chronic Deficits of Mild TBI

Affecting over 2.5 million people across the United States, traumatic brain injury (TBI) is the
leading cause of non-fatal injuries [1,2]. Over 75% of TBI patients that report to emergency departments
are diagnosed with mild TBI. Mild TBI is defined as an acute brain injury as a result of mechanical
energy to the head from external physical forces that cause a brief loss of consciousness and or alteration
of mental state (Glasgow coma scale score 13–15 at 30 min after the impact) without loss of tissue [3].

Damage after TBI can be classified as focal or diffuse injury. Focal brain injuries often produce
overt injuries such as skull fracture, intracerebral and subdural hematomas, subarachnoid hemorrhage
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with significant elevations in intracranial pressure [4]. Diffuse TBI is the result of rapid rotational,
and/or liner acceleration and deceleration forces cause widespread damage to the neuronal and
vascular structures with no overt pathology identified by imaging studies [5]. Studies in humans
and animals have shown neuronal pathology, microvascular disruption, white matter injury and
axonal disconnection [6,7]. The biomechanical forces primarily cause metabolic dysregulation with
imbalances in the ionic flux and disruption of the blood-brain barrier (BBB) that further exacerbate the
damage [8–10]. The white matter injury resulting from axonal injury has the potential to disconnect
neuron-specific relays between brain regions with implications for animal and patient behavioral
morbidities. The diffuse axonal injury (DAI) is the earliest pathognomonic feature of mild TBI and is
likely the key determinant of the long-term outcome [11]. The pathophysiological cascade involves
secondary injuries that gradually evolves over seconds to months after primary injury. The secondary
injuries involve metabolic and cellular derangements with neurometabolic cascades of unregulated
neurotransmitter release (initiated by mechanical brain tissue deformation), increased oxidative stress,
free radical production, inflammation and cell swelling [12–14] that exacerbate the primary injury and
precipitates behavioral/mental deficits. These acute pathological perturbations are associated with
early clinical characteristics of TBI with implications for long-lasting impairments [15]. Importantly,
the heterogeneity and diversity in the pathogenesis of diffuse TBI by disrupting brain circuits emphasize
the importance of considering the course and morbidity of injury.

Mild TBI cases (20–50%) develop persistent morbidities within one-month post-injury [16].
Patients often suffer transient symptoms that can persist months after initial injury with impaired
brain function in cognitive, affective, somatic, and motor domains [17,18]. Neuropsychological tests in
patients and neuropathological assessments in experimental TBI indicate continued posttraumatic
symptoms that can persist for months to years after TBI [19–22] or late-onset symptoms of variable in
duration with subjective symptomologies [23]. Post-concussive symptoms (PCSs) involve common
constellation of symptoms reported by patients after mild-to-moderate TBI. PCSs have been previously
diagnosed based on the International Classification of Diseases (ICD)-10, or based Diagnostic and
Statistical Manual of Mental Disorders (DSM)-IV criteria as symptoms and problems in three or more
multiple domains involving (1) headache, dizziness, general malaise and excessive fatigue, (2) mood
and emotional changes such as irritability, depression and/or anxiety, (3) lack of concentration and
memory deficits; and (4) fear of permanent brain damage [24]. It is estimated that 5.3 million survivors
currently live with PCSs, which contribute to the disability-adjusted life years, impairment of activities
in daily living, impede or can complicate return to the work [25,26]. The underlying mechanisms of
persisting and emerging PCSs likely arise as a consequence of impaired activation and function of
brain circuitry that occurs in response to adaptive or maladaptive compensation. From this perspective,
the theme of circuit disruption has emerged as a potential explanation for many of the observed PCSs.
The development of PCSs is also influenced by several factors including, but not limited to, personality,
mental health, physical health, social status, gender, nutrition, alcohol, and substance use, that also
may affect the rate of recovery after injury [27–29]. Together, these pre-injury conditions influence a
patient’s recovery and prognosis.

Although diffuse white matter disconnections are a characteristic, multicentric outcome of the
mechanical impact of TBI, the neurological impairment may reflect dysfunction rather than just
neuronal damage. The initial injury and subsequent injury cascade influence the functional state
of surviving neurons, astrocytes and microglia and compensatory alterations involving multiple
neurotransmitter systems that lead to synaptic deficits that lead to deficits in circuit function. Insights
into the neuronal circuits reveal anatomically unique changes in several neurotransmitter systems that
modify neuronal dynamics, synaptic function, receptors and transporters [15,30,31]. Our understanding
of the development of morbidity and targets for recovery is likely to be informed by studying a variety
of neurotransmitter signaling through the application of electrochemical techniques.
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2. Current Animal Models of TBI

Research into the pathology and pathophysiology of TBI has been rapidly advanced by the
development of animal models. So far, the animal models replicate injury types, providing a better
understanding of molecular and cellular mechanisms, neurological deficits along with possible
rehabilitative/neuroprotective strategies. Rodent and non-human primate TBI models simplify the
complex events observed in humans while consistently and robustly reproducing the primary and
secondary injuries. In addition, TBI models have provided the opportunity to evaluate for translatable
biomarkers that can track TBI progression in humans.

For direct clinical relevance to diffuse TBI, several diffuse models of injury including fluid
percussion, weight-drop, and blast injury models have been developed and modified to provide a
preclinical platform recapitulating features of human TBI condition. The fluid percussion injury (FPI)
imparts a fluid pressure pulse to the intact dura through a craniotomy which can be located laterally or
centrally over the brain (for a diffuse or mixed pathology). The pressure pulse is a variable that can
be controlled to alter injury severity. Midline (or central) FPI is predominantly used to produce DAI,
petechial hemorrhage, and white matter damage in both hemispheres [32]. In relevance to human TBI,
the midline FPI model in rodents has been invaluable in studying the longitudinal pathophysiology of
diffuse brain injury. The plethora of information derived from the FPI model has shed light on the
pathology involving neurophysiology, neuropathology, neuroimaging and behavioral manifestations
that are relevant to clinical consequences [33–35]. The weight-drop injury model induces impact
acceleration with a falling guided weight on the skull, with or without craniotomy. The severity of
the injury can be adjusted by changing the mass of the weight and height drop. Besides widespread
DAI, the model induces bilateral neuronal damage with the appearance of petechial hemorrhage that
closely mimics human TBI [36]. The blast TBI model is simulated using explosives, compressed air,
and gas in either blast or shock tubes to mimic the blast injuries commonly observed among military
service members. The model employs a compression-driven shock tube to induce blast wave creating
a series of effects involving diffuse cerebral edema, hyperemia, and vasospasm [37,38].

Behavioral alterations have been observed in most of the TBI animal models and characterization
of behavioral assays is essential for understanding neural systems influencing the behavioral phenotype.
As a valuable read-out to probe detailed mechanisms of functions and dysfunctions, various behavioral
paradigms help characterize the behavioral repertoire similar to the acute and chronic sequelae that TBI
survivors suffer. The assays provide for the sensitive, objective, and quantifiable behavioral measures
with the use of video tracking, automated recordings, and detection technologies to record and analyze
the behaviors. The assays include neurobehavioral assessment [39], exploratory behavior [40,41],
learning and memory [42], and sensory sensitivity [43,44]. These behavioral models have a high degree
of face validity, wherein the observable phenotype in the animal reproduces the human TBI condition.

3. Circuit Dysfunction after Diffuse TBI: Adaptive and Maladaptive Responses

Animal models have extended clinical findings to show impaired neuroplasticity after diffuse
TBI [45]. Neural plasticity is highly adaptive and works to maintain the homeostatic processes by
recruiting neurotrophic factors which compensate for the injury-induced adaptations [46,47]. Diffuse
TBI initiates a widespread regenerative counter-response that includes reconnection of surviving
neurons [48] and collateral sprouting of remaining axons near the denervated regions to create new
contacts [47]. Changes in glia and vasculature contribute to the generation of new connections [49,50],
where maladaptive reorganization may compound the degree of functional compromise while the
injured brain attempts to restore the lost function [51,52]. Yet, it is not well understood the extent to
which plasticity is maladaptive and instigates faulty reverberations within circuitry that can have
mixed functional outcomes [47]. Indeed, surviving neurons are under metabolic stress and are
overwhelmed with increased pathological burden. The ongoing reorganizational processes likely
contribute to the observations of late-onset behavioral deficits. Thus, it is reasonable to predict
that behavioral morbidities underlying PCSs arise as a consequence of multi-level adjustments that
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occur over time post-injury as a result of cellular modifications, alterations in neurotransmission and
circuit reorganization.

4. TBI-Induced Changes in Neurotransmitter Signaling: Acute and Chronic Responses to TBI

Dysregulation of the neurotransmitter systems has been associated with several neurodegenerative
diseases as well as neuropsychiatric disorders. Alterations in neurotransmitters after TBI leads to
compensatory alterations in neurotransmitter receptors and related signaling pathways, important for
circuit-level information transmission. The function of brain circuits is governed, in part, by several
neurotransmitter systems that regulate neuronal information flow through exocytosis, uptake and
recycling events.

4.1. Primary Neurotransmitters

4.1.1. Glutamate

Glutamate is the primary excitatory neurotransmitter and more commonly implicated in TBI
neuronal susceptibility to excitotoxic injury [53]. Released into the extracellular space through
deformation-induced depolarization, stimulation, or exocytosis of synaptic vesicles, glutamate controls
circuit function spanning a wide range of spatio-temporal scales. The clearance of glutamate from the
extracellular space is regulated by high-affinity, sodium-dependent excitatory-amino-acid transporters
(EAATs) on astrocytes, primarily EAAT2 (GLT-1 in rodents) and EAAT1 (GLAST in rodents) [54,55].
Further, damage to vasculature can cause platelet activation that releases glutamate that can permeate
the BBB increasing extracellular glutamate [56,57]. Increased extracellular levels of glutamate binds
metabolic glutamate receptors that can mediate neuronal damage through secondary injury processes
and exacerbating existing neuronal pathology [58,59].

Several studies demonstrate significant glutamate dysregulation as an instigator of acute
pathophysiology in days following TBI. Clinical microdialysis studies demonstrate increased
extracellular glutamate levels as early as 24 h post-injury and up to 9 days post-injury [60–62].
Focal and diffuse TBI rodent models have demonstrated increased extracellular glutamate levels as
early as 1 h post-injury [63,64]. TBI-induced increases in extracellular glutamate alter the localization of
glutamate receptors and transporters, further impairing extracellular regulation of glutamate, reducing
glutamate buffering capacity and reuptake patterns that modulate synaptic signaling [65]. Prolonged
activation of NMDA (N-methyl-D-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid) receptors can induce neurodegeneration linked to the loss of membrane potential
and enhanced cytosolic calcium levels after brain injury [66]. While excess glutamate can exacerbate
apoptosis or necrosis in damaged neurons, the ability of astrocytes to rapidly and efficiently clear
extracellular glutamate levels might be neuroprotective [54] and the extent of neuronal loss from
excitotoxicity remains controversial.

4.1.2. GABA (γ-Aminobutyric Acid)

CABA (γ-aminobutyric acid), the main inhibitory CNS (central nervous system) neurotransmitter,
is synthesized in inhibitory neurons from glutamate. While also being vulnerable to structural
damage, it is also subject to homeostatic derangement following TBI. GABAergic neurons drive
inhibitory elements of brain circuitry that shape circuit function through local and projection neurons.
The released GABA acts on ionotropic GABAA and GABAB receptors located on the axonal terminals
GABAergic transmission is terminated by clearance from the extracellular space by GABA transporters
(GATs) on surrounding neurons and glia. GABA receptors regulate information processing with high
physiological relevance through the maintenance of phasic and tonic inhibition, and modulation of
neuronal excitability [67]. Experimental data have indicated that TBI can cause reduced expression
of GAT at 24 h post-injury [68]. Magnetic resonance spectroscopy (MRI) has shown lower GABA
levels in the prefrontal cortex associated with memory deficits in professional boxers repetitive mild
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TBI [69]. Utilizing this technique, recent work has indicated region and time-specific changes in
the GABA showing reduced levels in the cerebral cortex at 72 h and two-week post-mild TBI [70].
In the same region, increased GABAB receptor-mediated inhibition has been associated with loss of
synaptic plasticity after sports concussion [71,72]. Acutely following TBI, changes in the GABAA

expression alters phasic inhibition important for timing-based signaling leading to overexcitation of
neurons and membrane depolarization. However, changes in GABA neurotransmission acutely and
chronically offset the balance of excitation and inhibition that underlies several neurological diseases.
Recently, electrochemical methods to record near real-time neurotransmission of GABA have been
developed and open a wealth of opportunity to understand the role of GABA neurotransmission in the
contribution to PCSs [73,74].

Glutamate and GABA are responsible for maintaining the excitatory–inhibitory balance required
for circuit function. Post-traumatic epilepsy (PTE), a major long-term consequence of TBI, occurs as a
result of a shift in the excitation-inhibition balance of the brain circuitry [53]. Anti-epileptic medications
seek to restore the excitatory–inhibitory balance for the successful management of seizures. While PTE
is most commonly associated with an imbalance in glutamate and GABA, it is important to consider
that the excitatory–inhibitory balance is either directly and/or indirectly implicated with all symptoms
associated with TBI as evidenced by the numerous types and distribution of transporters and receptors
throughout the brain. Ongoing research is necessary to understand time- and region-dependent
disruptions of this balance for improved treatment and management of side effects.

4.2. Modulatory Neurotransmitters

4.2.1. Dopamine

Accumulating evidence suggests that the catecholaminergic system is highly vulnerable to
the effects of TBI. The monoamine neurotransmitter, dopamine (DA), modulates brain function
via widespread DA efferent projections. The majority of DA neuron cell bodies are located in the
midbrain (substantia nigra, ventral tegmental area), olfactory bulb, and hypothalamus. Midbrain DA
neurons have a long and diffuse projection pattern that exposes DA neurons to shearing forces of
injury, oxidative stress, impaired plasticity, and neuroinflammation (reviewed in [75]). The dopamine
transporter (DAT) regulates the duration of DA in the extracellular space by clearing released DA
through presynaptic reuptake [76]. DA plays an important role in cognitive, motor, emotional,
motivational, and neuroendocrine processing from disruptions in the striatum, limbic system and
frontal cortex [77,78].

Clinical studies implicate a disruption in DA neurotransmission over time post-injury. A computed
tomography imaging study in humans has shown reduced striatal DA transporters (DAT) in the
striatum after 142 days post-TBI [79]. This could lead to sustained increases of DA levels in the
synaptic cleft that can be oxidized to form a quinone moiety that is capable of damaging cellular
macromolecules through oxidative stress [80]. Diffusion MRI studies in moderate-severe brain-injured
patients displayed reduced substantia nigra volume, and striatal DAT levels associated with cognitive
deficits in information processing speed and executive functions [81], with the potential to influence
symptoms associated with attention-deficit/hyperactivity disorder (ADHD), Parkinson’s disease (PD)
and Huntington’s disease (HD).

Experimental models likewise suggest substantia nigra damage and remote cortical deficits due
to damage of long-range axon projections [82]. The nigrostriatal dopaminergic axons have little to
no myelin and are therefore more vulnerable to the shearing forces of TBI [83]. TBI augments DA
levels and the rate of DA turnover (i.e., the ratio of DA metabolites to DA) at 1 h post-injury, indicating
acute changes DA regulation [84]. Tyrosine hydroxylase (TH) is the rate-limiting enzymatic step for
DA synthesis. TH and tissue levels of DA were increased in the prefrontal cortex out to 14 days
following controlled cortical impact (focal injury) [85]. Moreover, fast-scan cyclic voltammetry (FSCV)
measurements of DA neurotransmission have revealed reduced DA release and reuptake in dorsal
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striatum after 2 weeks of controlled cortical impact injury [86]. Similar to clinical reports, reduced
striatal DAT expression has been reported preclinically after focal TBI [87]. The DA projections are
highly branched and contain several neurotransmitter release sites. Midline FPI induced extensive DA
axonal pathology in medial forebrain (at 1 day post-injury) and enhanced pro-inflammatory cytokines
in the striatum (at 6 h post-injury) that is implicated in reducing DA release [88]. Whole tissue HPLC
analysis indicated augmented DA turnover with altered DA utilization in rat brain substantia nigra
pars compacta after 28 days post-TBI [82].

Although the cognitive problems associated with TBI is multifactorial, a wide range of reports
implicate that the disruption to the dopaminergic (DAergic) neurotransmission as an important
factor [89–91]. A broad range of cognitive domains commonly affected after TBI including memory,
learning, impaired attention including defects in sustained attention, information processing speed,
and executive functions such as working memory, problem solving, planning, and impulse control.
Importantly, treatment approaches for cognitive enhancement crucially depend on the DAergic level
since the synaptic levels of DA are non-linearly associated with cognitive function [92].

4.2.2. Norepinephrine

Norepinephrine (NE), also known as noradrenaline, a catecholamine derived from I-tyrosine, has
been implicated in the acute and chronic effects of brain injury [93,94]. Most of the experimental TBI
studies report inconsistent alterations in levels of NE [85,95]. Time and region-dependent changes
in NE turnover were observed after focal TBI with the contralateral reduction in the cerebral cortex
and cerebellum after 6 h followed by a bilateral reduction in the hypothalamus, cerebellum, locus
coeruleus and medulla at 24 h post-injury [96,97]. However, findings with whole tissue HPLC analysis
show an acute increase in NE turnover (30 min post-focal lesion) in the somatosensory cortex [98]
and chronic reduction persisted until 8 weeks post-injury [99]. Specifically, NE has been shown to
influence processing speed via its alpha-2A receptor that functions to enhance excitability on target
neurons [100,101]. At the higher-order connectivity level, NE modulates intrinsic networks, specifically
the cognitive (salience) network, dysfunction of which produces impairments of cognitive control
following TBI [102]. Treatment of NE dysregulation is considered with patients diagnosed with ADHD,
PTSD, and depression.

4.2.3. Acetylcholine

Acetylcholine (ACh) is a fast-acting neurotransmitter of the cholinergic system that alters neuronal
excitability, where changes in signaling have consequences linked to attention, drug abuse and food
intake [103]. Clinical studies on the neuropathological, electrophysiological and pharmacological
dynamics of ACh have provided evidence for cholinergic dysfunction after TBI [104]. Although
clinical reports are scant, initial studies in TBI patients have demonstrated altered cerebrospinal fluid
cholinergic function with reduced cholinesterase activity [105–107]. Increased levels of basal ACh and
reduced activity of choline acetyl transferase (ChAT), a constitutive component of cholinergic nerve
terminals have also been identified in cerebrospinal fluid of brain-injured rats [108,109]. Postmortem
brain samples from patients who died as a result of head injury showed reduced ChAT activity [110],
suggesting a decrease in the activity of cholinergic input. Clinical studies indicate that cholinergic drugs
have been successfully prescribed for TBI patients with post-traumatic cognitive deficits [111,112].
Despite limited clinical data available in this regard, these findings suggest deficiencies in ACh
innervation and synaptic activity after TBI. Loss of cholinergic neurotransmission is also a correlate
of AD severity, and the overlapping pathology may be involved with TBI being a risk factor for
AD-related disease progression [113,114].

Animal studies have shown acute effects of FPI on increased hippocampal ACh levels [115].
Phosphoryl [2 H9] choline infusion measurements revealed that TBI alters ACh turnover in the rat
midbrain at 12 min and 4 h after moderate FPI, indicating enhanced cholinergic transmission [116].
Cognitive impairments are the most common long-term deficits after TBI persisting for several years after
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the injury. Regulation of attention, memory, and executive functions constitute significant components
of the cortical cholinergic system that are disrupted after TBI [117,118]. Experimental reports have
linked impaired cognition after TBI to chronic changes in cholinergic neurotransmission suggesting
reduced ChAT in limbic brain regions [119]. It has been previously demonstrated that controlled
cortical impact-induced focal brain injury causes significant reduction in hippocampal high-affinity
[3H] choline uptake thus suggesting that the cholinergic dysfunction is mainly associated with lower
ability of cholinergic neurons to clear extracellular choline [120]. In vivo microdialysis technique
has shown muscarinic antagonist evoked lower concentrations of ACh release in hippocampus
and neocortex associated with spatial memory deficits among rats after controlled cortical impact
brain injury [121,122]. At chronic time-point, post-controlled cortical impact, decreased ACh evoked
release was associated with persistent cognitive deficits using microdialysis freely-moving behaving
animals [123]. Other findings support that TBI-induced loss of ChAT was associated with cholinergic
dysregulation [124]. There is also evidence that the compensatory response to TBI involves alterations
in vesicular transporter for ACh (responsible for the concentration of ACh within synaptic vesicles)
and mediator of cholinergic signaling showing increased expression of hippocampal vesicular ACh
transporter (VAChT) at 4 weeks post-injury [125] and reduced muscarinic autoreceptor subtype 2 (M2)
immunoreactivity [126].

4.2.4. Serotonin (5-Hydroxytryptamine, 5-HT)

Serotonin (5-hydroxytryptamine, 5-HT) is involved in the regulation of mood, where dysregulation
of 5-HT neurotransmission plays a crucial role in neuropsychiatric disorders in the general
population and TBI patients [127]. Moderate FPI in rats have shown to enhance levels of 5-HT and
5-hydroxyindoleacetic acid (5-HIAA) during the first 10 min after TBI [128]. However, the metabolite
5-HIAA extracellular levels were decreased initially during the first 10 min after diffuse TBI. Recent
findings reveal that TBI reduces reuptake of 5-HT via modulation of the serotonin transporter (SERT)
to prevent replenish of neuronal stores of 5-HT and consequently serotonergic transmission [129].
It has been shown that TBI-induced neuroinflammation decreases serotonin/tryptophan ratio at 21
days post-injury [130]. Overall, preclinical evidence suggests that 5-HT neurotransmission is decreased
over time, contributing to the manifestation or worsening of neuropsychological symptoms.

The chronic consequences of TBI on psychiatric health have been identified not only after severe
injury but also in several cases classified as mild to moderate. Psychiatric problems can be a major
clinical problem as it potentially interferes with rehabilitation and overall recovery. The 5-HT system has
wide distribution throughout the brain regulating various behavioral processes [131]. Over one-third
of TBI patients develop major depression with increased risk linked to injury severity [132]. Selective
serotonin reuptake inhibitors (SSRIs) are currently the first-line treatment for PTSD, depression, anxiety,
and other mood disorders following TBI [133]. SSRIs are also used in the management of AD, PD, HD,
and epilepsy. However, the relationship between this treatment and TBI is still under consideration.

4.3. Conclusion

There is growing evidence that changes in neurotransmission associated with TBI can instigate,
accelerate, or exacerbate symptoms associated with chronic traumatic encephalopathy, epilepsy, PD,
AD (and other forms of dementia), amyotrophic lateral sclerosis, HD, PTSD, ADHD, anxiety disorders,
and depression disorders [134,135]. Modulation of primary and modulatory neurotransmission is
primarily targeted for therapy. Yet the etiology of circuit dysregulation is still poorly understood.
Progress in diagnosis and treatment of TBI is accounted for by growing acknowledgment that TBI is
a neurological disease process rather than a single event that is a risk factor for several neurological
disorders and diseases.
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5. Biosensors for In Vivo Neurotransmitter Monitoring

Studies evaluating the extracellular dynamics of neurotransmitters can provide critical information
regarding neuronal communication that is disrupted after TBI. Insight may be gained into aspects of
functional neuronal communication by evaluating region-dependent pre-synaptic release, extracellular
clearance, basal concentrations in anesthetized animals and behaviorally relevant signaling in
freely-moving animals. Several techniques have been developed and applied for in vivo measurement
of neurotransmission in various brain disorders. The functional role for neurotransmitter release
events in the regulation of homeostasis, as well as influence on behaviors, have been previously
reported. The use of cell-based fluorescent sensors [136], microdialysis [137] and fast-scan cyclic
voltammetry [138] have been employed to probe changes in neurotransmitter signaling in naïve and
models of neurological deficits. However, the development of devices with improved spatial and
temporal resolution has helped capture endogenous, micromolar alterations to neurotransmitter release
and reuptake.

Electrochemical detection with biosensors allows for real-time observation and quantification
of neurotransmitter events. Biosensors often use a biological element (enzyme) to bind a specific
analyte of interest and through the application of current, can detect and quantify the extracellular
levels and kinetics of release and clearance at 2–100 Hz. The size of the sensors has also been
decreased and in some instances, consists of several microsensors on a single electrode. Application
of various exclusion layers to the microsensors during the fabrication process allows for increased
selectivity, to avoid recording endogenous electroactive molecules that can prevent the detection
of the analyte of interest. In vitro calibration allows for calculations where the current generated
with applied potential is proportional to the analyte concentration. Electrochemical biosensor design
continues to evolve with the recent implementation of thin needle-type probes that improve spatial
resolution within subregions and small nuclei. The enzyme-modified electrodes and fast-scanning
cyclic voltammetry behave been notably employed for spatial monitoring of rapid neurotransmitter
dynamics. Fast-scanning cyclic voltammetry applies a triangular voltage wave to a carbon fiber electrode
at high scan rates (300 V s−1). The microelectrode measures the current as cyclic voltammogram as
a characteristic oxidation and reduction peaks by subtracting the large background current. Other
biosensors use enzyme-based microelectrodes with amperometric detection that provides the advantage
of better resolution and minimal invasion/tissue damage [139]. The application of constant potential
oxidizes or reduces the analyte of interest depending on intrinsic electrochemical properties to
detect current that is linear to the electroactive activity in the biological tissue surrounding the
microelectrode [140]. While most traditional neurotransmitters follow basic Michaelis-Menten kinetic
predictions, non-classical functions can also occur, including spontaneous events, quasi-paracrine
action, extrasynaptic overflow, transporter, receptor and channel-mediated release [141–143]. These
non-classical and subtle changes associated with chemical transmission require novel approaches to
data analysis and systematic neuropharmacological challenges to improve associations with behavioral
relevance. Albeit, the evolution in technology allows for minimally invasive approaches to directly
monitor and manipulate neurochemical transmission that measures fast fluctuating transients (quantity,
timing, and dynamics) in spatially discrete relays of behaviorally relevant circuitry.

6. Brain-Injured Circuitry and Behavioral Morbidities: The Whisker Barrel Circuit

Diffuse TBI pathology is widespread, resulting in molecular, structural and functional alterations
throughout the neuroanatomy that results in disrupted circuit function. At the basis of the pathology
are the primary and secondary insults to neural circuits that determine the observed behavioral output.
Thus, evaluation of these their anatomical connections is essential to understand how TBI-induced
pathology alters functionality. One example of this is highlighted in the somatosensory thalamocortical
circuit of the whisker barrel circuit (WBC) in rats. The somatosensory WBC in rodents processes
sensory information from the mystacial whiskers for assessing spatial and textural information through
thalamocortical and corticothalamic circuitry [144]. Whisker somatosensation represents the primary
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sensory modality of rodents and is represented by a large portion of the brain for processing, similar to
that of touch, sight, and hearing in humans. Each whisker is primed for sensory integration, consisting
of large follicles with multiple superficial and deep vibrissal nerves associated with somatotopically
distinct trigeminal neuron projections [145]. Trigeminal neurons project to the primary sensory nucleus
(PrV), to the barreloids of ventral posterior medial (VPM) nucleus of the thalamus, to the primary
somatosensory cortex forming discrete clusters in layer 4 (S1BF), which form the basis of the ‘barrel’
fields [146–150]. The somatotopographical localization of each whisker makes the WBC valuable to
study circuit reorganization as evidenced by its history of use to study neuroplasticity in response to
peripheral nerve injury, developmental patterning, neural coding, and neural computation [151–153].
As rodents largely rely on whisker function for environmental exploration due to poor eyesight, this
circuit provides an ideal model to assess TBI-induced longitudinal circuit disruption followed by
compensatory events that manifest in behavioral morbidity.

As observed by Thomas et al., TBI-induced pathology in the VPM and S1BF results in maladaptive
circuit regeneration resulting in the development of late-onset, persistent sensory sensitivity to whisker
stimulation during the whisker nuisance task (WNT) [44,154,155]. The WNT evaluates the behavioral
response of the rat to tactile stimulation through three consecutive 5 min bouts of manual whisker
stimulation. Naïve and uninjured sham rats are ambivalent to the stimulation, whereas TBI results in
increased avoidance, evasiveness, and aggressiveness that is significant by 4 weeks and maintained
to 8 weeks post-injury [154]. Hypersensitivity to whisker stimulation is exacerbated by elevated
intracranial pressure (ICP) following FPI concurrent with neuronal somatic membrane damage and
poration [156,157]. The WNT has been a reproducible approach to measuring circuit abnormalities
across laboratories [154], injury models [158], and rodent species [159]. TBI-induced sensory
hypersensitivity observed in the WNT can be likened to visual and auditory hypersensitivity commonly
experienced by brain injury survivors [160,161], serving as an excellent in vivo model to longitudinally
assess how maladaptive circuit reorganization after TBI leads to late-onset behavior morbidity.

The use of whisker barrel circuit serves as an ideal model to study TBI-induced neurotransmission
in a behaviorally relevant circuit, showing hypersensitive glutamate signaling to be associated with
the severity of response to the WNT [44]. Electrochemistry using glutamate selective MEAs were
used to record real-time potassium (KCl)-evoked glutamate release within relays of the whisker barrel
circuit (a glutamatergic circuit) after moderate severity FPI in anesthetized animals [162,163]. Local
application isotonic KCl solution depolarized synaptic terminals near the microelectrode, evoking
the release of glutamate. Evoked glutamate concentrations in the S1BF and VPM thalamus was
significantly increased by 28 days post-injury, with robust responses in the dorsal and medial VPM.
Glutamate clearance kinetics and glutamate transporter gene expression were similar between sham
and 28 day FPI rats, indicating that increased KCl-evoked glutamate release was not a result of slower
glutamate clearance from the extracellular space. Furthermore, KCl-evoked release in injured animals
was more sensitive toω-conotoxin, a voltage-gated calcium channel inhibitor, indicating that increases
in KCl-evoked glutamate release were presynaptic in origin. VPM (and S1BF) responses correlate
with the severity of sensory hypersensitivity evaluated by the WNT, indicating that changes in circuit
function are impacting behavioral responses [44]. This study highlights how in vivo electrochemistry
can be used to isolate aspects of neurotransmission relevant to behavioral morbidity, but it is also
limited by evaluation in an anesthetized animal. While a presynaptic mechanism is implied, replicating
these studies in awake behaving rats can provide behaviorally induced glutamate signaling that will
provide additional information regarding how the signaling changes (increased bouts of released
glutamate, increase concentrations, oscillatory signaling, etc).

Previously, studies on the contribution of circuit dysfunction to post-traumatic morbidity, in the
form of neurotransmission, have relied on measurements obtained by microdialysis techniques.
Microdialysis involves implantation of a probe with a 1–2 mm (for rats and mice) semi-permeable
membrane for diffusion of extracellular neurotransmitters in artificial cerebral spinal fluid that is
collected and assessed using HPLC. The probe and cannula implantation cause tissue damage
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300–500 µm away for the probe [164]. Neurotransmitters are typically tightly regulated producing
short fluxes of extracellular concentrations. Each sample is collected every 1–10 min, which does
not accommodate the detection of the rapid release and uptake of many neurotransmitters [165,166].
The larger diameter (150 to 400 um) of the dialysis probe and constant infusion with artificial CSF can
result in neurotransmitter dilution in the sampled region [167]. Microdialysis provides information
on multiple neurotransmitters and their metabolites, peptides, and hormones in freely-moving
animals, having many advantages along with these disadvantages highlighted here (reviewed
in [168]). Recent advances using the genetically encoded neural activity indicators and two-photon
imaging methods provide for non-invasive visualization of neurotransmitter release and neuronal
activity [169,170]. Further, the microdialysis technique has been used in human patients to assess
the amino acid concentrations in the brain following trauma [171]. However, these techniques
lack information on the quantity of neurotransmitters in the extracellular space, particularly the
dynamics of neurotransmitter clearance that shape the amplitude and duration of postsynaptic
responses. Electrochemical biosensors have addressed temporal dynamics, improved spatial resolution,
decreased tissue damage (in comparison with microdialysis), and the ability to evaluate near real-time
dynamics of neurotransmitter release and clearance, while sacrificing the ability to evaluate multiple
targets [137,172,173].

7. Electrochemical Biosensors for In Vivo Monitoring of Neurochemical Signaling

During the decades that neurochemical measurements largely relied on microdialysis, parallel
developments were made on methods to measure at second and sub-second timescale with improved
resolution. The developments were necessary since the cascade of events that follow signal transduction in
neurotransmitter signaling involves a vast range of spatial and temporal scales. Initially, the microelectrodes
developed were carbon-fiber based with low reproducibility and not suitable to measure molecules that
could not be oxidized or reduced, like glutamate, GABA and ACh. Progress in technical advances over the
past several years in microfabrication methods to create electrochemical biosensors containing more than
a single microelectrode (microelectrode arrays; MEAs) have increasingly shown to be effective tools for
neurotransmission detection. MEAs have served as an interface to develop amperometric enzyme-based
biosensors for measurements of neurotransmitters, including electroactive and non-electroactive
neurotransmitters in the extracellular space of the brain [174]. There are several unique types of
MEAs currently being used to assess neurochemical signaling—varying in size, number of arrays,
material, etc. [175–177]. Incorporation of multiple sensors allows for improved spatial resolution
(in microns) and minimal tissue damage to the surrounding parenchyma [178,179]. The enzymatic
biosensors have found wide applicability in brain research with amperometric biosensor recordings.
The enzyme-based microelectrode arrays offer a better utility tool to monitor chemical signaling,
they overcome the limitations associated with low temporal resolution and provide continuous
in vivo monitoring at higher sampling rates. Their low limit of detection provides for near real-time
measurement of chemical signaling involving synaptic events and neurotransmitter overflow. MEA
coupled with amperometry has been employed to measure glutamate, GABA [74], adenosine [180],
ACh [181], lactate [182] and glucose [183]. The non-electroactive neurochemicals are detected by
immobilizing oxidase enzymes in a suitable polymeric film onto the electrode surface combined with
the amperometric detection of hydrogen peroxide as a reporter molecule. Platinum or its alloys
are commonly used as electrode recording surface materials due to their excellent electrocatalytic
activity [184]. Importantly, in vivo biosensing has been achieved by polymer modification by enzyme
immobilization using glutaraldehyde in the presence of bovine serum albumin onto the surface of
microelectrodes [185]. The MEA has been employed to monitor transient changes in extracellular
glutamate in animal models of Alzheimer’s disease [186], epilepsy [187], stress [188], aging [189] and
TBI [44,162,190]. Miniaturization of MEAs enables stereotaxical lowering into discrete anatomical
regions of interest and allows long-term neurotransmitter recordings. A limitation of MEAs is that
they can lose sensitivity due to loss of an exclusion layer. Yet detection of this loss is immediate and
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therefore does not impede interpretation of the data. Depending on the design of the MEA, they are
also restricted in the number of extracellular analytes they can measure in comparison to microdialysis.
MEAs report current variations shaped by several variables including proper preparation and prior
calibration for successful use. The measurement of interferents and metabolites can potentially be
overcome by surface modification of MEA as well as by using self-referencing techniques. Future
technological improvements in the design and fabrication of implantable electrodes are needed to
resolve these limitations.

8. Moving into the Future: Recordings in Freely-Moving Animals

In vivo electrochemical recordings using amperometry in awake, freely moving animals allow for
assessment of real-time neurotransmitter changes during behavioral tasks. This remained challenging
due to the depth of the brain regions and the necessity to record from freely behaving animals, but
advances in microelectrode fabrication allow for probing chemical events for longer-term experiments.
Several studies have begun to use this approach to study spontaneous neurochemical events in
relation to well-defined, quantifiable behaviors of feeding, reward-seeking, sleep-wake, addictive and
attention-deficit hyperactivity behaviors [191–195]. Continuing to study the dynamic neurotransmitter
changes and behaviors in other disease models including TBI would benefit greatly to our understanding
of post-traumatic neuronal signaling. These recordings can also be synched to video recordings
of behavior, linking behavior to amperometric recordings. Direct assessment of neurotransmission
provides for simultaneous measurement with other measurements of neuronal activity with millisecond
precision. Emerging approaches involve the design of microelectrodes capable of concurrent assessment
of neural electrical activity with local field potentials (LFPs) [196,197]. The integration of neurochemical
information with electrophysiological approaches will greatly expand our understanding of the
circuit-neurotransmitter relationship. Moreover, the integrative approach has been validated by several
studies [198] providing key insight into both normal neural circuit dynamics and its dysregulation in
disease [199].

Advances in in vivo assessments have enabled us to gain insight into the nature of the subthreshold
events that underlie evoked action potential discharge in anesthetized and awake animals. Specifically,
direct measurement of brain chemical signaling provides valuable information when combined with
other physiological methods to manipulate neuronal activity with sophisticated observational work
and casual manipulation studies. Targeting neuronal systems infers causality between neurotransmitter
events and behavior in conjunction with optogenetic-based [197] or chemogenetic (DREADD)
approaches [200]. Optogenetics combined with in vivo electrochemical assessments has already
proven to be effective in studying glutamate signaling in both hippocampus and frontal cortex in
anesthetized animals [197,201]. This is particularly important for the study of circuit-level mechanisms
of disease in vivo, when applied to existing behavioral models as output measures can provide insights
for future clinical translation. Changes in metabolic and vascular response occurs as a consequence of
neuronal activity to restore brain homeostasis, altering tissue oxygenation. Such changes form the basis
of neuroimaging methods such as functional magnetic resonance imaging. Metabolic brain disorders
alter oxygen utilization and tissue oxygen tension (pO2) thereby disrupting neuronal circuits [202,203].
While non-invasive neuroimaging methods provides for a great clinical advantage, the responses
observed are influenced from several other factors including hemodynamic response and limited spatial
resolution [204]. The ceramic-based platinum MEAs have been used for in vivo recording of changes
in pO2 in anesthetized rat brain with excellent electrocatalytic activity towards oxygen reduction and
low detection limits [177]. In a proof-of-concept experiment, our lab recently demonstrated robust
reduced oxygen consumption and decreased LFPs in the whisker barrel circuit after mFPI at 1 day
post-injury [205], implicating alternative approaches for monitoring changes in behaviorally relevant
circuit function after TBI.

Exceptional progress had been made towards electrochemical analysis of behaviorally relevant
neurotransmitter signaling in the extracellular space as demonstrated by recordings in non-human
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primates [206,207] and swine [208]. In 2013, a new wireless sensing device coupled with voltammetric
detection for electrochemical monitoring was demonstrated in a late-stage PD [209]. An emphasis has
been made towards further miniaturizing biosensors to record at the level of the synapse, increasing
temporal resolution for more accurate changes in release/reuptake, improving selectivity (distinguish
neurotransmitters) and signal-to-noise, and increasing the number of targets that can be simultaneously
recorded. Several strategies have also been developed to minimize tissue damage during insertion,
biocompatibility, attenuate foreign body response following implantation, increase longevity, improve
performance and resolution, reduce tethering artifact (i.e., wireless), and increase electrode flexibility
by multiple groups. However, these approaches have yet to be combined into a single MEA [210].
While limitations to clinical applications still exist, the evolution of this technology is rapidly moving
toward a point where the benefit of implantation and the information gained from recordings will
outweigh the risk to the patient.

9. Peripheral Influences on Neurotransmission and PCSs

Throughout this review, we have focused on circuit reorganization and dysfunction as primary
mechanisms towards changes in neurotransmitter signaling after TBI. The following section is intended
to acknowledge peripheral influences that have recently been indicated in mediating neurotransmission
that may be relevant to treatment and application for in vivo neurotransmitter monitoring.

9.1. Neuroendocrine and Neuroimmune Interactions

Emerging studies have reported that a substantial population of TBI patients, as high as 25%, report
chronic endocrine dysregulation involving growth hormone, gonadal, thyroid, adrenal and antidiuretic
hormones [211–213]. Hormone receptors are located on neurons and can influence circuit function.
Yet, few studies address the impact of neuroendocrine dysregulation on neurochemical signaling
related to TBI-induced PCSs exists. For example, after experimental TBI, chronic dysregulation of
the HPA-axis has been implicated by changes in baseline circulating glucocorticoid levels and in
response to stress in a sex-specific manner [214–216]. Glucocorticoid receptors are located on every
cell type and modulate neurotransmission and neuroinflammatory response [217]. With the growing
recognition of neuroendocrine–immune interactions, the potential microglial contributions to endocrine
dysregulation have been proposed based on the reactivity state of the microglia [218]. The enhanced
neuroinflammatory response stemming from immune-mediated central glia, particularly the microglial
response might set the stage for depressive-like features [219].

9.2. Sex Hormones

Sex-related differences in human brain structure and susceptibility to neuropsychiatric diseases
have been documented [220]. Yet, again, their role in the persistence and development of PCSs
have not been fully explored. Reports indicate sex differences in many neurotransmitters including
serotonergic, cholinergic and adrenergic systems [221–223]. Findings also suggest that sex hormones,
including estrogen and progesterone, mediate worse outcomes among women of childbearing age
after TBI [224]. Ovarian hormones are known to exhibit modulatory role on synaptic transmission
regulating presynaptic neurotransmitter release or postsynaptic receptor action as a possible target for
their influence after TBI [225,226].

9.3. Gut–Brain Axis

There has been a growing support of the influence of multiorgan responses on the acute and chronic
effects of TBI. Such interactions between the brain and the systemic physiology involving the function
of body organs after TBI can indirectly influence neurotransmitter systems or modulators. The sequela
of TBI induces significant alterations in metabolic and enteric function, affecting peripheral systems.
TBI survivors often report of gastrointestinal dysfunction with reports increased gut permeability [227],
reduced gastric emptying [228] and intestinal contractility [229]. Two communication routes for the
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gut–brain axis are through the vagus nerve and the gut microbiota [230]. Vagus nerve stimulation is
currently being evaluated preclinically and clinically for improvement in motor, cognition, edema,
inflammation, and BBB breakdown [231]. Gastrointestinal disorders consequently disrupt the
microbiota (gut bacteria) and accumulating data suggesting that the microbiome is the key regulator
of the bidirectional gut–brain axis to influence brain function, behavior and host physiology [232].
Preclinical reports have shown microbiota dysbiosis after TBI [233,234]. Yet the link to PCSs has
not studied. Evidence points to behaviors linked to neurotransmission that are influenced by
microbiota [235] with certain bacteria possessing the capacity to generate neurotransmitters and/or
precursors to neurotransmitters. It has been found that several bacteria including Bifidobacterium and
Lactobacillus spp. produce GABA, Bacillus spp. produce DA, Lactobacillus spp. produce ACh and
Escherichia spp. produce 5-HT [236–239] while their implications on brain function are slowly being
unraveled. Particularly, the gut microbiome is known to regulate tryptophan metabolism necessary for
the synthesis of 5-HT in the brain [240]. The intestine can also serve to be an endocrine organ through
the production of microbial neurometabolites. Specifically, GABA is produced directly or indirectly by
certain commensal microbes to influence gut–brain interactions [241].

9.4. Other Organs

Mild TBI enhances liver inflammatory markers by altering the redox homeostasis and given
their wide implications for their interaction between brain and body, leakage of pro-inflammatory
factors through the disrupted BBB can exacerbate brain injury pathology [242–244]. TBI can promote
cardiovascular risk factors through increase in expression of pro-inflammatory chemokines and
apoptosis [245,246]. The spleen is an important lymphoid organ innervated by sympathetic nerve fibers that
are in contact with splenic immune cells to create a neuroimmune link [247]. Enhanced pro-inflammatory
levels have been characterized as an acute response to diffuse TBI [248]. The neurotransmitters of
the sympathetic nervous system bind to receptors on the surface of immune cells and within the
microenvironmental niche of the spleen, immune cell receptors bind neurotransmitters to exert effects
on nerve terminals [249].

10. Concluding Remarks

In this review, we have discussed the clinical and experimental evidence on the acute and chronic
pathophysiological responses after mild TBI, animal models of diffuse brain injury, alterations of
neurotransmitter systems that underlie the circuit deficits which can compromise and/or compensate
the processes that enables neuronal response to injury. Alterations in the TBI-induced neurotransmitter
systems that form the core machinery expressed by most of the neurons have been considered crucial in
the development of PCSs. Multiple in vivo electrochemical measurements with increasing resolution
offers a portal to directly quantify and characterize the dynamic real-time neurotransmitter signaling
mechanisms that operate during behavior to provide important details of the pathophysiology of
circuit function. Advances in the application of interference tools permit more direct modulation
of in vivo control of neurotransmitter signaling in animals engaged in freely moving and defined
behaviors (see Figure 1 for details). Given the unmet clinical need to modulate neurochemical signaling
in the diseased state, including TBI, the future of electrochemical characterization can be fully adapted
to apply behavioral shaping pharmacological interventions that normalize neurotransmitter signaling.
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injuries leading to acute and chronic neurological deficits, contributing to morbidity of injury. The repair
and reconnection of broken circuitry that follows TBI leads to formation of maladaptive circuitry.
The characteristic pattern following injury provides potential context for pathologies of neuronal
processes and cell bodies subsequent to injury-related deficits in metabolism or neuronal function.
TBI-induced damage to neural responses evolve into diffuse circuit disruption leading to development
of post-concussive symptoms (PCSs). Neurotransmitter systems are important components of the
neuronal circuitry (also influenced by components of peripheral system) that modulate many of the
behavioral functions that are impaired following TBI. The assessments of these neurotransmitter changes
can capture important aspects of brain-injured circuitry and offers a potential target for modulation.
Experimental studies involving use of different methods for recording extracellular neurotransmitter
levels provides for evaluating changes in neurotransmitter signaling, where measurements are made
with high spatial and temporal resolution. Coupling clinically-relevant TBI models that show chronic
behavioral deficits with in vivo technologies capable of real-time monitoring of neurotransmitters
in behaviorally relevant circuitry provides a powerful and innovative approach to understanding
compensatory changes in neurotransmitter signaling as a TBI consequence. In experimental models,
the use of interference tools permits more direct modulation of in vivo control of neurotransmitter
signaling in animals engaged in freely moving and defined behaviors. This approach can be used to
understand the impact of pharmacological interventions on both therapeutic regulation of TBI altered
neurotransmission capable of mitigating behavior.
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