
Data in Brief 48 (2023) 109189

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Real operational data for the concrete

delivery problem

✩

Alexandros Tzanetos ∗, Maude Blondin

Multiobjective Optimization REsearch Lab (MORE Lab), Department of Electrical Engineering & Computer

Engineering, Faculty of Engineering, Université de Sherbrooke, 2500, boulevard de l’Université Sherbrooke,

Sherbrooke, J1K 2R1, Quebec, Canada

a r t i c l e i n f o

Article history:

Received 31 March 2023

Revised 19 April 2023

Accepted 21 April 2023

Available online 29 April 2023

Keywords:

Concrete delivery problem

Ready-mixed concrete delivery problem

Operations research

Combinatorial optimization

Real data

a b s t r a c t

The data article describes a real operational dataset for the

Concrete Delivery Problem (CDP). The dataset consists of 263

instances corresponding to daily orders of concrete from con-

struction sites in Quebec, Canada. A concrete producer, i.e., a

concrete-producing company that delivers concrete, provided

the raw data. We cleaned the data by removing entries cor-

responding to non-complete orders. We processed these raw

data to form instances useful for benchmarking optimization

algorithms developed to solve the CDP. We also anonymized

the published dataset by removing any client information

and addresses corresponding to production or construction

sites. The dataset is useful for researchers and practitioners

studying the CDP. It can be processed to create artificial data

for variations of the CDP. In its current form, the data contain

information about intra-day orders. Thus, selected instances

from the dataset are useful for CDP’s dynamic aspect consid-

ering real-time orders.

© 2023 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

✩ Alexandros Tzanetos has a role as Section Editor of this journal but had no involvement in the peer-review of this

article and has no access to information regarding its peer-review.
∗ Corresponding author.

E-mail address: Alexandros.Tzanetos@USherbrooke.ca (A. Tzanetos).

https://doi.org/10.1016/j.dib.2023.109189

2352-3409/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.dib.2023.109189
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2023.109189&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Alexandros.Tzanetos@USherbrooke.ca
https://doi.org/10.1016/j.dib.2023.109189
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189

Specifications Table

V

1

C

s

a
Subject Business, Management and decision sciences

➢ Transportation Management

➢ Management Science and Operations Research

Engineering

➢ Industrial Engineering

Specific subject area Management Science and Operations Research; Vehicle Routing Problems

Type of data Table

Structure

Matrix

How the data were acquired A concrete producer provided real operational data. The data consisted of details of

daily orders, such as the requested concrete quantity, the expected delivery date,

and the concrete mix type requested. Also, the travelling times between the

instances’ nodes were calculated using the Google API.

Data format Raw

Filtered

MAT files

MATLAB code

Description of data collection The data correspond to real data parameters of 263 selected operational days of a

concrete producer located in Quebec, Canada. We processed and cleaned the data

to form problem instances for the CDP. The data also include some fixed

parameters such as the unloading time on the construction site and the truck’s

cleaning time. These values are assumptions when data are incomplete or cannot

be gathered.

Data source location City/Town/Region: Quebec

Country: Canada

Data accessibility Repository name: Mendeley

Data identification number: 10.17632/b78bc94d95.1

Direct URL to data: https://data.mendeley.com/datasets/b78bc94d95/1

alue of the Data

• This is the first available real-world data set for the CDP. Moreover, it contains signifi-

cantly more data compared to the existing artificial datasets for the problem. In particu-

lar, it contains 263 instances of selected operational days of a concrete producer located

in Quebec, Canada.

• Researchers developing optimization methods to solve the CDP can use this dataset for

benchmarking. Also, practitioners can benefit from testing their software solutions on the

various instances included in this dataset.

• The data can be further processed to create artificial data for variations of the CDP. Several

formulations exist for the CDP, each representing a concrete producer’s needs and con-

straints. Additional data are required when a formulation considers additional constraints

of the problem. Researchers studying or proposing a new formulation can use part of the

current data or extend them to validate their formulation.

• The data set is also useful for studying the occurrence of intra-day orders that represent

a dynamic aspect of CDP.

. Objective

The dataset described in the current article is the first available real-world data set for the

DP. Our recent systematic search and mapping review [1] pinpointed that no real-world data

et is available. Even though data sets that correspond to typical operational days, such as [2] ,

re used, they are not disclosed because they are under Non-Disclosure Agreements (NDAs).

https://doi.org/10.17632/b78bc94d95.1
https://data.mendeley.com/datasets/b78bc94d95/1

A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189 3

Moreover, the largest artificial data set [3] contains 192 generated instances that do not corre-

spond to real-world scenarios.

The scope of the collection of the data and publishing them anonymized is to amplify the

research on the CDP. The usage of real instances will enable researchers from fields such as

Operations Research, and Computer Science to develop more robust intelligent techniques to

tackle the several aspects of the CDP. Moreover, researchers and practitioners can extend the

current dataset. For example, they can approximate the value of the various fixed parameters of

the dataset.

In the real-world setting, clients do not always order concrete in advance but also on the

same day. The current data contain several instances with information about intra-day orders.

Thus, researchers can use them to study a dynamic version of CDP, an aspect largely unexplored.

2. Data Description

We split this section into four subsections. The first subsection provides the necessary pre-

liminaries for better comprehensibility of the data set. The second subsection describes the in-

stances. The third subsection describes the complementary data, i.e., data related to the trucks

and the concrete production sites, and the fixed parameters of the problem. Finally, the fourth

subsection briefly describes the MATLAB scripts we provide alongside the data set. The variables’

names are in the italicized font when they occur in the text, e.g., MixCode .

2.1. Preliminaries

The data correspond to the CDP which is a combinatorial optimization problem. In the liter-

ature, several models exist to describe this problem [1] . Among them, most models are based

on graph-based interpretations of the problem, like the Vehicle Routing Problems (VRPs). The

graph in such cases is defined as G = (C, D, A) , where C = { C 1 , C 2 , . . . , C n } is the set of nodes

representing the n construction sites to be served, D = { D 1 , D 2 , . . . , D m

} denotes the set of m

concrete production sites, and A = (i, j| i, j ∈ CD) is the set of arcs, where the arc 〈 i, j 〉 denotes

the vehicle travel from i -th node to j-th node. The graph of CDP is a network of production and

construction sites. In a typical VRP, these sites are the depots and the customer nodes, respec-

tively.

Below, we describe the main features of the problem:

➢ Production Sites, i.e., Plants: the concrete production sites of the network. To improve

comprehensibility by practitioners, from this point further, we use the term Plants to refer

to these nodes of the network. Plants are also the dispatching centers, meaning that all

vehicles are assigned to one of the available plants.

➢ Construction Sites: the places where the concrete is delivered.

➢ Orders: every construction site is associated with one or more concrete orders. For each

order, the client defines the requested volume of concrete, the time when the first delivery

must arrive at the construction site, and the time lag between deliveries.

➢ Demand: the volume of requested concrete for a single order. All values are measured in

m

3 .

➢ Deliveries: usually, the requested concrete volume is significantly larger than the maxi-

mum trucks’ capacity. Therefore, orders are divided into several deliveries.

➢ Time lag between consecutive deliveries: to ensure that each layer of concrete applied

on the construction

➢ Mix Type: several mix types of concrete exist. Based on the construction type, clients

request different concrete mix types.

➢ Concrete delivery trucks: several different capacity trucks used for concrete delivery ex-

ist. Dispatchers choose a truck according to the truck’s capacity.

4 A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189

f

2

C

T

i

a

t

d

c

o

d

Each delivery operation constitutes a sequence of steps [4] :

1. the truck arrives at the Plant to load, or is already at the Plant if it is its Home Plant;

2. the driver places the truck at the loading deck;

3. the truck is loaded with the requested concrete mix;

4. the driver washes the exterior of the truck;

5. the driver transits the loaded truck to the construction site;

6. the driver parks the truck at the proper place; in some cases, a waiting time exists before

this step, if no available unloading dock exists;

7. the concrete is unloaded;

8. the driver pulls away from the unloading place and washes the interior of the truck;

9. finally, the driver transits the empty truck to one Plant; usually, it is the Plant from where

the truck started its trip.

The total operational time for a complete delivery considers all steps described above.

The following subsections describe the dataset content and the MATLAB script we provide

or reproducibility.

.2. Instances

We named the instances according to (a) the number of daily orders, and (b) the type of the

DP variation. i.e., static or dynamic. The CDP variation type comes after a unique serial number.

o create this number, we grouped all instances of the same number of orders, and we put them

n random order to avoid disclosure of any date information. Before the number of orders, we

dded the letter “o” for better comprehensibility. Then, “s” denotes the instances referring to

he static CDP, and “d” denotes the dynamic CDP. For example, the instance named cdp_o2_4s

enotes the fourth instance of two orders that correspond to the static CDP. Each instance file

ontains three .mat files:

1. orders: a table containing the details of each order for the specific day;

2. instance_specs: a structure containing specifications of the problem;

3. prod2constr_matrix: the travelling time matrix for the trips from Plants to Construction

Sites;

4. DistanceMatrix: the corresponding instance’s distance matrix. We elaborate more on that

in Section 3.6 .

The orders table is a n × 9 table, where the number of rows is equal to the n number of

rders requested for the specific day. The columns correspond to the following variables; we

enote the units in parenthesis, when applicable:

➢ OrderDayID: a sequential number used as the ID of the corresponding order. This number

is defined in the interval [1 , n] , where n denotes the number of orders requested for a

specific day.

➢ ClientDayID: a sequential number used as the ID of the corresponding client. The same

client may have placed several orders. In this case, this variable can be used for clustering

the orders. This number is defined in the interval [1 , c] , where c denotes the number of

clients requested concrete for a specific day.

➢ Usage: the type of construction for which the concrete will be used for. This variable

can be used to prioritize deliveries based on the construction type. The variable contains

string values in French.

➢ DefaultLoadSize (m

3): the load per delivery requested by the client. If it equals zero, it

means that the client has not defined the volume of load per delivery.

➢ OrderedQuantity (m

3): the volume of concrete requested by the client.

➢ OrderedTime: the time when the order was placed. This variable is given in the format

hh:mm:ss. In instances corresponding to the static CDP, all values are equal to 0 0:0 0:0 0

A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189 5

denoting that all orders are known before the corresponding operational day. Otherwise,

the time denotes the specific time that the order is placed within the day.

➢ ExpectedDeliveryTime: the time when the client requested to receive the concrete. This

variable is given in the format hh:mm:ss.

➢ LoadInterval (min): the requested interval between two consecutive deliveries.

➢ MixCode: a unique ID corresponding to different concrete mixes.

The MixCode variable denotes different concrete mixes. Each Mix ID corresponds to a spe-

cific mix type. However, to eliminate any information under NDA, we converted the MixCode to

a pseudoID. i.e., a sequential number. This number is defined in the interval [1 , ct] , where ct

denotes the maximum number of available mix types in the current data set.

We provide a comprehensive description of the orders table’s variables in Table 1 , below.

Table 1

Description of the orders table.

Variable Type Data Type Units

OrderDayID Nominal Integer –

ClientDayID Nominal Integer –

Usage Nominal String –

DefaultLoadSize Numeric Float m

3

OrderedQuantity Numeric Float m

3

OrderedTime Date Datetime –

ExpectedDeliveryTime Date Datetime –

LoadInterval Numeric Integer min

MixCode Nominal Integer –

An important aspect of the CDP is the number of required deliveries for each order. The

number of deliveries affects the solution to the problem. To calculate the maximum number of

required deliveries for an order, three cases exist:

(a) The client has defined a DefaultLoadSize , meaning they requested a specific concrete

volume to arrive at each delivery. In this case, we use the following equation:

maxNof Del i v erie s C 1 =

⌈
Ord ered Quant it y C 1
De faul tLoadSiz e C 1

⌉
(1)

where C 1 denotes the set of clients that have defined a DefaultLoadSize.

(b) The client has not defined a DefaultLoadSize , and the OrderedQuantity exceeds the De-

faultQuantityPerTrip . The DefaultQuantityPerTrip is a fixed concrete volume sent when the

client does not specify the desired volume per delivery. In that case, the maximum num-

ber of deliveries is calculated as:

maxNof Del i v erie s C 2 =

⌈
Ord ered Quant it y C 2

De faul t Quant it yPerT rip

⌉
(2)

where C 2 denotes the set of clients that have not defined a DefaultLoadSize , and their Or-

deredQuantity exceeds the DefaultQuantityPerTrip .

(c) The client has not defined a DefaultLoadSize , but the OrderedQuantity does not exceed

the DefaultQuantityPerTrip . In that case, the number of required deliveries is equal to

one. Several trucks can perform the delivery. According to our industrial partner, it is a

common practice to use a bigger capacity truck than required to fulfill such orders.

The structure instance_specs contains the following fields which provide information regard-

ing the instance:

➢ number_of_Orders: the total number of orders on a corresponding day.

➢ TotalConcreteQuantityOrdered: the total ordered concrete quantity in m

3 .

6 A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189

t

s

2

l

p

fi

i

e

s

i

C

i

t

The matrix prod2constr_matrix corresponds to the submatrix P2C which is described in de-

ail in Section 3.5 . This submatrix contains the travelling times for the trips from Plants to Con-

truction Sites.

.3. Complementing Data

Apart from the instance files, we include data regarding the typical information of the prob-

em, such as fleet data, Plants data, and fixed parameters corresponding to assumptions of the

roblem.

The file Fleet_data.mat contains the necessary information regarding the fleet of trucks. The

le contains two tables:

➢ AvailableTrucksPerPlant: a 8 × 24 table containing the number of trucks of a specific

capacity at each plant. The rows denote the eight (8) plants to which the data correspond.

The 24 columns denote the different types of trucks’ capacity.

➢ ConcreteDeliveryTrucks: this table contains the information for all available concrete de-

livery trucks in the fleet. Specifically, it includes three variables:

(1) ID: a sequential number used for each truck. This number is defined in the interval

[1 , k] , where k denotes the maximum number of concrete trucks in the fleet.

(2) Capacity (m

3): the capacity of the corresponding truck.

(3) HomePlant: the ID of the truck’s Home Plant. This variable’s values correspond to

the pseudoID included in the Plants’ tables, as explained below.

The file Plants.mat contains information regarding the concrete production sites. Specifically,

t contains two fields:

➢ LoadingRates: a table with the mean loading rate at each Plant. The table contains two

variables: (a) a pseudoID for each Plant, and (b) its mean loading rate. The pseudoID is a

sequential number defined in the interval [1 , d] , where d denotes the maximum number

of Plants in the current data set.

➢ plants_travelling_matrix: the matrix consisting of the travelling times for the trips from

Plant to Plant.

The ProblemParameters.mat is a structure containing the fixed parameters’ values consid-

red in case of missing data or inadequate information. For example, the pumps at each Con-

truction Site may differ; thus, the unloading time varies. However, the clients do not provide

nformation on the pump type at the Construction Site. Therefore, the unloading time at the

onstruction Site cannot be calculated. In this case, a fixed value exists, i.e., the DefaultUnload-

ngTime , which is 10 min. The values included in the structure are the following, where in paren-

hesis we denote the units, if applicable:

➢ DefaultQuantityPerTrip (m

3): in case the client did not specify the quantity of concrete

to receive at each delivery, this fixed value denotes that the order is split into deliveries

of 7.5 m

3 by default. We elaborate more on that, below.

➢ DefaultLoadingTime (min): it defines a default loading time at the Plant. This value can

be used when no information regarding a Plant’s loading rate exists.

➢ DefaultPlantCleaningTime (min): this parameter defines a default cleaning time at the

Plant.

➢ DefaultUnloadingTime (min): the unloading time at the Construction Site depends on the

on-site pump. However, the clients do not provide information on the pump type or its

unloading rate. Thus, this parameter defines a default unloading time. Note also that an-

other way to approximate the unloading time is the requested time lag between deliver-

ies. According to our project’s industrial partner, the clients specify the time lag between

deliveries according to the required time to unload a truck. This practice ensures that the

next truck will arrive while the previous one finishes unloading and thus, waiting times

on-site are minimized.

A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189 7

➢ CleaningTimeAtTheDefaultSite (min): this parameter defines a default cleaning time at

the Construction Site.

➢ DriversPreparationTime (min): this parameter denotes the default preparation time re-

quired for the driver before leaving the Plant.

➢ GoogleTravelTimeMultiplier: this is the coefficient to calculate the truck’s travelling time

between two locations. The travelling time between two locations given by Google API

approximates the time required to travel by car. Thus, the corresponding time for a truck

is calculated as:

t t truck
i j = t t car

i j · GT T M (3)

where t t truck
i j

is the truck travelling time from location i to location j, t t car
i j

is the corre-

sponding car travelling time, and GTTM denotes the GoogleTravelTimeMultiplier .

➢ DriverBreakTime (min): the driver’s break time according to the local unions.

➢ DriverMealTime (min): the driver’s mealtime according to the local unions.

According to our industrial partner, a predefined quantity to split the order into deliver-

ies, i.e., the DefaultQuantityPerTrip , is associated with the capacity of the trucks used more of-

ten for concrete delivery. This type of truck has a capacity of 7.5 m

3 . Indeed, looking at the

Fleet_data.mat, we calculated that approximately 24% of the fleet corresponds to trucks with a

capacity of 7.5 m

3 . Note that in case the client did not specify the quantity of concrete to receive

at each delivery and the order refers to a quantity less than 7.5 m

3 , this default value stands as

well. The reason is that it is common for concrete producers to not fully load trucks, according

to the industrial partner. However, it is also possible to use a truck with a capacity less than 7.5

m

3 in case the client did not specify the quantity of concrete to receive at each delivery and the

order refers to a quantity less than 7.5 m

3 .

2.4. MATLAB Scripts

We provide several MATLAB scripts along with the data. We used these scripts for data pro-

cessing. Some of our scripts refer to parts of the raw data that we cannot disclose. Therefore, in

that case, we provide a snippet of the code in the relevant subsection of our article.

The provided MATLAB scripts are the following:

➢ convertingDownloadedTimes2TravellingTimes: which processes the raw times from an

excel file corresponding to travelling times between Production Sites and Plants to convert

them to minutes. More details are given in Section 3.5 .

➢ calculateNumberOfTrucksPerPlant: which calculates the number of trucks of a specific

capacity at each Plant. We describe this script’s functionality at the end of Section 3.3 .

➢ convertTravellingTimeMatrix_2_DistanceMatrix: which converts a given travelling time

matrix to a distance matrix. We provide this script for researchers who study the CDP

considering a distance matrix, as usual in Vehicle Routing Problems. Our dataset contains

travelling times instead of distances. We explain the script’s functionality in Section 3.6 .

Apart from them, we used several MATLAB codes for processing the data. In the next sec-

tion, we provide parts of these codes. Two reasons exist why we cannot provide the full codes

presented in Section 3 : (a) the original script includes codes that fall within the NDA, or (b) the

code cannot be used without the raw data. In the second case, we provide the code for better

comprehensibility of the methods performed to process the raw data.

3. Experimental Design, Materials and Methods

We formed the current dataset by processing the raw data provided by the industrial partner

of the funded Mitacs project IT25421. Most of the raw data is sensitive and cannot be shared

http://dx.doi.org/10.13039/501100004489

8 A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189

d

m

a

e

S

t

c

c

t

3

f

3

d

O

a
ue to a Non-Disclosure Agreement (NDA). Therefore, we processed the given dataset and re-

oved any information that could reveal sensitive information, such as the address of Plants

nd Construction Sites, the ID of clients, and the job number associated with each order.

After the removal of sensitive data, we removed any non-essential entries, such as incomplete

ntries. Then, we split the orders dataset into instances according to the expected delivery date.

Regarding the Plants and Fleet data, we removed any entries not related to the problem.

pecifically, we kept in the dataset only the concrete production Plants and the concrete delivery

rucks, respectively. Concrete producers also own sites with other materials, such as lime and

rushed stone. We excluded the information related to those sites from the data. Moreover, these

ompanies own several types of trucks but not all of them deliver concrete. We also excluded

he information related to non-concrete delivery trucks from the data.

.1. ID-Oriented Variables

In general, any information that contains an ID number is sensitive and should be omitted

rom the public data set. Therefore, we created a pseudoID to replace ID-oriented variables.

.1.1. Related to the Orders

The OrderDayID , the ClientDayID , and the MixCode are sensitive information that we cannot

isclose. Therefore, we processed these variables by converting them to sequential numbers. For

rderDayID and ClientDayID , the sequential number corresponds to unique orders and clients of

 specific day, respectively. Fig. 1 depicts the process followed for OrderDayID and ClientDayID .
Fig. 1. MATLAB code to replace the OrderDayID and the ClientDayID with pseudo numbers.

A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189 9

The code’s input is the instance’s orders table. The output is the updated corresponding table

where the OrderID and ClientNumber have been replaced by the pseudo numbers OrderDayID

and ClientDayID , respectively.

For the MixCode , we used the full list of concrete mix codes to create a pseudocode.

Fig. 2 shows part of the MATLAB code used to create a list of pseudo numbers correspond-

ing to unique Mix Descriptions. As a first step, we process the concrete mix codes to replace

the NaN values. We exclude entries that their MixDescription matches an existing MixCode . This

step is not shown in Fig. 2 because it contains sensitive information. Then, we locate the unique

MixDescriptions that are associated with NaN values of MixCode to replace them with some arti-

ficial MixCodes . After that, we follow a process similar to the one used for the OrderDayID and

ClientDayID .

Fig. 2. MATLAB code to create pseudo mix codes.

3.1.2. Related to the Fleet

The same applies to the trucks’ IDs. We cannot disclose this information. Therefore, we cre-

ated a sequential number to use as a pseudoID of the corresponding truck.

Furthermore, we replaced the actual Plants’ ID with a pseudoID and we used them in the

HomePlant variable denoting the trucks’ Home Plant, i.e., home depot.

Details about both cases are provided in Section 3.3 .

10 A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189

3

T

m

b

i

e

r

D

0

t

i

a

e

i

n

g

.2. Ordered Date and Expected Delivery Date

Two variables in the raw orders table denote dates, i.e., EnteredDate and ExpectedDeliveryDate .

he data of both variables matched the format dd-mmm-yyyy hh:mm:ss. However, the day, the

onth, and the year of the order fall within the NDA. Therefore, we omit this information from

oth variables, and the format of the outcome is hh:mm:ss, i.e., only the time information which

s required for the problem.

Before applying this format transformation, we search for previous-day orders. If such orders

xist, we replace their values with the start of the current day, i.e., the day to which the instance

efers to. For example, if the EnteredDate is equal to ’13-Mar-2013 13:28:25 ′ and the Expected-

eliveryDate is equal to ’08-Apr-2013 12:30:00 ′ , we replace the EnteredDate with ’08-Apr-2013

 0:0 0:0 0 ′ . In that way, we denote that the corresponding order is known at the beginning of

he day.

Fig. 3 provides the MATLAB code used to process the two variables, as mentioned above. The

nput for this code is the orders table. The output is the same table, but the variables EnteredDate

nd ExpectedDeliveryDate have been processed and renamed to OrderedTime and ExpectedDeliv-

ryTime , respectively.

Fig. 3. MATLAB code for processing the EnteredDate and the ExpectedDeliveryDate .

Note that in the above code, we include a step where we manipulate the EnteredDate when

t is later than the ExpectedDeliveryDate in the raw data. This inconsistency in the data does

ot occur very often but it is necessary to catch such errors in the raw data to ensure that the

enerated instances contain feasible solutions.

A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189 11

3.3. Fleet Information

Because we cannot disclose any information about the trucks owned by the industrial part-

ner, we processed the available data to include as much important information as possible. After

excluding sensitive information, we kept three variables: (a) the truck’s ID, (b) the truck’s capac-

ity, and (c) the truck’s home Plant. Then, we converted the truck’s ID and the ID of its home

Plant to pseudoIDs. Fig. 4 presents the part of the MATLAB script used to process the fleet data.

ActualPlantID denotes a vector containing the actual Plants’ ID from the raw data. We do not

disclose the part of the code where we create the vector because the IDs contain sensitive data.

The code’s input is the raw fleet data included in the table TrucksInPlants , which are not pro-

vided. The output is the table ConcreteDeliveryTrucks that is included in the Fleet_data.mat of

the current data set.

Fig. 4. MATLAB code for creating pseudoIDs for trucks and their Home Plants.

We also calculated the number of trucks of a specific capacity at each Plant. This matrix may

be more useful for researchers and practitioners than the table ConcreteDeliveryTrucks . Indeed,

instead of searching the table ConcreteDeliveryTrucks for available vehicles in a specific Plant,

researchers can use a logical matrix based on the matrix AvailableTrucksPerPlant . The MATLAB

script calculateNumberOfTrucksPerPlant.m calculates the number of trucks of a specific capacity

at each Plant.

3.4. Plants’ Loading Rates

The industrial partner provided us with the minimum and maximum estimated loading rate

per Plant. We used those rates to calculate the mean loading rate as:

meanLoadingRate =

maxLoadingRate − minLoadingRate

2
(4)

Note that each Plant has one loading dock. However, the dataset can be extended to study

the Multi-dock Plant CDP, i.e., a case where more than one loading docks exist at the Plants.

The research group which will perform such an extension, should collect data from concrete

production companies and define the number of loading docks at each Plant. This number can

be defined as a random number in the interval [1 , LD] , where LD is the maximum number of

loading docks that occurs in the collected data. Each dock can have the same mean loading rate

calculated by Eq. (4) .

12 A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189

3

w

t

i

G

o

d

t

i

o

p

i

P

s

f

c

D

i

d

A

.5. Travelling Times Matrix

In VRPs, the distance or travelling matrix is essential because it denotes the travelling cost

hen traversing an arc of the problem’s graph. In our dataset, we use the travelling matrix as

he travelling cost from node i to node j. This is because one of the objectives considered in the

ndustrial application we study is the minimization of total travelling time.

To collect the travelling times corresponding to the nodes of each instance, we used the

oogle API. At this point, we should note that the data correspond to a static interpretation

f the CDP. Meaning that the travelling times are calculated once, and we assume this time

oes not change. Two options exist to solve the problem dynamically or consider external fac-

ors such as traffic. The first one is to consider travelling times as fuzzy sets. The second one

s to download the travelling times in real time and update the matrix every time an incident

ccurs. In our case, we derived the travelling times calculated by Google API to create a com-

rehensive benchmark dataset containing real data. The travelling times matrix of each instance

s composed of four submatrices, as shown below in Fig. 5 .

Fig. 5. Visualization of the submatrices composing the travelling times matrix for the problem.

The submatrix P2P contains fixed values because the distance between Production Sites, i.e.,

lants, is fixed. Therefore, we calculated the travelling times once.

The submatrix C2P is the transposed matrix of the submatrix P2C because we consider a

ymmetric CDP, i.e., the travelling time from node i to node j is equal to the travelling time

rom node j to node i . Therefore, to decrease the number of requests to the Google API, we

alculated only the P2C submatrix for each instance.

First, we appended the information of three variables from the raw data, i.e., DeliveryStreet,

eliveryCity , and DeliveryState , to form the complete address information for each order in the

nstance. The travelling times have been calculated with Google API, the service used by the in-

ustrial partner and their customers. We saved the outcome in Excel files for further processing.

n example of the travelling time matrix outcome is given in Table 2 .

A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189 13

Table 2

Example of travelling times outcome from Google API.

1 hour 35 mins 1 hour 16 mins 37 mins 47 mins 55 mins 1 hour 42 mins 25 mins 37 mins

1 hour 18 mins 1 hour 14 mins 11 mins 34 mins 53 mins 1 hour 37 mins 11 mins 11 mins

52 mins 33 mins 38 mins 16 mins 13 mins 59 mins 52 mins 38 mins

48 mins 34 mins 40 mins 28 mins 17 mins 1 hour 1 min 53 mins 40 mins

1 hour 23 mins 1 hour 13 mins 14 mins 36 mins 52 mins 1 hour 39 mins 8 mins 14 mins

48 mins 35 mins 41 mins 31 mins 20 mins 1 hour 1 min 54 mins 41 mins

1 hour 45 mins 1 hour 46 mins 46 mins 1 hour 10 mins 1 hour 26 mins 2 hours 4 mins 30 mins 46 mins

To convert the above matrix into a numerical matrix, we used the MATLAB script convert-

ingDownloadedTimes2TravellingTimes.m . Initially, we remove the text “min”, or “mins”, and alter

the “hour”, or “hours” into “:” to convert the cells in the format hh:mm. In case no hour value

exists, e.g., “52 mins”, we append “0:” to match the format. Then, we apply a datetime format

and calculate the travelling time in minutes as:

t t mins = hh × 60 + mm +

ss / 60 (5)

where hh , mm , and ss denote the hours, the minutes, and the seconds in the datetime, respec-

tively. t t mins denotes the outcome, i.e., the corresponding travelling time in minutes. The result

of the above example can be seen in Table 3 , below.

Table 3

Example of converted travelling times from Google API to numerical values (minutes).

95 76 37 47 55 102 25 37

78 74 11 34 53 97 11 11

52 33 38 16 13 59 52 38

48 34 40 28 17 61 53 40

83 73 14 36 52 99 8 14

48 35 41 31 20 61 54 41

105 106 46 70 86 124 30 46

Finally, the submatrix C2C denotes the travelling times between Construction Sites. These

trips are prohibited in CDP. Therefore, this submatrix can be formed by zeros or infinite values

according to the implementation of the algorithm used to solve the problem.

Once the final Travelling Times Matrix (TTM) is constructed, it should be multiplied by the

parameter GoogleTravelTimeMultiplier :

T T M ← T T M × GT T M (6)

where GTTM denotes the GoogleTravelTimeMultiplier . Note that we use the assignment symbol

← in Eq. (6) to show that the updated matrix replaces the initial one.

3.6. Distance Matrix

In addition to the travelling matrix, we also provide the corresponding distance matrix, cal-

culated as the product of the travelling time matrix and the average truck’s speed v elocity truck .

The calculation is described as:

d i j = t t i j × v elocity truck (7)

where d i j denotes the distance between nodes i and j, and t t i j denotes the travelling time be-

tween nodes i and j.

The MATLAB script convertTravellingTimeMatrix_2_DistanceMatrix.m contains the complete

process for the conversion from the travelling time matrix to the corresponding distance ma-

trix. Initially, the script constructs the travelling time matrix according to the schema provided

in Fig. 5 . Note that in this case, multiplying with the GoogleTravelTimeMultiplier as described in

14 A. Tzanetos and M. Blondin / Data in Brief 48 (2023) 109189

E

c

s

a

n

d

w

E

d

p

D

t

C

D

B

A

R

[

[

[

[
q. (6) is not required because we used an approximation related to regular vehicles, not con-

rete trucks. In the provided MATLAB script, we use the value 0 . 36 km / m

as the average truck’s

peed. However, we provide the option for the user to set a different average truck speed. We

pproximated the above value by calculating several average speed values as:

v̄ i j =

d i j

t t i j

(8)

Where v̄ i j denotes the calculated average vehicle speed, d i j denotes the distance between

odes i and j, and t t i j denotes the travelling time between nodes i and j. We collected several

istances and travelling times from Google API to calculate multiple average speed values. Then,

e computed the mean of these values to come up with the value used in our script.

thics Statements

This work meets the requirements of ethics as stated in (https://www.elsevier.com/journals/

ata- in- brief/2352- 3409/guide- for- authors) and (https://www.elsevier.com/about/policies/

ublishing-ethics#Authors). This work also does not involve studies with animals and humans.

eclaration of Competing Interest

The authors declare that they have no known competing financial interests or personal rela-

ionships that could have appeared to influence the work reported in this paper.

RediT Author Statement

Alexandros Tzanetos: Conceptualization, Methodology, Software, Validation, Investigation,

ata curation, Visualization, Writing – original draft, Writing – review & editing; Maude

londin: Supervision, Writing – review & editing.

cknowledgments

This work was supported by Mitacs Project IT25421 .

eferences

1] A. Tzanetos, M. Blondin, Systematic search and mapping review of the concrete delivery problem (CDP): formula-
tions, objectives, and data, Autom. Construct. 145 (2023) 104631, doi: 10.1016/j.autcon.2022.104631 .

2] M. Maghrebi, T.S. Waller, C. Sammut, Scheduling concrete delivery problems by a robust meta heuristic method, in:
2013 European Modelling Symposium, 2013, pp. 375–380, doi: 10.1109/EMS.2013.64 .

3] J. Kinable, T. Wauters, G. Vanden Berghe, The concrete delivery problem, Comput. Oper. Res. 48 (2014) 53–68, doi: 10.
1016/j.cor.2014.02.008 .

4] M. Durbin, K. Hoffman, OR PRACTICE—the dance of the thirty-ton trucks: dispatching and scheduling in a dynamic

environment, Oper Res. 56 (2008) 3–19, doi: 10.1287/opre.1070.0459 .

https://www.elsevier.com/journals/data-in-brief/2352-3409/guide-for-authors
https://www.elsevier.com/about/policies/publishing-ethics#Authors
http://dx.doi.org/10.13039/501100004489
https://doi.org/10.1016/j.autcon.2022.104631
https://doi.org/10.1109/EMS.2013.64
https://doi.org/10.1016/j.cor.2014.02.008
https://doi.org/10.1287/opre.1070.0459

	Real operational data for the concrete delivery problem
	Value of the Data
	1 Objective
	2 Data Description
	2.1 Preliminaries
	2.2 Instances
	2.3 Complementing Data
	2.4 MATLAB Scripts

	3 Experimental Design, Materials and Methods
	3.1 ID-Oriented Variables
	3.1.1 Related to the Orders
	3.1.2 Related to the Fleet

	3.2 Ordered Date and Expected Delivery Date
	3.3 Fleet Information
	3.4 Plants’ Loading Rates
	3.5 Travelling Times Matrix
	3.6 Distance Matrix

	Ethics Statements
	Declaration of Competing Interest
	CRediT Author Statement
	Acknowledgments
	References

