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Abstract

Background: Many previous clinical studies have found that accumulated sequential mutations are statistically
related to tumorigenesis. However, they are limited in fully elucidating the significance of the ordered-mutation
because they did not focus on the network dynamics. Therefore, there is a pressing need to investigate the
dynamics characteristics induced by ordered-mutations.

Methods: To quantify the ordered-mutation-inducing dynamics, we defined the mutation-sensitivity and the order-
specificity that represent if the network is sensitive against a double knockout mutation and if mutation-sensitivity
is specific to the mutation order, respectively, using a Boolean network model.

Results: Through intensive investigations, we found that a signaling network is more sensitive when a double-
mutation occurs in the direction order inducing a longer path and a smaller number of paths than in the reverse
order. In addition, feedback loops involving a gene pair decreased both the mutation-sensitivity and the order-
specificity. Next, we investigated relationships of functionally important genes with ordered-mutation-inducing
dynamics. The network is more sensitive to mutations subject to drug-targets, whereas it is less specific to the
mutation order. Both the sensitivity and specificity are increased when different-drug-targeted genes are mutated.
Further, we found that tumor suppressors can efficiently suppress the amplification of oncogenes when the former
are mutated earlier than the latter.

Conclusion: Taken together, our results help to understand the importance of the order of mutations with respect
to the dynamical effects in complex biological systems.
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Background
In a tumor cell, DNA damage restoration can have some
errors such as chromosome abnormalities or genetic in-
stability that result in a sequence of mutations [1]. The
accumulated mutations can cause tumorigenesis or can-
cer development [2, 3]. Interestingly, this process can be
affected by the order of genes subject to mutations. For
example, it was observed in patients with Myeloprolifera-
tive Neoplasms that JAK2 mutation followed by TET2
mutation influenced the clinical features [3]. In another
study [4], it has been shown that the timing of the

DNMT3A mutation can affect the phenotypes of mye-
loid diseases in different ways. It was also found that the
mutation of the CSF3R gene arising in the early severe
congenital neutropenia stage is crucial to leukemia
transformation [5]. Moreover, the mutation order influ-
ences the mutagen target size in tumor evolution [6] and
results in complications in cancer biology [7].
Based on these observations, many methods attempted

to investigate the effects of the order of mutation occur-
rence on cancer development [8], differences in clinical
presentation [3], or response to targeted therapy [9]
through biological experiments. In addition, statistical
approaches were also developed to estimate the effect of
the mutation order [10–12]. The understanding of the
significance of ordered mutations can be enhanced
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through the analysis of biological networks. For example,
a few previous studies reported that specific sequences
of mutations which are efficient in cancer development
were related to gene-gene interaction networks [13–15].
In addition, simple network structural characteristics
were found to be relevant to the ordered mutations [16,
17]. Other studies also implicitly attempted to relate the
dependency of ordered compensatory perturbation with
a growth rate of cells in metabolic systems, through the
network structural analysis and biological experiments
[18–20]. Although these previous studies explained the
significance of the ordered mutations, the results are
limited due to the deficiency of analysis on the network
dynamics.
Accordingly, we aim to investigate interesting dynamical

characteristics induced by the ordered double-mutations in
the signaling networks. To this end, we employed a Boolean
network model and defined two measures with respect to
ordered-mutation-inducing dynamics, the mutation-
sensitivity and the order-specificity, against a double knock-
out mutation. The former represents how likely a network
state trajectory changes by an ordered mutation whereas
the latter indicates the likelihood that the network state tra-
jectories induced by different orders of a mutation are not
identical. Through intensive investigations in three real sig-
naling networks, we found that a network is more sensitive
when a double knockout mutation occurs in the order to
induce a longer path and a smaller number of paths than in
the reverse order. In addition, the existence of a feedback
loop structure reduced the mutation-sensitivity as well as
the order-specificity. Next, we investigated the ordered-
mutation-inducing dynamics of some functionally import-
ant genes such as drug-targets, tumor suppressors, and on-
cogenes. It was interesting that the number of drug-targets
subject to mutations was negatively correlated to the
mutation-sensitivity, whereas the mutation order was more
specific in mutations in drug-targets than non-drug-targets.
In addition, both the mutation-sensitivity and the order-
specificity of same-drug-targets were higher than those of
the different-drug-targets, respectively. Furthermore, we
found that tumor suppressors can efficiently suppress the
amplification of oncogenes when the former genes are mu-
tated earlier than the latter genes. Taken together, our re-
sults enhance the understanding of the dynamical effects of
ordered double-mutations in complex biological systems.

Methods
Datasets
In this work, we employed datasets of three molecular
interaction networks, a human cancer signaling (HCS)
network with 1192 genes and 3102 interactions con-
structed in previous studies [21, 22] to provide a map of
human cancer signaling, another large-scale signaling
network with 1659 genes and 7964 interactions

constructed in previous study [23] which was derived
from the Kyoto Encyclopedia of Genes and Genomes
database [24] (KEGG) network, and a T-cell large granu-
lar lymphocyte survival signaling [16, 25, 26] (TGL) net-
work with 61 genes and 193 interactions about the long-
term survival of competent cytotoxic T lymphocytes in
humans. Moreover, we retrieved lists of drug-targets,
tumor suppressors, and oncogenes from the DrugBank
[27], TSGene [28, 29], and ONGene [30] databases, re-
spectively. Accordingly, we found 504, 538, and 20 drug-
targets in the HCS, KEGG, and TGL networks, respect-
ively. In addition, we identified 245 tumor-suppressors
and 227 oncogenes in HCS, 176 tumor-suppressors and
168 oncogenes in KEGG, and 6 tumor-suppressors and
13 oncogenes in TGL networks (see Additional file 1:
Table S1, S2 and S3 for the lists of drug-targets, tumor
suppressor genes, and oncogenes in HCS, KEGG, and
TGL networks, respectively).

A Boolean network model
To analyze the network dynamics induced by ordered
mutations, we applied a Boolean network model, which
is the simplest computational model [31–33] and has
been used to examine complex behaviors of biological
networks [34, 35]. A Boolean network is represented by
a directed graph G(V,A) where V = {v1, v2,…, vN} is a set
of nodes and A ⊆V ×V is a set of directed links. Each
vi ∈V has a value of 1 (on) or 0 (off), which indicates the
possible states of the corresponding elements. A directed
link (vi, vj) represents a positive (activating) and a nega-
tive (inhibiting) relationship from vi to vj. Let v(t) denote
the state of node v at time-step t (t is a non-negative in-
teger). When a state of vi at time t + 1 is determined by
the values of ki and other nodes vi1 ; vi2 ;…; viki with a link
to vi at time t, then the update rule of vi is represented

by a Boolean function f i : f0; 1gki→f0; 1g . Herein, all
nodes are synchronously updated, and we employed a
nested canalyzing function (NCF) model [36, 37] to de-
scribe an update rule fi as follows:

f i vi1 tð Þ; vi2 tð Þ;…; viki tð Þ
� �

¼
O1 if vi1 tð Þ ¼ I1
O2 if vi1 tð Þ≠I1 and vi2 tð Þ ¼ I2
O3 if vi1 tð Þ≠I1 and vi2 tð Þ≠I2 and vi3 tð Þ ¼ I3

⋮
Oki if vi1 tð Þ≠I1⋯viki−1 tð Þ≠Iki−1 and viki tð Þ ¼ Iki
Odef otherwise

8>>>>><
>>>>>:

where Im and Om (m = 1, 2,…, ki) represent the canalyz-
ing and canalyzed Boolean values, respectively, and Odef

is set to 1−Oki in general. Unfortunately, it is not easy to
infer the canalyzing and the canalyzed values in the real
signaling networks, so we specified Im and Om values in-
dependently and uniformly at random between 0 and 1.
We note that NCFs have been shown to properly fit real
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biological experimental data [36, 38], and many bio-
logical networks were successfully simulated by NCFs
[39, 40].
A network state at time t can be denoted by a list of

state values of all nodes, v(t) = [v1(t), v2(t),…, vN(t)] ∈ {0,
1}N. Every network state transits to another network
state determined by a set of Boolean update functions
F = {f1, f2,…, fN} which is synchronously updated f1, f2, …
fN, and f1, f2, …fN eventually converges to either a fixed
point or a limit-cycle attractor. The attractor is rigor-
ously defined as follows.
Definition. Let v(0), v(1), ⋯v(t), ⋯ be a network state

trajectory starting at v(0). Then, the attractor denoted
by 〈G, F, v(0)〉 is represented by an ordered finite sub-list
of the trajectory, [v(τ), v(τ + 1),…, v(τ + p − 1)], where τ is
the smallest time-step such that v(t) = v(t + p) for ∀t ≥ τ
with v(i) ≠ v(j) for ∀ i ≠ j ∈ {τ, τ + 1,…, τ + p − 1}. Herein,
p is called the attractor length.
To identify an attractor, the network state trajectory is

computed by synchronously updating the state values of all
nodes until the time-step t is found such that v(t) = v(t + p).

Computation of mutation-sensitivity and order-specificity
Given a Boolean network G(V,A) with a set of nodes
V = {v1, v2,…, vN} specified by a set of corresponding
update-rules F = {f1, f2,…, fN}, consider a state trajectory
starting from an arbitrary initial state. When a network
is subject to a mutation, the trajectory may converge to
a different attractor. Then, the network is regarded as
sensitive to the mutation. Let W ⊆V be a set of genes
subject to knockout mutations [41, 42], and we denote
by FW as a set of update-rules where every gene in W ⊆
V is frozen to 0 (off state) in F. In this work, we investi-
gate the effect of the ordered double-mutations on the
network dynamics. Let (vk, vl) be an ordered pair of
nodes subject to a double-mutation with a time gap T,
which means that vk is first mutated at time-step t = 0,
and then vl is mutated at time-step t = T. In other words,
the time gap represents the time-step lag between the
occurrences of the first and the second mutation. We

can implement it by assuming that Ffvkg and Ffvk ;vlg are
effective for 0 ≤ t < T and t ≥ T, respectively. It has been
known that the notion of the time gap is important since
it can affect the mutation process [14, 43, 44]. Then,

when we denote by F
0
ðvk ;vlÞ a series of sets of the update

rules by (vk, vl)-ordered double-mutation, we can define
the mutation-sensitivity as follows:

δ ¼
P

v 0ð Þ∈SI G; F ; v 0ð Þh i≠ G; F
0
vk ;vlð Þ; v 0ð Þ

D E� �

Sj j ; 1ð Þ

where S is a set of considered initial-states and I(condi-
tion) denotes an indicator function that returns 1 if the

condition is true and 0, otherwise. In other words, δ rep-
resents the probability that a network converges to a dif-
ferent attractor by the double knockout mutation. To
quantify the specificity of dynamics with respect to the
mutation order, we define the order-specificity as
follows:

Δ ¼
P

v 0ð Þ∈SI G; F
0
vk ;vlð Þ; v 0ð Þ

D E
≠ G; F

0
vl ;vkð Þ; v 0ð Þ

D E� �

Sj j : 2ð Þ

In other words, Δ represents the probability of a net-
work converging to different attractors by different mu-
tation orders. Figure 1 shows an illustrative example of
the mutation-sensitivity and the order-specificity no-
tions. Let {v3, v4} be a pair of genes subject to mutations
and 0100 be a given initial state. Then, a wild-type at-
tractor denoted by Att1 is computed by applying F all
the time. Next, we compute Att2 and Att3 to which the
network converges against (v3, v4)- and (v4, v3)-ordered

mutations, respectively. Note that Ffv3g (or Ffv4g ) and
Ffv3;v4g applies for 0 ≤ t < T and t ≥ T, respectively, in
computing Att2 (resp. Att3). When Att2 (or Att3) is not
identical to Att1, the network is regarded as sensitive to
the (v3, v4)-ordered (resp. (v4, v3)-ordered) mutation. In
addition, the network dynamics are specific to the muta-
tion order if Att2 and Att3 are not identical to each
other. We note that a pair of genes (vk, vl) with a com-
mon child node in the network are excluded from ana-
lysis in this study. In case that there exists such a
common child node vc, it is probable that the update of
vc is differently affected by the (vk, vl)-ordered and the
(vl, vk)-ordered mutations, because the occurrence order
of vk and vl in the NCF to update vc represents the de-
gree of influence on the update of vc. Finally, we note
that the network dynamics can depend on the initial net-
work states. Therefore, a total of 1000 initial-states (i.e.,
|S| = 1000) were randomly generated to compute the
mutation-sensitivity and the order-specificity values in
Eqs. (1) and (2) in all simulations of this study.

Structural characteristics of ordered gene pairs
Some structural characteristics of genes are related to
network dynamic stability [45]. In this study, we consid-
ered the following structural properties to investigate the
relationship between ordered mutations.

� The path length of (vi, vj) denoted by l(vi, vj) is
defined by the number of links included in the
shortest path from vi and vj.

� The number of paths of (vi, vj) denoted by n(vi, vj) is
defined by the number of non-identical paths from
vi and vj.

Mazaya et al. BMC Medical Genomics 2020, 13(Suppl 4):13 Page 3 of 12



� A feedback loop (FBL) is a sequence of nodes where
no node is repeated except the starting and the
ending nodes. It has been known that FBLs play an
important role in controlling dynamics behaviors of
cellular signaling networks [32, 46, 47].

Random network generation
To verify that the results of mutation-sensitivity and
order-specificity in the real molecular interaction net-
works are consistent with randomly structured networks,
we generated random networks using the Barabási Al-
bert (BA) [48] model which is a kind of network growth
model with a preferential attachment scheme.

Parallel computation
For efficient in-silico simulations, we basically imple-
mented the program code using PANET [35] which is
an analysis tool of the network dynamics analysis tool
using the OpenCL library. This enables us to compute a
large number of attractors in parallel by assigning each
initial random state in Eqs. (1) and (2) to a processing
unit of CPUs and/or GPUs.

Statistical analysis
In this paper, we conducted the Mann-Whitney U
test to see if the mutation-sensitivity and the order-

specificity are significantly different between any two
groups, because they are not normally distributed.
The Mann-Whitney U test combines two groups and
ranks them. Then, it calculates a statistic of the dif-
ference of the rank sum between two resampled
groups. We used MedCalc [49] Statistical Software
(version 13.0.6) for the Mann-Whitney U test.

Results
In this study, we simulated the ordered-mutation-
inducing dynamics of three real biological networks
using the Boolean network model (see Methods for de-
tails). As explained in Methods section, we note that a
total of 1000 initial-states were randomly generated to
compute the mutation-sensitivity and the order-
specificity values in Eqs. (1) and (2) in all simulations. In
addition, we constructed a set of ordered gene pairs to
be investigated, Ω, for tractable simulation. It consists of
all ordered pairs of genes in the case of TGL network
with a small number of nodes (|N| = 61), whereas 30,000
randomly selected gene pairs in the case of large-scale
networks of HCS (|N| = 1192) and KEGG (|N| = 1659).
Considering the different network size, we also set the
time gap (T) to 2–20 in HCS and KEGG, and 1–10 in
TGL, respectively.

Fig. 1 An example of mutation-sensitivity and order-specificity computation. Given a network G(V, A) with a set of wild-type update rules F, let v3
and v4 be a pair of nodes subject to a double-mutation with a time gap T, and 0100 ∈ S an initial state. FW denotes a W-mutant update rule set
where every gene in W ⊆ V is frozen. In this example, the wild-type attractor (Att1) is computed by applying F all the time. On the other hand, a

(v3, v4)-ordered (or (v4, v3)-ordered) mutant attractor denoted by Att2 (resp. Att3) is computed by assuming that Ffv3g (resp. Ffv4g) and Ffv3 ;v4g

apply for 0≤ t < T and T≤ t, respectively. The mutation-sensitivity of (v3, v4)-ordered (or (v4, v3)-ordered) double-mutation is computed by
comparing Att1 and Att2 (resp. Att3). The order-specificity is computed by comparing Att2 and Att3
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Distributions of ordered-mutation-inducing dynamics
To see how frequently the network dynamics are af-
fected by ordered mutations, we examined the accumu-
lative distributions of the mutation-sensitivity (δ) and
order-specificity (Δ) values of examined gene pairs (Ω)
in three signaling networks (Fig. 2) in the case of the lar-
gest time gap (i.e., T = 20 for HCS and KEGG, and T =
10 for TGL). In the figure, the y-axis value means the
cumulative probability of mutation-sensitivity or order-
specificity larger or equal to the x-axis value. We ob-
served that the cumulative probabilities of δ ≥ 0.1 in
HCS, KEGG, and TGL were 0.56, 0.62, and 0.39, re-
spectively. This implies that it is not rare to observe that
the network dynamics are sensitive against the double-
mutations. It was also observed that the cumulative
probabilities of Δ ≥ 0.1 in HCS, KEGG, and TGL were
0.38, 0.54, and 0.32, respectively. We need to note that
an order-specificity of zero can be observed even in the
case of gene pairs with nonzero mutation-sensitive
values according to the definitions. Therefore, the ob-
served distribution of the order-specificity implies that
the mutation order is considerably critical to the net-
work dynamics.

Relation between structural characteristics and ordered-
mutation-inducing dynamics
There have been many previous studies on the relation-
ship between the structural properties and the dynamical
behavior in biological networks [45, 50, 51]. Inspired by
them, we investigated the relationships between some
structural properties and ordered-mutation-inducing dy-
namics (Fig. 3). We first classified every ordered gene
pair (vi, vj) in Ω into ‘Shorter-path direction’ and ‘Lon-
ger-path direction’ groups if l(vi, vj) < l(vj, vi) and l(vi, vj) >
l(vj, vi) (see Methods for the definition), respectively,
and forced knockout mutations in the order of vi and vj.
We note that the gene pair (vi, vj) which is not bidirec-
tionally connected was excluded from analysis to remove
the effect of the connectedness factor on the dynamics.
We compared the average mutation-sensitivity values

between them (Fig. 3(a)-(c); all P-values using the
Mann-Whitney U test). As shown in the figure, the
mutation-sensitivity of the ‘Longer-path direction’ group
is significantly higher than that of the ‘Shorter-path dir-
ection’ group in all signaling networks for most time gap
parameter values. In other words, the network is more
sensitive when the double knockout mutation occurs in
the order inducing a longer path than in the reverse
order. Next, we classified every ordered gene pair (vi, vj)
into ‘More-paths direction’ and ‘Fewer-paths direction’
groups if n(vi, vj) > n(vj, vi) and n(vi, vj) < n(vj, vi) (see
Methods for the definition), respectively, and forced
knockout mutations in the order of vi and vj. We com-
pared the average mutation-sensitivity values between
them (Fig. 3(d)-(f); all P-values using the Mann-Whitney
U test). As shown in the figure, the mutation-sensitivity
of the former group is significantly smaller than that of
the latter group in both signaling networks, almost irre-
spective of the time gap parameter. In other words, the
network is more sensitive when the double knockout
mutation occurs in the order involving fewer paths than
in the reverse order. We note that our previous study
showed that the dynamics influence from a gene on an-
other gene is likely to be lessened as the path length in-
creases and the number of paths decreases [50]. Thus, it
is interesting that both the ‘Longer-path direction’ and
‘Fewer-paths direction’, which showed relatively higher
mutation-sensitivity values, represent ways to induce a
smaller dynamics-influence from the first mutated gene
on the second mutated gene than the reverse order.
Finally, we considered the FBL as another interesting
structural property for investigation, because many pre-
vious studies have proven the relation of it with the dy-
namical behavior of biological networks [46, 47, 52]. We
classified every ordered gene pair into ‘FBL’ and ‘Non-
FBL’ groups if any gene in the pair is involved in an FBL
or not, respectively. Then, we compared the average
mutation-sensitivity values between them (Fig. 3(g)-(i);
all P-values using the Mann-Whitney U test). As shown
in the figure, the mutation-sensitivity of the former

Fig. 2 Cumulative probability distributions of mutation-sensitivity and order-specificity values in signaling networks. Mutation-sensitivity and
order-specificity of ordered gene pairs were examined. (a-c) Results in HCS, KEGG, and TGL, respectively. The time gap (T) was set to 20 in (a) and
(b), and 10 in (c)
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Fig. 3 (See legend on next page.)
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group is significantly smaller than that of the latter
group in both signaling networks regardless of the time
gap parameter. In addition, we further compared the
order-specificity between the two groups (Fig. 3(j)-(l)).
(Note that it is not feasible to compare the order-
specificity between Longer- and Shorter-path direction
groups, or More- and Fewer-paths direction groups be-
cause the relation of ordered gene pair in each group is
not symmetric). We found that the order-specificity of
the FBL group was significantly smaller than that of the
Non-FBL group. This implies that the FBL structure re-
duced the specificity of the mutation order. Taken to-
gether, we can conclude that ordered-mutation-inducing
dynamics are highly related with the structural proper-
ties such as the path length, the number of paths, and
the FBL. In addition, we investigated the relationship be-
tween these structural properties and the ordered-
mutation-inducing dynamics in a numbers of BA ran-
dom networks (see Methods section) and found consist-
ent results (see Additional file 1: Figure S1). In other
words, our findings might be observed in networks with
various structures. Finally, the results can be related with
a recent study about the occurrence of different cancer
types by the mutation order [53]. The authors in that
study found that a double mutation in the order of
EP300 and TP53 genes was relatively frequent in pa-
tients with esophageal and bladder urothelial carcinoma.
On the other hand, the mutation in the reverse order
was enriched in patients with cervical squamous cell car-
cinoma and endocervical adenocarcinoma. It is intri-
guing that the order of EP300 and TP53 belongs to
‘Shorter-path direction’, ‘More-paths direction’, and
‘FBL’ groups in the HCS network according to our clas-
sification, all of which indicated a relatively low
mutation-sensitivity.

Analysis of drug-target genes with respect to ordered-
mutation-inducing dynamics
Some previous studies have investigated the characteris-
tics of drug-target genes through network-based struc-
tural analysis [54, 55], and the findings were useful to
understand tumorigenesis in cancer [56]. In this study,
we extended it to dynamic analysis by investigating the
ordered-mutation-inducing dynamics of drug-targets in

signaling networks. We first specified all genes as ‘Drug-
target (DT)’ and ‘Non-drug-target (Non-DT)’ genes (see
Methods and Additional file 1: Table S1, S2 and S3).
Then, we classified every ordered gene pair in Ω into
four groups: ‘DT → DT’, ‘DT → Non-DT’, ‘Non-DT →
DT’, and ‘Non-DT → Non-DT’. After forcing double
knockout mutations, we compared the average
mutation-sensitivity value among them (Fig. 4(a)-(c); all
P-values using the Mann-Whitney U test). As shown in
the figure, the values of ‘Non-DT → Non-DT’ and ‘DT
→ DT’ groups were highest and lowest, and they were
the bounds for the values of other groups. Furthermore,
the sensitivity of the ‘Non-DT → DT’ group was signifi-
cantly higher than that of the ‘DT → Non-DT’ group,
for most time gap values. Considering that these two
groups are identical to each other except for the order in
a gene pair, the result implies that the sensitivity differ-
ence was caused by only the mutation order. We further
examined the order-specificity values of DT and Non-
DT groups (Fig. 4(d)-(f); all P-values using the Mann-
Whitney U test) and found that the former is larger than
the latter. This finding is interesting considering that the
mutation-sensitivity of ‘DT → DT’ was smaller than that
of ‘Non-DT → Non-DT’ in Fig. 4(a)-(c). In other words,
the network is less sensitive, but the mutation order is
more critical when drug-target genes are mutated than
when non-drug-target genes are mutated. Moreover, we
further investigated the ‘DT → DT’ group by classifying
every gene pair in the group into ‘Same drug’ and ‘Dif-
ferent drug’ sub-groups (see Additional file 1: Table S1,
S2 and S3) for cases where both genes of a pair are tar-
geted using the same drug or different drugs, respect-
ively (TGL network was excluded from this analysis
because there is no pair of genes belonging to ‘Same
drug’ group). We found that both the mutation-
sensitivity and order-specificity of the ‘Different drug’
group were less than those of the ‘Same drug’ group
(Fig. 5). This implies that the network is more sensitive,
and the mutation order is more specific when drug-
targets from the same-drug are mutated than when
drug-targets from the different-drug are mutated. Inter-
estingly, this observation can be linked to some previous
experimental studies about multiple drug treatments.
For example, a specific sequential treatment of

(See figure on previous page.)
Fig. 3 Relations of structural properties with the ordered-mutation-inducing dynamics in signaling networks. (a-c) Mutation-sensitivity results with
respect to the path length in HCS, KEGG, and TGL, respectively. All pairs of nodes involving an FBL were classified into ‘Shorter-path direction’ and
‘Longer-path direction’ groups where l(vi, vj) is smaller and larger than l(vj, vi), respectively. (d-f) Mutation-sensitivity results with respect to the
number of paths in HCS, KEGG, and TGL, respectively. All pairs of nodes were classified into ‘More-paths direction’ and ‘Fewer-paths direction’
groups such that n(vi, vj) is smaller and larger than n(vj, vi), respectively. (g-i) Mutation-sensitivity results with respect to of the FBLs in HCS, KEGG,
and TGL, respectively. All pairs of nodes were classified into ‘FBL’ and ‘Non-FBL’ groups such that any gene in the pair is involved in an FBL or
not. (j-l) Order-specificity results with respect to the feedback loops in HCS, KEGG, and TGL, respectively. Time gap (T) was set to 2–20 in HCS and
KEGG networks, and 1–10 in TGL networks. The error bar represents the standard error deviation
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roscovitine before doxorubicin is synthetically lethal in
breast cancer cell [57] and the treatment order of
double-drugs with the shared targets is significant to the
treatment efficiency [58]. In addition, our result implies
that the ordered-mutation-inducing dynamics can be
useful to predict a new drug-target gene which may
show relatively lower mutation-sensitivity and the higher
order-specificity when it is subject to the ordered muta-
tion with another drug-target gene together.

Analysis of tumor suppressor and oncogenes with respect
to ordered-mutation-inducing dynamics
It is known that tumor suppressors and oncogenes per-
form their cellular functions jointly in tumor progres-
sions [59, 60], and tumor suppressors can be considered
as therapeutic targets for cancer drugs [61, 62]. In this
study, we investigated the ordered-mutation-inducing
dynamics of tumor suppressors and oncogenes in signal-
ing networks. We first specified all genes in the net-
works as ‘Tumor suppressor genes (TSG)’ and
‘Oncogenes (OCG)’ (see Methods and Additional file 1:
Table S1, S2 and S3), and then identified two groups of
ordered gene pairs in Ω, ‘TSG → OCG’ and ‘OCG →

TSG’. For every ordered pair of genes, we computed the
mutation-sensitivity after forcing double knockout muta-
tions according to the order of gene pair. Then, we
compared the average mutation-sensitivity value be-
tween those two groups (Fig. 6(a)-(c); all P-values using
Mann-Whitney U test). As shown in the figure, the
mutation-sensitivity value of the former group was sig-
nificantly smaller than that of the latter group in all sig-
naling networks, almost irrespective of the time gap. In
other words, the network is more sensitive when onco-
genes were mutated before tumor suppressors than the
reverse order. In addition, we further compared the
order-specificity between two groups, ‘TSG’ and ‘OCG’,
and found that the order-specificity values of the former
group were smaller than the latter group, almost irre-
spective of the time gap (Fig. 6(d)-(f); all P-values were
obtained using Mann-Whitney U test). This finding can
be also related to some previous studies on the ordered
mutations between oncogenes and tumor suppressor
genes. For example, the double mutation in the order of
TP53 and NOTCH, which are representative tumor-
suppressor and oncogenes, respectively, was frequently
observed in early stage of esophageal carcinoma patients

Fig. 4 Analysis of ordered-mutation-inducing dynamics with respect to drug-targets in signaling networks. (a-c) Mutation-sensitivity results in
HCS, KEGG, and TGL, respectively. All genes were specified by ‘Drug-target (DT)’ and ‘Non-drug-target (Non-DT)’, and every gene pair was
classified into four groups, ‘DT → DT’, ‘DT → Non-DT’, ‘Non-DT → DT’, and ‘Non-DT → Non-DT’. (d-f) Order-specificity results in HCS, KEGG, and
TGL, respectively. Time gap (T) was set to 2–20 in HCS and KEGG networks, and 1–10 in TGL networks. The error bar represents the standard
error deviation
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[53], whereas the reverse-ordered mutation is likely to
lead to a metastasis progression in mouse experiments
[63, 64]. It was also shown that alteration of RAS, which
is another oncogene, before loss of P53 formed a malig-
nant tumor with metastatic behavior, but the reverse-
ordered mutation resulted in benign tumors [2, 65].

Discussion
In this study, we defined the mutation-sensitivity and
the order-specificity based on a Boolean network
model to unravel the effects of ordered mutations on
dynamics in signaling networks. It was interesting to
observe that some structural properties of signaling
networks can be a good indicator to explain the dy-
namical behavior with respect to ordered-mutation
experiments. In addition, it was shown that various
functionally important genes are related to the
ordered-mutation-inducing dynamic. These results can
enhance the understanding of the dynamic effects of
ordered double-mutations on complex dynamics of
large-scale biological systems, which supports the

usefulness of our approach. Despite the usefulness of
our approach, there are some limitations to be dis-
cussed. In this study, we employed the random nested
canalyzing function to simulate the Boolean dynamics
of the molecular signaling networks. This artificial
specification can be a limitation of this study, al-
though some previous studies have proven the useful-
ness of the model in fitting the update rules from the
real biological data [36, 38]. Another concern is the
synchronous update scheme, which is less realistic
than the asynchronous update scheme. Therefore, a
future study will include an approach to more accur-
ately model the update rule inferred from real bio-
logical data.

Conclusions
Many previous studies investigated ordered mutations
and found statistical relations with cancer development.
Recently, these studies were extended to incorporate the
analysis of biological networks. However, they are lim-
ited in identifying the significance of ordered mutations

Fig. 5 Comparison of ordered-mutation-inducing dynamics between gene pairs targeting same and different drugs in signaling networks. All
pairs of genes were classified into ‘Same-drug’ or ‘Different-drug’ groups if the two genes in a pair target a same drug or different drugs,
respectively. (a-b) Mutation-sensitivity results in HCS and KEGG, respectively. (c-d) Order-specificity results in HCS and KEGG, respectively. All time
gap (T) was set to 2–20. The error bar represents the standard error deviation. Note that TGL network was excluded from analysis, because there
was no pair of genes belonging to ‘Same-drug’ group
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because they did not focus on analysis of the network
dynamics. In this regard, we quantified the ordered-
mutation-inducing dynamics by defining the mutation-
sensitivity and the order-specificity measures using a
Boolean network model. Specifically, they represent the
probability that a network converges to a different at-
tractor by a double knockout mutation, and the prob-
ability with which a network converges to different
attractors by different mutation orders, respectively. It
was not rare to observe both nonzero sensitivity and
specificity values in large-scale signaling networks. In
addition, we examined the relationship between the
structural characteristics such as the path length, the
number of paths, and the feedback loop with the
ordered-mutation-inducing dynamics in the signaling
networks. Interestingly, they showed significant relation-
ships, which implies that such structural properties need
to be considered in experimental studies with respect to
ordered-mutation experiments. Next, we investigated the
ordered-mutation-inducing dynamics of various func-
tionally important genes. The numbers of drug-targets
genes were negatively correlated to the mutation-
sensitivity, whereas the network was more specific to the
order of mutations subject to drug-targets genes than

the rest genes. In addition, we found that tumor sup-
pressors can efficiently suppress the amplification of on-
cogenes when the former genes are mutated earlier than
the latter genes. Taken together, our results enhance the
understanding of the dynamic effects of ordered double-
mutations on complex dynamics of large-scale biological
systems.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12920-019-0651-z.

Additional file 1 Figure S1. Relations of structural properties with
ordered-mutation-inducing dynamics in BA network. A total of 250 BA
random networks with |V| = 50 and |A| = 100 were generated. The time
gap (T) was set to 1–10. (a) Mutation-sensitivity result with respect to the
shortest path length. All pairs of nodes involving an FBL were classified
into ‘Shorter-path direction’ and ‘Longer-path direction’ groups according
that l(vi, vj) < l(vj, vi) and l(vi, vj) > l(vj, vi), respectively. (b) Mutation-sensitivity
result with respect to the number of paths. All pairs of nodes were
classified into ‘More-paths direction’ and ‘Fewer-paths direction’ groups
according that n(vi, vj) > n(vj, vi) and n(vi, vj) < n(vj, vi), respectively. (c)
Mutation-sensitivity result with respect to the FBLs. All pairs of nodes
were classified into ‘FBL’ and ‘Non-FBL’ groups, according that any gene
of the pair is involved by an FBL or not. (d) Order-specificity result with
respect to the FBLs. All P-values were computed using the Mann-Whitney
U test. Table S1. Gene information of HCS consisting 1192 genes,

Fig. 6 Analysis of ordered-mutation-inducing dynamics with respect to tumor suppressors and oncogenes in signaling networks. (a-c) Mutation-
sensitivity results in HCS, KEGG, and TGL, respectively. All genes were specified by ‘Tumor suppressor gene (TSG)’ and ‘Oncogene (OCG)’ groups,
and every ordered gene pair was classified into ‘TSG → OCG’ and ‘OCG → TSG’ groups. (d-f) Order-specificity results in HCS, KEGG, and TGL,
respectively. Time gap (T) was set to 2–20 in HCS and KEGG networks, and 1–10 in TGL networks. The error bar represents the standard
error deviation
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including its association with drug-target, tumor suppressor, and oncogene.
Table S2. Gene information of KEGG consisting 1659 genes, including its
association with drug-target, tumor suppressor, and oncogene. Table S3.
Gene information of TGL consisting 61 genes, including its association with
drug-target, tumor suppressor, and oncogene.
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