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1 |  INTRODUCTION

Cancer is the second- leading cause of death in North 
America with the most common types being the cancer 
of lung, breast, and prostate.1 Radiation therapy (RT), 
chemotherapy, surgery or their combination are used 
to control the disease. Approximately 50% of all cancer 
patients undergo RT during the course of their illness,2 
which makes RT a crucial component of cancer treat-
ments. Technological innovations have driven the transi-
tion from conformal RT to intensity- modulated radiation 
therapy (IMRT) resulting in significant improvements 
in the twofold dosimetric goal of preferentially sparing 

critical organs- at- risk (OARs) while improving high dose 
conformity to the target. Furthermore, algorithmic ad-
vancements have also played major roles in enhancing 
the efficiency of RT treatments. These include the transi-
tion from forward treatment planning to inverse treatment 
planning approaches and extension of static field IMRT 
to volumetric- modulated arc therapy (VMAT). However, 
despite the use of complex inverse optimization algo-
rithms, an inverse planning approach typically demands 
a large amount of manual effort and considerable skills 
to generate a high- quality treatment plan with the de-
sired dose distribution. This process often spans several 
days between patient simulation and when RT begins.
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Abstract
This paper surveys the data- driven dose prediction methods investigated for 
knowledge- based planning (KBP) in the last decade. These methods were clas-
sified into two major categories— traditional KBP methods and deep- learning 
(DL) methods— according to their techniques of utilizing previous knowledge. 
Traditional KBP methods include studies that require geometric or anatomical 
features to either find the best- matched case(s) from a repository of prior treat-
ment plans or to build dose prediction models. DL methods include studies that 
train neural networks to make dose predictions. A comprehensive review of each 
category is presented, highlighting key features, methods, and their advance-
ments over the years. We separated the cited works according to the framework 
and cancer site in each category. Finally, we briefly discuss the performance 
of both traditional KBP methods and DL methods, then discuss future trends of 
both data- driven KBP methods to dose prediction.
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To improve the treatment planning efficiency, data- 
driven treatment planning approaches have been in-
vestigated that use knowledge from prior cases to 
predict the outcome of a new case. For example, this 
concept was utilized by researchers over a decade 
ago in the form of knowledge- based planning (KBP) 
to predict dose in radiotherapy treatment planning.3 In 
this review, we group data- driven KBP methods into 
two major categories: I) Traditional KBP methods II) 
Deep learning (DL)- based KBP methods. Traditional 
KBP includes methods that utilize various anatomical 
and geometrical features (distance to target structures, 
volumes of target, and OAR structures, etc.) to build a 
mathematical or statistical model that is then used to 
predict various dosimetry features (i.e., dose– volume 
metrics, dose– volume histogram (DVH), spatial dose 
distribution, etc.) for a new case.4 Traditional KBP 
methods have been widely investigated in the last de-
cade and have also been clinically implemented. The 
commercial software RapidPlanTM is one example of 
the KBP module based on a traditional method, which 
was released in 2014 by Varian Medical Systems 
(Varian Medical Systems). The traditional KBP meth-
ods include atlas- based, statistical modeling, and ma-
chine learning (ML) methods. In general, traditional 
KBP methods utilize geometric features (i.e., OAR dis-
tance to the planning target volume (PTV) and OAR 
overlap volume histogram (OVH)) either to find the 
best- matched prior case(s) from a repository or to build 
dose prediction models (i.e., ML, statistical model). In 
this review, ML- based methods are included in the tra-
ditional KBP category as ML follows a similar frame-
work to traditional KBP methods in terms of inputs 
(handcrafted geometric and anatomical features) and 
outputs (DVH metrics).

Prior to the investigations of DL for the dose pre-
diction task, DL had been extensively studied for 
various imaging tasks including image registration, 
segmentation, etc., in which DL methods have gained 
considerable momentum, outperforming many of the 
existing state- of- art techniques.5– 21 The enhanced per-
formance of DL in imaging and vision tasks can be at-
tributed to the design of a convolutional neural network 
(CNN), a class of deep neural networks (DNN) with reg-
ularized multilayer perceptron.22 In the past few years, 
researchers have investigated various DL network ar-
chitectures for KBP. As an example, U- Net,23 originally 
designed for image segmentation, has recently been 
used to predict the radiation dose distribution without 
the need for the complex dose calculations routinely 
used for treatment planning.24– 27 In contrast to tradi-
tional KBP methods that use handcrafted features, DL 
methods can automatically learn image features that 
are tailored to the specific prediction task from the raw 
data (i.e., CT, contour, dose map, etc.) Therefore, a key 
difference between traditional and DL- based KBP is 
the way in which previous knowledge is utilized.

KBP research is expanding exponentially, and while 
there are excellent review papers in publication, this 
current review is needed to address recent advance-
ments in dose prediction methods. Previous review pa-
pers are limited to only traditional KBP methods,28,29 
multicriteria optimization methods,30 and multicriteria 
optimization as well as traditional KBP methods31 for 
automatic treatment planning. Another review provided 
a semi- comprehensive review of 62 publications in-
cluding both machine learning and DL- based methods 
for automatic treatment planning; however, this study 
is not specific to the dose prediction task and also in-
cludes articles on other delivery parameters (i.e., beam 
orientation, arc lengths, etc.).32 In comparison to previ-
ous review papers, this work focuses solely on the dose 
prediction task and presents a comprehensive review 
by separating over 120 publications on data- driven KBP 
methods published by August 2020 into two categories: 
the traditional KBP methods and the recently emerging 
DL- based methods. For each category, we first pres-
ent a review of key features and methods (i.e., OVH, 
distance to target histogram (DTH) in traditional KBP 
methods, and different neural networks in DL- based 
methods). Subsequently, we present the literature on 
outcomes of KBP methods according to the influence 
of various clinically applicable parameters (i.e., outliers, 
data inconsistency, sample size, treatment planning ef-
ficiency and site, multi- modality, and multi- institutional 
investigations). Finally, we discuss the advantages and 
challenges of each KBP method, followed by an as-
sessment of potential future trends in data- driven dose 
prediction methods. Therefore, this current review dif-
ferentiates itself from previous review papers by the 
large number of articles covered including more recent 
publications, the summary of key features, and meth-
odological differences between the published methods, 
and the focus on the dose prediction task.

2 |  METHODS

2.1 | Article search and selection

We queried papers from Elsevier Scopus®, Web of 
Science, PubMed, Google Scholar, and medical phys-
ics category of arXiv.org using logical statements that 
included the following keywords: knowledge- based 
treatment planning, machine learning, deep learning, 
dose prediction, RapidPlan®, treatment planning au-
tomation, artificial neural network, convolutional neu-
ral network, and generative adversarial network. Only 
peer- reviewed KBP research articles were included in 
this review. Each research article from the literature 
search was manually sorted based on the informa-
tion presented in the abstract, which was followed by 
a further in- depth review of the article. This review fo-
cuses on external beam therapies (e.g., IMRT, VMAT, 
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Tomotherapy, Proton), while manuscripts on brachy-
therapy and patient- specific quality assurance were 
excluded. Articles on dose prediction tasks were se-
lected for this review. Dose prediction is a broad term 
that includes the prediction of the entire DVH curve, 
specific dose metrics (e.g., dose– volume value, mean, 
max dose), voxel dose, spatial dose distribution (either 
2D or 3D), objective weights/constraints based on pre-
vious knowledge and the transfer of these metrics to a 
new case for planning.

3 |  RESULTS

Figure 1 shows the number of publications per 
year (Figure 1a) as well as cumulative publications 
(Figure 1b) for both traditional KBP and DL- based dose 
predictions until August 2020. Between 2009 and 2014, 
there was a gradual increase in the number of publica-
tions (Figure 1b) in what appears to be the initial devel-
opment stage of traditional KBP- based methods. The 
cumulative publication curve (Figure 1b) demonstrates 
an increased rate in the number of traditional KBP- 
based articles between 2015 and 2018. Between 2018 
and 2020, most studies on traditional KBP methods 
have been based on a commercial KBP module rather 
than further development of earlier ML or statistical 
methods.33– 45 This is certainly not because traditional 
KBP methods have been fully explored, but presum-
ably due to the wider availability of a commercial KBP 
module in clinical practice and increased interest in 
exploring DL methods owing to their recent success in 
achieving state- of- the- art performance in many medical 

applications. In recent years, a wide array of research 
on developing new prediction models has transitioned 
from traditional KBP methods to DL KBP methods.

In the past few years, the number of publications 
on DL- based image processing has increased expo-
nentially. More recently, researchers have applied DL 
methods to dose prediction tasks. In the last 4 years, 
the number of publications on DL- based dose predic-
tions has increased from 1 in 2016 to 17 as of August 
2020 as shown in Figure 1a. This recent trend shows 
an increased rate of publications on DL- based versus 
traditional KBP methods.

3.1 | Knowledge- based planning

This section includes a review of over 92 articles only 
on traditional KBP- based dose prediction methods. We 
separate these articles based on three dose prediction 
metrics: I) prediction of the entire DVH (Table 1), II) pre-
diction of one or more dose– volume metrics (Table 2), 
and III) the voxel- based dose prediction (Table 3). The 
articles listed in Table 1 aim to predict the entire DVH 
for a new patient case and utilize the predicted DVHs to 
guide the treatment planning. Commercially available 
software (i.e., RapidPlanTM) estimates DVHs and gen-
erates optimization objectives for a new plan as shown 
in Table 1. Table 2 summarizes the articles that predict 
one or more dose metrics used to guide treatment plan-
ning for a new case. Table 3 lists the publications that 
predict the voxel- level dose distributions to either assist 
in plan optimization or automatically generate a new 
plan for treatment delivery.

F I G U R E  1  The number of dose prediction publications per year (a) and cumulative number of publications (b) on traditional and DL- 
based KBP methods
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Atlas- based and model- based methods are the two 
most common traditional KBP techniques for dose pre-
diction (Tables 1- 3). Briefly, in atlas- based approaches, 
physical features (e.g., OVH, beam's eye view projec-
tions, tumor location) are first identified to determine 
the similarity between prior clinical plans and a new 
patient plan. This is followed by transfer of knowledge 
(i.e., dose constraints, DVH values, beam geometrical 
parameters, DVHs of best- matched cases) to predict 

achievable DVHs of a new case or to provide a bet-
ter starting point to a treatment planner for further trial- 
and- error optimization. Within atlas- based methods, 
an indirect approach selects matching cases based on 
the dosimetric parameters predicted through models. 
In contrast, a direct approach compares the similarity 
between the old and new patient based on features of 
the plan (i.e., DVHs), CT images or beam's eye view 
(BEV) projections of structures, and adopts planning 

TA B L E  1  Traditional KBP studies aimed to predict dose– volume histograms (DVHs) for providing a starting point for the plan 
optimization process

Ref. Method Approach/Model Key features Purpose

46 MB Support Vector 
Regression

Organ volumes, shape 
and DTH

To model functional relationship between 
DVH and patient anatomical shape 
information.

4 MB Fitting using least square 
min.

OAR distance to PTV To translate key feature correlation to 
mathematical relationships between OAR 
geometry and expected dose.

47 MB Stepwise multiple 
regression

DTH To build feature models to identify the 
variation of anatomical features 
contributing to OAR dose sparing.

48 MB Stepwise multiple 
regression

Target, OARs, overlap 
volumes and DTH

Extension of Yuan et al. for intra- treatment- 
modality model (IMRT –  Tomotherapy)

49 MB Stepwise multiple 
regression

Target, OARs, overlap 
volumes and DTH, 
fraction of OAR 
outside treatment 
field

To build two predictive models (single- 
sparing and standard model) to 
characterize the dependence of parotid 
dose sparing on patient anatomical 
features in the summed (primary + boost) 
plan, rather than two completely separate 
models.

50 AB Direct Overlapping volume To select a reference plan from a library of 
clinically approved/delivered plans with 
similar medical conditions and geometry

51 AB Direct PTV shape, volume, 
three spherical 
coordinates of PTV 
with respect to OAR 
OVH

To develop a knowledge- driven decision 
support system to assist clinicians to pick 
plan parameters and assess radiation 
dose distribution for a perspective patient

52 MB Kernel Density Estimate Distance to PTV To develop an automated treatment planning 
solution that iteratively

1. optimize training set
2. predicts DVHs for OARs
3. generates clinically acceptable plans

53 MB Ensemble Anatomical features, 
DTH

To combine strengths of various linear 
regression models to build a more robust 
model

54 MB K- nearest neighbors Generalized- DTH To characterize DVH variance in multiple 
target plans

33– 40,42,55– 78 RapidPlanTM Eclipse® treatment planning 
software:

Algorithm is divided into two components: 
1) Model configuration and 2) DVH 
estimation.

1. Mode configuration is divided into data 
extraction phase and model training phase

2. DVH estimation consists of DVH 
estimation phase and objective generation 
phase

Abbreviations: AB, atlas- based (Direct or Indirect method); DTH, distance- to- target histogram; MB, model- based; OVH, overlap volume histogram.



20 |   MOMIN et al.

parameters of the best match matching cases. In model- 
based approaches, statistical or ML models are trained 
using prior treatment plans. These methods require 
careful design and selection of handcrafted features 
such as PTV- OAR overlap volume, OVH values, OAR 
distance- to- PTV to predict DVH, one or more dose– 
volume metric or voxel- level dose distribution by differ-
ent regression models as summarized in Tables 1- 3.

Figure 2 demonstrates the total number of investiga-
tions on traditional KBP methods for various treatment 
sites. Prostate, head and neck, and lung cancers were 
among the most frequently investigated disease sites, 
whereas very few studies investigated disease sites in 
the abdomen, brain, and or the more challenging hemi- 
thoracic pleural anatomy.

In Section 3.1.1, we briefly discuss a key concept of 
traditional KBP methods. Since different geometric and 

anatomical features play a major role in traditional KBP- 
based methods (Tables 1- 3), we present a review of 
the most common features/metrics and their advance-
ments over the years in Section 3.1.2. In Section 3.1.3, 
we present literature on the outcomes of KBP methods 
according to the influence of various clinically relevant 
parameters (i.e., outliers, data inconsistency, sam-
ple size, treatment planning efficiency and site, multi- 
modality, and multi- institutional reports).

3.1.1 | Dimensionality reduction

The high dimensional input feature space can be re-
dundant, irrelevant, and correlated, which may result 
in inefficient training, model overfitting, reduced ac-
curacy, and reduced generalizability of the model. 

TA B L E  2  Traditional KBP studies aimed to predict one or more dose metrics for providing a starting point for the plan optimization 
process

Ref. Method Approach/Model Key features Purpose

79 MB Support vector 
regression

OAR, DV constraint settings To create an accurate IMRT plan surface as 
a decision support tool to aid treatment 
planners

80 AB Direct Clinical stage, and Gleason 
score

To update the weights of the difference clinical 
parameters for a new patient through a 
group- based simulated annealing approach

81 AB Direct OVH To use geometric and dosimetric information 
retrieved from a database of previous plans 
to predict clinically achievable dose– volume 
metric (A retrospective based on a method 
by 3)

82 AB Direct OVH To implement the OVH- based automated 
planning system to improve quality, 
efficiency, and consistency for head and 
neck cancer

83 AB Direct OVH To predict dose to 35% of rectal volume as a 
treatment planning quality assurance for 
prostate cancer patients.

84 AB Direct OVH To investigate if OVH- driven IMRT database 
can guide and automate VMAT planning for 
head and neck cancer

85 MB Linear Regression OVH To evaluate OVH metric for the prediction of 
rectal dose following hydrogel injection

86 MB Stepwise multiple 
regression

OVH To utilize patients’ anatomic and dosimetric 
features to predict the pareto front.

87 MB Logistic Regression Distance to the tangent field 
edge

To predict left anterior descending artery 
maximum dose. Model to guide the 
positioning of the tangent field to keep 
maximum dose <10 Gy

88 MB Linear Regression OAR volumes To develop a model to predict attainable 
prescription dose for IMRT of entire 
hemithoracic pleura

89 MB Curve Fitting Rectum- target overlap To predict optimum average rectum dose

90 MB Stepwise Regression Target OAR overlap To predict mean parotid dose

91 AB Direct OVH’, In field OAR volumes The minimum DVH value at the percentage 
volume of the bladder and rectum was used

Abbreviations: AB, atlas- based (Direct or Indirect method); DTH, distance- to- target histogram; MB, model- based; OVH, overlap volume histogram.
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Therefore, it is important to utilize the most discrimi-
native features, rather than including all possible 
features. To address this during the implementation 
of a KBP- based dose prediction model, dimensional-
ity reduction methods are often used in KBP studies 
to decrease the number of variables through feature 
extraction and feature selection process. Feature 
extraction begins with an initial set of variables fol-
lowed by redefinition that makes them more informa-
tive. Principal component analysis (PCA) is a widely 
used technique for reduced- order modeling. PCA de-
termines the features that vary the most among the 
data for representation in a smaller number of dimen-
sions.103 For example, in a binary classification prob-
lem, the goal is to classify an object A, represented 
by P number of features in a P- dimensional vectors. 
If P is very large, then some characteristics are likely 
more valuable than others for the purpose of classifi-
cation. The goal of PCA is to reduce the dimensional-
ity of the original correlated dataset into a smaller set 
of uncorrelated variables.103 The subsequent process 

of feature selection involves choosing features that 
are most important for the dose prediction task. In 
many traditional KBP studies,46– 49,53,55– 68,86,104– 106 
PCA is commonly used in the process of feature 
selection.

3.1.2 | Various features/metrics

A common theme in the majority of traditional KBP 
methods is that the geometric relationship of the tar-
get with respect to nearby critical structures correlates 
with achievable plan quality metrics. Various geometric 
features have been correlated with dose. Commonly 
reported geometric features include OVH, distance to 
target histograms (DTH), and OAR distance- to- PTV. As 
an example, the influence of parotid size and proximity 
to the PTV was first studied by Hunt et al. and found 
to be predictive of the achievable parotid sparing.107 
In addition to 3D geometric features, traditional KBP 
methods have also incorporated plan features such as 

TA B L E  3  Traditional KBP studies aimed to predict voxel- level doses for providing a starting point for the plan optimization process

Ref. Method Approach/Model Key features Purpose

92 AB Direct BEV projections To identify similar patient cases by matching 2D BEV 
projections of structures

93 AB Direct BEV projections To adapt the best match plan parameters from one 
institute to optimize the query case of an outside 
institution

94,95 MB Multivariate analysis 
Slice weight 
function

Distance- to- PTV,
Slice level

To determine the relationship between the position 
of voxels and corresponding doses to predict the 
sparing of OARs

96 MB Active shape model, 
active optical flow 
model

PTV locations in relation to 
spinal cord

To study the effect of PTV contours on dose 
distribution at the spinal cord.

• Five subgroups were created according to the PTV 
locations in relation to spinal cords.

97 AB Direct Target- OAR overlap
Shell creation surrounding the 

match target volume

To adapt the matched case from the database 
for query case by deforming the match beam 
fluences, warping the matched primary/boost 
dose distribution, and distance scaling factor

98 AB Direct Target- OAR overlap To transfer the beam settings and multileaf collimator 
positions of the best match case to the new case

99 AB Direct The PTV and Seminal vesicles 
(SV) concaveness angle 
and % distance from SV to 
the PTV

To transfer treatment parameters of the atlas case to 
the new case

100 AB Indirect Multi- scale image appearance 
features

To use contextual atlas regression forest (cARF) 
augmented with density estimation over the most 
informative features to learn an automatic atlas- 
selection metric for dose prediction

101 AB Indirect Features based on the spatial 
dose distribution and 
features derived from DVHs

To extend CRF by introducing the conditional 
random field model (cARF- CRF) to transform the 
probabilistic dose distribution into a scalar dose 
distribution that adheres to desired DVHs.

102 AB Indirect Multi- scale image appearance 
features

To converts a predicted per voxel dose distribution 
into a complete radiotherapy plan through a fully 
automated pipeline using cARF- CRF.

Abbreviations: AB, atlas- based (Direct or Indirect method); DTH, distance- to- target histogram; MB, model- based; OVH, overlap volume histogram.
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mutual information through the beam's eye view projec-
tions, and even the number, energy, and angle of the 
radiation beams (Tables 1- 3). A list of the key features 
used in traditional KBP studies is tabulated in Tables 1- 
3 along with their corresponding references.

OVH- based methods
The OVH is a feature common to both atlas- based 
and model- based approaches for dose prediction, as 
summarized in Tables 1 and 2. Wu et al. and Kazhdan 
et al. introduced the concept of the OVH as a one- 
dimensional function measuring the proximity of an 
OAR to the target.3,108 The OVH calculation involves 
the uniform expansion and contraction of the tar-
get volume. Target expansion occurs until an OAR is 
completely overlapped by the target, and contraction 
is repeated until there is no overlap between the tar-
get and the OAR.3 The resulting OVH describes the 
percentage of the OAR volume that overlaps with a 
uniformly expanded or contracted target. In general, 
OVH- driven models assume that the dose to an OAR 
is inversely proportional to the distance from the target. 
Next, we survey how the OVH- based methods have 
been evolved over the years to improve dose prediction 
accuracy.

Several studies have combined historical data with 
the OVH methods to predict an entire DVH (Table 1) 
or one or more clinically important dose metrics from 
a DVH (Table 2). Wu et al. applied the OVH to head/
neck IMRT planning as a quality control tool to assist 
treatment planners with the plan evaluation task.3 This 

initial approach was further developed in another study 
that used the OVH to estimate achievable DVH objec-
tives for head/neck plans.81 Using an OVH model 108 
and PCA,46,47 Wang et al. investigated the effect of in-
terorgan dependency and the impact of data inconsis-
tency on dose prediction for head/neck cancer. It was 
suggested that interorgan dependency be incorporated 
in the prediction models and that data inconsistency 
be avoided as much as possible to improve prediction 
accuracy.69 Larger dosimetric errors were found in the 
head/neck region (<4 Gy for 83% of cases) as com-
pared to the prostate region (<2 Gy for 96% cases) pre-
sumably due to interorgan dependency.69 Moore et al. 
also used OVH information to predict OAR dose met-
rics for head/neck and prostate IMRT plans.109 Yuan 
et al. investigated the OVH to quantify the effects of 
various anatomical features on interpatient OAR dose 
sparing using IMRT and found that several important 
factors are attributable to OAR sparing: the mean dis-
tance between an OAR and PTV, overlap volume be-
tween an OAR and PTV, volume of an OAR outside the 
field, and the geometric relationship between multiple 
OARs.47 When multiple OARs are nearby a target, sep-
arate OAR- specific prediction models were found to be 
more accurate at predicting voxel doses compared to 
using a single training model.110

The OVH has been investigated under a wide variety 
of clinical disease sites with highly variable PTV and 
OARs geometries. The OVH- based model 81 has also 
been studied for pancreatic cancer in which the OARs 
are larger than the PTV, part of OARs can engulf the 
PTV, and highly deformable organs can vary the beam 
configurations among different patients.111 Petit et al. 
showed that the OVH- based predicted doses were 
achieved within 1 and 2 Gy for more than 82% and 
94% of the patients, respectively.111 Further, the OVH 
was investigated in prostate cancer patients who had 
a synthetic hydrogel spacer injected between the rec-
tum and the prostate. The spacer displaces the rectum 
from the treatment field for preferential sparing, and 
correspondingly there is a global shift of the OVH. The 
OVH was found to be a better feature than the hydro-
gel volume for predicting rectal sparing.85 Wang et al. 
used OVH to build a treatment planning QA model from 
consistently planned pareto- optimal plans for prostate 
cancer, improving planning standardization, and pre-
venting validation with possibly suboptimal benchmark 
plans.112

In earlier OVH- based IMRT studies, large dose vari-
ations were reported at a given OVH distance for a spe-
cific fractional volume of an OAR.47,113 To address the 
variability of the distance- to- dose prediction, Wall et al. 
studied inherent inter- planner variations across prior 
plans and characterized second- order dosimetric and 
anatomical factors. Out of all these factors, in- field blad-
der and rectal volume showed the strongest correlation 
(R = 0.86 and R = 0.76) with doses. Therefore, in- field 

F I G U R E  2  The total number of traditional KBP investigations 
on dose prediction for various cancer sites. EC, Esophageal 
cancer; NC, Nasopharyngeal carcinoma; HC, Hepatocellular 
Cancer



   | 23MOMIN et al.

OAR volume was incorporated into the OVH only met-
ric.91 The generic OVH introduced by Kazhdan et al. re-
lies on a DVH rather than a spatial dose distribution.108 
McIntosh and Purdie demonstrated that incorporating 
spatial information into the model can improve the dose 
prediction accuracy in comparison to the generic OVH 
method. The spatial information was found to improve 
dose prediction accuracy for certain disease sites— 
whole breast, rectum, and prostate cancer— yet was 
less important for other sites such as the breast cavity 
and lung.101

Projection- based methods
Projection- based algorithms typically use the perspec-
tive of the beam's eye view (BEV) and statistical analysis 
to assess the similarity between a new case and prior 
cases. A best- matched prior case may be identified 
based on the sum of mutual information values calcu-
lated from each BEV perspective across all of the beams 
in a plan. This method has been used for prostate92 and 
head/neck cancer.97 Good et al. calculated mutual infor-
mation to determine the best match for a query case with 
an additional deformation step to account for any differ-
ences in PTV size and shape. More specifically, the PTV 
projections from a matched case were deformed to the 
query case's PTV projections at each BEV. This KBP 
approach resulted in new treatment plans with improved 
OAR sparing, target dose conformity, and dose homo-
geneity compared to the original plans.93

DTH- based methods
The distance- to- target histogram (DTH) plots the 
fractional volume of an OAR within a certain distance 
of the PTV surface. In addition to volumes of the PTV 
and OARs, the DTH metric is also used as an input fea-
ture in ML approaches to KBP. ML techniques include 
multivariable nonlinear regression (MVNLR) and sup-
port vector regression (SVR).46 It is important to note 
that DTH is equivalent to OVH 108 when distance is 
Euclidean. The DTH metric was extended to a gener-
alized distance- to- target histogram (gDTH) by Zheng 
et al. in order to account for the relative shape and 
spatial arrangement of multiple PTVs in head/neck 
cancer.54 In comparison to the conventional model, 
the gDTH model improved DVH prediction accuracy 
for the brainstem, cord, larynx, mandible, parotid, oral 
cavity, and pharynx.54 While this gDTH model selects 
similar plans with respect to an individual OAR, the 
concept of gDTH was further extended to develop a 
knowledge- based tradeoff hyperplane model. The 
expanded model selects similar plans with respect to 
all OARs by employing a case similarity metric that 
is a weighted sum of gDTH Euclidean distances be-
tween two cases across all OARs.114 Finally, the DTH 
has also been utilized with multivariate regression- 
based models, which is commercially available as 
RapidPlanTM in Eclipse® treatment planning software.

3.1.3 | Influence of various parameters

Outliers/Data inconsistency
Outlier detection is an important consideration when 
building a data- driven dose prediction model that is 
generalizable to a variety of new cases. Outliers de-
grade the fit between geometry and dosimetry, which, 
in turn, can compromise model performance.109 
Outliers may be geometric or dosimetric. Geometric 
outliers include large anatomical variations, such as 
OAR distance to the PTV. As an example, a model 
designed for prostate only RT should be built from 
prior cases only treating the prostate. The inclusion 
of a case treating both the prostate and pelvic nodes 
would be a geometric outlier. Several studies investi-
gated the influence of outliers on model performance 
as shown in Table 4. Dosimetric outliers represent 
the presence of plans in which OARs are not opti-
mally spared due to the planning technique. In other 
words, dosimetric outliers are the plans for which the 
re- planning can significantly reduce OAR dose with-
out compromising target coverage. Appenzoller et al. 
described a model to identify outliers from suboptimal 
plans and showed that excluding outliers in a refined 
model resulted in a strong correlation between the 
predicted and achieved doses after re- planning (r = 
0.92 for rectum, r = 0.88 for bladder, and r = 0.84 for 
parotid glands). In contrast to the negative impact of 
outliers on the performance of a KBP model, a pre-
vious study has shown a better OAR sparing in the 
presence of a small number of outliers in the KBP 
model.70 Results of a previous study showed that 
adding 5 to 10 outliers marginally improved salivary 
gland and swallowing- muscle sparing for head/neck 
RapidPlanTM- based KBP; however, adding more than 

TA B L E  4  A list of articles with investigations on effects of 
outliers on plan quality and summary of evaluation metrics used by 
RapidPlanTM with a threshold in parentheses

Ref. Method Outlier

109 Restricted sum of residual 
(RSR)

Dosimetric

70 Regression and residual 
analysis

Dosimetric

115 Leverage and studentized 
residual

Dosimetric, 
Geometric

116 Regression analysis scatter 
plots, cook's distance

Dosimetric, 
Geometric

53 Model- based case filtering Dosimetric, 
Geometric

RapidPlanTM Cook's distance (>10)
Studentized residual (>3)
Modified Z- score (>3.5)
Areal Difference of Estimate 

(>3)

Dosimetric 
and 
Geometric
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20 outliers showed a moderate degradation of plan 
quality.70

Outlier detection has been studied for different 
disease sites and commercial software has metrics 
for identifying outliers. For pelvic RT, Sheng et al. as-
sessed the effectiveness of outlier identification by 
studying the impact of both geometric and dosimetric 
outliers. This study suggested a greater impact of do-
simetric outliers with a negative impact on both blad-
der and rectum model compared to geometric outliers 
with negative impact only on bladder model.115 Wang 
et al. studied the effects of data inconsistency with 
respect to planning prioritizations through a) mixed 
training dataset with a consistent validation dataset b) 
a consistent training dataset with a mixed validation 
dataset c) both a mixed training and validation data-
set d) both consistent training and validation dataset 
and found that data inconsistency led to a large in-
crease in prediction error with errord < errorc < er-
rora < errorb.69 While outlying suboptimal plans may 
be removed from the training cohort,4 an alternative 
that maintains the training set size is to re- plan those 
cases. This approach has been tested for prostate 
and head/neck cancer116 and lung cancer.36 Clinically 
available RapidPlanTM provides different statisti-
cal evaluation metrics for identifying the outliers as 
shown in Table 4.

Diversities within traditional KBP methods
In KBP, the knowledge from prior cases can be used in 
different combinations (e.g., creating VMAT KBP model 
by prior knowledge of IMRT plans for a given treatment 
site). Here, we present a review of studies that investi-
gated the applicability of traditional KBP methods with 
respect to variations in external parameters and their 
combinations (e.g., cross- modality, multi- institution, 
sample size). Studies of this nature were performed on 
both platforms: retrospectively on a commercial KBP 
module (e.g., RapidPlanTM in Eclipse®) and in- house 
built KBP models. Wu et al. 2013 used the DVH objec-
tives derived from previous IMRT plans as an optimiza-
tion parameter for VMAT treatment planning in head/
neck cancer, resulting in a similar dosimetric quality 
compared to IMRT plans.84 Wu et al. demonstrated 
that the supine VMAT model for rectal plans can op-
timize IMRT plans of prone patients, yielding superior 
OAR sparing and quality consistency than conventional 
treatment planning method.117 The prediction models 
trained on Helical Tomotherapy for prostate cancer 
were utilized to predict constraints for optimizing new 
RapidArcTM plans. The result was similar/increased 
bladder and rectum doses compared to the expert 
plan. Delaney et al. demonstrated that using a model- 
based only on photon beam characteristics could make 
the DVH predictions for proton therapy. This predictor 
could be used as a patient selection tool for proton ther-
apy.42 McIntosh et al. studied contextual atlas random 

forest (cARF) algorithm with and without OAR region of 
interest features and found that the algorithm can pick 
better atlases without ROI features. However, the dose 
distribution could not be accurately mapped from those 
atlases onto a new patient.102

KBP models have successfully navigated some 
plan differences but not others. Huang et al. demon-
strated that the RapidPlanTM model for one energy 
(10 MV) can generate dose– volume objectives for 
plans with 6 and 10 MV photon beam energy; how-
ever, a RapidPlanTM model for flattened beams cannot 
optimize un- flattened beams prior to adjusting the tar-
get objectives.40 A RapidPlanTM module can generate 
high- quality treatment plans compared to manually 
optimized plans for prostate cancer.71 For esophageal 
cancers, the RapidPlan created from plans optimized 
using RayStation produced comparable lung doses.38

KBP models have been investigated for standard-
izing plan quality across institutions. For patients en-
rolled in Radiation Therapy Oncology Group (RTOG) 
0617, Kavanaugh et al. showed the feasibility of a 
single- institution RapidPlanTM model as a quality con-
trol tool for multi- institutional clinical trials to improve 
overall plan quality and provide decision support to 
determine the need for clinical trade- offs between tar-
get coverage and OAR sparing.36 For prostate cancer, 
Schubert et al. have demonstrated the possibility of 
sharing models among different institutes in a coop-
erative framework.63 For prostate cancer RapidPlanTM 
among five different institutions, Ueda et al. suggested 
that it is critical to ensure similarity of the registered 
DVH curves in the models to the institution's plan de-
sign before sharing the models. Good et al. applied the 
prostate model trained with a dataset from their insti-
tute to generate plans for patient datasets outside of 
their institution with the potential of homogenizing plan 
quality by transferring planning expertise from more to 
less experienced institutions.93 Good et al. achieved 
superior or equivalent to the original plan in 95% of 55 
test patients.93 More recently, a disease site- specific 
multi- institutional, NRG- HN001 clinical trial- based 
RapidPlanTM model was built as an offline quality as-
surance tool for which it improved the sparing of OARs 
in a large number of reoptimized plans submitted to the 
NRG- HN001 clinical trial.35

Sample size
Figure 3 shows an average number of training and 
test set for each cancer site in traditional KBP meth-
ods with a standard deviation over the number of in-
vestigations listed on the top x- axis. The number of 
training/test sample size was not directly mentioned 
or required in the methods described in some publica-
tions. We have also tabulated the list of retrospective 
studies performed by RapidPlanTM along with their 
treatment sites, training, and validation dataset size 
in Table 5.
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The size of the training set is an important consider-
ation when building a KBP model. For RapidPlanTM, it 
is indicated that the minimum number of plans required 
for model creation is 20; however, adding additional 
plans will usually help create a more robust plan.118 
Numerous studies have compared the quality of plans 
generated by RapidPlanTM by high- quality plans in train-
ing and found that 25– 30 plans may produce a clinically 
acceptable plan for prostate72 and head/neck65 cancer. 
Zhang et al. showed that approximately 30 plans were 
sufficient to predict dose– volume levels with less than 
3% relative error in both head and neck and whole pel-
vis/prostate.79 For prostate cancer, Boutilier et al. ana-
lyzed the effects of the training set size on the accuracy 
of four models from three different classes: DVH point 
prediction, DVH curve prediction, and objective func-
tion weights. The authors concluded that the minimum 
required sample size depends on the specific model 
and endpoint to be predicted.119

The requirement of sample size also partially de-
pends on the robustness of the model used. Yuan et al. 
used 64 and 82 cases for prostate and head/neck case, 
respectively, in support vector regression (SVR) model 
for DVH predictions.47 Landers et al. demonstrated sta-
tistical voxel dose learning (SVDL) to be more robust 
to patient variability compared to spectral regression 
and SVR for noncoplanar IMRT and VMAT for head/
neck, lung, and prostate cancer by 20 cases for each 

site in fourfold cross- validation.110 An atlas- based 
dose prediction101 is the more sophisticated method 
in which each patient in the training set represents 1 
atlas. Feature extraction and characterization are typi-
cally performed on CT of the patients, which results in 
probabilistic dose estimates to find the most likely voxel 
dose from similar atlases. In comparison to artificial 
neural network (ANN) and SVR methods, large train-
ing sample sizes were required for this method (58 for 
rectal, 77 for lung, 97 for breast cavity, 113 for central 
nervous system (CNS) brain, 144 for breast, and 144 
for prostate cancer).

Treatment planning efficiency
KBP methods may reduce the treatment planning 
time by minimizing the number of trial- and- error steps 
performed by a person in the treatment planning pro-
cess. For the commercial KBP module, the total time 
including data collection, training time, generation of 
constraints and objectives, and optimization time can 
depend on the treatment type (i.e., VMAT or IMRT), de-
sign (i.e., number of arcs or angles), site (i.e., simple, or 
complex), and available GPU. For glioblastoma disease 
site, structure selection and generation of constraints 
and objectives took 2 minutes for both an IMRT and a 
2- arc VMAT plan, whereas the optimization and dose 
calculation step took 5 minutes for an IMRT plan and 
11 minutes for a 2- arc VMAT plan. Moreover, it took 
a planner about 4 hours to create a plan without any 
KBP module assistance.57 For nasopharyngeal cancer, 
Change et al. demonstrated that using RapidPlanTM 
module reduced the average planning time substan-
tially— (295 minutes vs. 64 minutes)— compared to the 
average planning time of plans created without using 
RapidPlanTM module. For malignant pleural mesothe-
lioma, the time taken with RapidPlan was 20 minutes 
compared to 4 hours for manually created plans by an 
experienced treatment planner.34 The time taken to 
generate objectives and optimize a plan is reported to 
be ranging from 15 to 120 s and 300 to 1620 s, respe
ctively.42,55– 57,72– 74 The planning time when used auto- 
planning by pinnacle (APP) has also been reported to 
be 135 min for a single arc VMAT plan for esophageal 
cancer.120 The protocol- based APP- based plans have 
been shown to reduce the manual time spend per 
treatment plan due to their large clinical acceptance 
rate.120– 124 In general, the use of KBP resulted in im-
proved treatment planning efficiency when compared 
with manually created plans.

3.1.4 | Summary

Overall, the review of traditional KBP dose predic-
tion publications thus far suggests an improved ef-
ficiency compared to manual optimization, sufficient 
flexibility of traditional KBP methods in terms of their 

F I G U R E  3  The average number of training and testing 
datasets in traditional KBP dose prediction methods for 
each cancer site. The values are averaged over the number 
of investigations listed on the top x- axis and the error bars 
represent standard deviation. CNS, Central Nervous System; NC, 
Nasopharyngeal Cancer; EC, Esophageal Cancer
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TA B L E  5  Summary of published works on KBP using RapidPlan module by Varian treatment planning system

Ref.
Training
size

Validation
size Cancer site Purpose

34 57 23 Lung (VMAT) To develop an RP- KBP model for malignant pleural 
mesothelioma for patients with two intact lungs

35 50 50 Head/Neck (IMRT) To establish a threshold of improvements of treatment plans 
submitted to the clinical trials for head- neck cancer 
(NRG- HN001) through a multi- institutional KBP model

36 104 25 NSCLC (VMAT) To evaluate the feasibility of single institution KBP model as a 
dosimetric quality control for multi- institutional clinical trials to 
RTOG 0617

37 30, 60 13 Liver (IMRT) To study prediction capability of RP general model (Model G with 
60 cases) versus RP- specific model (Model S with 30 cases) 
and benchmark against clinical plans for liver IMRT

38 40 24 Esophageal cancer (VMAT) To evaluate RP- KBP for training models with plans optimized 
with a different treatment planning system (Eclipse and 
RayStation)

39 48 25 Prostate (VMAT) To demonstrate the effectiveness of RP- KBP for 
hypofractionated, multi- target prostate patients

42 30 10 Head/Neck (VMAT,
Proton)

To investigate whether RP based only on photon beam 
characteristics can be used to generate DVH- predictions 
for proton therapy and whether this could correctly identify 
patients for proton therapy

55 35 (LR)
30 (HR)

10 HR and 
10 LR

VMAT

Prostate (VMAT) To use KBP models created from helical tomotherapy plans 
[35 low- risk (LR) and 30 high- risk (HR)] for generating plans 
with different techniques (VMAT)

56 79 20 NPC (IMRT) To investigate the improvements in planning efficiency and 
quality for patients with NPC IMRT treatments

57 82 45 GBM (VMAT) To create an initial RP- based KBP model for glioblastoma (GBM) 
and evaluate the planning efficiency of RP- based planning 
against typical manual planning

59 70 24 Esophageal (VMAT) To evaluate the performance of the RP module for esophageal 
cancer VMAT

60 45 25 Liver (VMAT) To evaluate the performance of RP- based optimized plan against 
manually created plans for hepatocellular cancer for clinical 
acceptability

61 38 10 Spine (SBRT) To determine if RP is effective in improving the quality and 
efficiency of spine SBRT planning and evaluate the model for 
outliers

62 40 (P)
37 (C)

10 (P)
10 (C)

Prostate (IMRT) Cervical (VMAT)) To determine whether the RP module can efficiently produce 
IMRT and VMAT plans in the pelvic region in a single 
optimization and benchmark

63 43 60 (10, 7, 
6, 7,13, 
10, 7)

Prostate (VMAT) To perform the multicentric validation of RP models on seven 
different centers and compared with corresponding manually 
optimized plans

65 30,30 60 15, 15 Head/Neck (VMAT) To study whether differences in the composition of plan libraries 
influenced RP results for two patient groups using three 
different libraries and benchmark the model versus clinical 
plans. To evaluate the influence of model size

64 90 20 Head/Neck (VMAT) To evaluate the potential of RP to automate the process for 
identifying the quality of patient- specific plans through the 
correlation between predicted and achieved mean doses to 
the different OAR structures

66 20, 53, 
60, 
100, 
123

>20 Prostate (VMAT) To evaluate the performance of RP- KBP at multiple radiation 
therapy departments and check its suitability for sharing the 
models.

67 80 70 Rectal (SIB) To investigate the performance of RP- KBP compared to manually 
optimized clinical plans for rectal SIB cases.

(Continues)
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applicability (i.e., multimodality in EBRT), the need of 
these models for dynamic sites (i.e., pancreas), the 
requirement of an automated approach for accounting 
for outliers to further enhance the treatment planning 
efficiency,70 and the potential of building site- specific 
universal RapidPlanTM models for multi- institution 
adaptation.

3.2 | Deep learning

DL offers numerous advantages across the different 
multidisciplinary steps of radiotherapy treatment plan-
ning. In contrast to traditional KBP methods, DL meth-
ods can learn features directly from the raw dataset. 
Because DL methods are good at discovering intricate 
structures in high- dimensional data, DL methods are 
able to solve a wide range of scientific problems.125 
Neural networks underpin DL methods in learning vari-
ous tasks. A multilayer perceptron has fully connected 
networks in which each neuron in one layer is con-
nected to all the neurons in the next layer. Multilayer 

perceptron is now succeeded by CNN, a class of DNN 
with regularized multilayer perceptron.126 A CNN is by 
far the most widely used DNN for the dose prediction 
task as can be seen in Table 6. The main components 
of a typical CNN are convolutional layers, max- pooling 
layers, batch normalization, dropout layers, a sigmoid 
or softmax layer. These components of CNN will be 
summarized below. Additionally, other neural network 
designs will also be described briefly for conceptual un-
derstanding prior to reviewing works on the dose pre-
diction task.

The convolutional layer consists of a set of convolu-
tional kernels where each kernel acts as a filter. First, 
the image receptive fields are processed through a se-
ries of convolutional kernels that aid in extracting fea-
tures. Kernels use a specific set of weights to convolve 
with corresponding elements of the receptive field. The 
weight sharing ability of convolutional operation allows 
the extraction of different sets of features within an 
image by sliding kernel with the same set of weights 
on the image. This makes CNN more efficient than 
the fully connected networks. This operation can be 

Ref.
Training
size

Validation
size Cancer site Purpose

68 40 11 (Int.)
22 (Ext.)

Spine SBRT To investigate whether a validated KBP model for NRG Oncology 
RTOG 0631 could be used as a retrospective clinical trial 
quality control tool

70 70 10 Head/Neck
(VMAT)

To study the influence of outliers (Suboptimal plans) on the 
prediction of RP plans by adding suboptimal plans into a clean 
model with the increment of five plans.

74 83 20 Head/Neck (VMAT) To assess the stability of RP generated plans for a different 
beam geometry, different management of bilateral structures, 
and dose fractionations. Two models were generated: a 
model separating ipsi- and- contralateral parotids and a model 
associating two parotids to a single structure.

75 51 30 Prostate (VMAT) To investigate whether RP plans created through a single 
optimization (without any planner intervention during 
optimization) are clinically acceptable for prostate cancer 
patients

76 51 35 Cervical (IMRT) To demonstrate an efficient method to train, refine (i.e., according 
to clinical trial dosimetric objectives), and validate the KBP 
model for an automated quality control system

71 60 20 Prostate (IMRT) To investigate the role KBP can play in aiding a clinic's transition 
to a new treatment planning system

78 81 30 Pelvic (VMAT) TO test if RP DVH estimation can be improved interactively 
through a closed- loop evaluation process

117 81 10 Rectal (VMAT) To study whether RapidPlan model trained on a technique 
(VMAT) and orientation can be used for another (30 IMRT 
plans)

72 27, 27 25, 25 Lung (VMAT)
Prostate (VMAT)

To evaluate the performance of a model- based optimization 
process for prostate and lung VMAT plans and evaluate its 
predictive power compared to manually created plans.

73 150 70 Breast (VMAT) To evaluate the performance of a model- based optimization 
process for whole breast VMAT

Abbreviations: DVH, dose– volume histogram; IMRT, intensity- modulated radiation therapy; KBP, knowledge- based planning; NPC, nasopharyngeal 
carcinoma; NSCLC, non- small cell lung caner; RP, rapid- plan; VMAT, volumetric- modulated arc therapy.

TA B L E  5  (Continued)
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grouped based on the type and size of filters, direction 
of convolution, and type of padding.125

From the result of the convolution operation, the 
feature motifs can occur at different locations in the 
image. The goal is to preserve its approximate po-
sition relative to others rather than the exact loca-
tion. The pooling or down- sampling sums up similar 
information in the neighborhood of the receptive 

fields and outputs the dominant response within this 
local region, helping to extract the combination of 
features that are invariant to translational shifts.153 
Commonly reported pooling formulations used in 
CNN are max, average, L2, spatial pyramid pooling, 
and overlapping.154,155

A nonlinear operation, also known as an activa-
tion function, helps in the learning of sophisticated 

TA B L E  6  A list of publications on DL- based dose prediction for various treatment sites

Ref. Architecture Input Output

127 ANN Number of fields, PTV volume, PTV to OAR distance, 
azimuthal and elevation angles

3D

128 ANN Distance to PTV, Distance to OARs
PTV volume

3D

129 ANN 16 different geometrical features 3D

27 Modified
U- net

PTV + OAR + Prescription 2D

25 ResNet- 50 CT + OAR + PTV images + dose distribution image 2D

26 3D- FCN 3D CT + OAR + Prescription 3D

130 U- Res- Net 3D CT + OAR 3D

131 GAN Contoured CT images + dose distribution 2D

132 HD U- Net OAR + PTV + Beam information with approximated 
dose

3D

133 CNN - 
Res- Net 101

Contoured images + coarse dose map, with out of 
field labels

2D

134 U- Net PET and CT image patches 3D

135 HD U- Net OAR + PTV 3D

136 U –  Net CT only,
CT + ISO, CT + Contours, CT + ISO + Contours

2D

137 Modified 3D U- Net DVHs + Contours Pareto Dose Distributions

138 U- Net PTV + Body + OAR,
PTV + Body + OAR + Dose information from selected 

beam angles

Pareto Dose Distributions

139 3D U- Net DRN CT + FMCV 3D

140 Modified U- Net Density map + 3D CT +Activity map 2D

141 U- Net PTV + OAR contours 3D

142 GAN CT + RT Doses,
PTV + OAR

2D

143 ResNet−50 CT + OAR +PTV + body contours 3D

144 U- Net Low- resolution dose + CT 2D

145 HD U- Net CT + RT dose distribution 3D

146 GAN CT + PTV + OAR 2D

24 Attention gated GAN CT + PTV + OAR 3D

147 GAN PTV + OAR + Body Pareto Dose Distribution

148 3D GAN Contoured CT images 3D

149 3D U- Net + Residual Network CT + OAR + PTV contours + Beam + Dose 3D

150 3D U- Net OAR + PTV contours 2D

151 Dense- Res hybrid Network Beam + structural information Static field fluence prediction

152 Virtual Treatment Planner 
Network

DVH TPPs adjustment action

Abbreviations: DRL, deep reinforcement learning; DVH, dose– volume histograms; FMCV, fluence map converted volume; GAN, generative adversarial 
network; HD, hierarchically dense; OAR, organ at risk; PTV, planning target volume; TPP, treatment planning parameter.
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patterns by serving as a decision function. Different 
activation functions reported in the literature are sig-
moid, tanh, SWISH, ReLU,125 and its variants includ-
ing leaky- ReLU, parametric ReLU (PReLU) have also 
been used to inculcate the non- linear combination of 
features.155– 159 MISH is a more recently proposed ac-
tivation function, which has shown better performance 
than ReLU on benchmark datasets.160 ReLU and its 
variants are generally preferred as activation functions 
because of their ability to overcome the vanishing gra-
dient problem.161

Batch normalization is applied to address the issue 
of internal covariance shifts, a change in the distribu-
tion of hidden unit values within the feature maps that 
can reduce the convergence speed. Batch normaliza-
tion essentially unifies the distribution of feature map 
values by setting them to zero mean and unit variance, 
which, in turn, improves the generalization of the net-
work by smoothening the flow of the gradient.162

Finally, overfitting occurs when the model is trained 
to closely or even exactly fit a set of training data at the 
expense of degraded model generality as it would fail 
to learn general underlying patterns within the data.163 
Different approaches such as dropouts, data augmen-
tation, and weight regularization have been used for 
preventing model overfitting. While a typical neural 
network has all nodes activated during training, a drop-
out layer omits a combination of certain nodes along 
with their connections from the neural network each 
time the gradient is updated, which, in turn, prevents 
the network from over- adaptation.164 Other forms of 
regularization include early stopping criterion, weight 
regularization, bias adding, data augmentation, and 
model combination. Briefly, early stopping criterion is 
the stoppage of the training when a specific perfor-
mance measure in the form of validation loss or accu-
racy is reached. L1 and L2 regularization are common 
examples of weight regularization in which a regular-
ization term, alpha, is added to the loss function. The 
idea behind the weight regularization is to find the right 
balance between alpha and the model complexity as it 
can lead to either underfitting (fails to perform well on 
both training and unseen dataset) or overfitting (per-
forms extremely well on training but fails to perform 
well on an unseen hold- out dataset). Data augmenta-
tion method inflates the training dataset size by warp-
ing, which preserves their labels, or by oversampling, 
which creates synthetic instances to increase the train-
ing dataset size.165

Loss function, in its simplest form, is the difference 
between the predicted and the target output. A loss 
function is presented in the form of an objective func-
tion that is to be minimized during the backpropaga-
tion step to improve the network performance. Janocha 
et al. investigated how different choices of loss func-
tions affect deep models and their learning abilities, as 
well as robustness to various effects.166 While log loss 

performed well, other losses may also be preferable 
depending on the application of a given model.166

Backpropagation is a widely used technique in both 
traditional ML and recently emerging DL methods. 
Briefly, it systematically allows improvements in weights 
and biases to further improve the network's prediction 
in three steps: (1) feed- forward network with learnable 
parameters; (2) network's performance is measured 
with a loss function; (3) the error is backpropagated 
through the network to alter the learnable parameters. 
This process is typically achieved through a gradient 
descent which allows for instantaneous rates of change 
between the parameter to the neural network's error. 
Deeper networks with many layers tend to train slowly 
due to gradient exploding/vanishing. For faster and effi-
cient learning, He et al. proposed to utilize the residual 
functions instead of directly fitting a desired underly-
ing mapping.167 A densely connected neural network 
(DenseNet) by Huang et al. connects each layer to 
every other layer.168 More recently, the attention gate 
was introduced in CNN in order to suppress irrelevant 
features and highlight salient features useful for a given 
task.169

3.2.1 | Deep artificial neural network

The simplest form of ANN consists of three layers: 
an input layer, the hidden layer, and the output layer. 
Neurons within each layer are nodes which are con-
nected to subsequent nodes via links that correspond 
to biological axon- synapse- dendrite connections, 
analogous to the neural cell of human. The hidden 
layer is embedded between an initial input layer and 
the final output layer. The use of DL in dose prediction 
was initially utilized in the form of ANN.127 Therefore, 
ANN- based studies are included in the DL- based dose 
prediction category in Table 6. In these earlier meth-
ods, organ volumes including PTV and OARs, number 
of fields, and distances from OARs to the PTV were 
used to train ANN, which was then used to correlate 
dose at a given voxel to several geometric and plan pa-
rameters. The earlier ANN- based methods were, there-
fore, similar to the traditional KBP methods in terms of 
framework. Deep ANN, moreover, consists of multiple 
hidden layers in addition to an input and an output layer, 
separating itself from the original three- layer ANNs. In 
general, the number of layers determines the network's 
depth, and the number of neurons determines its width. 
Deep ANNs can learn deeper features by filtering infor-
mation through multiple hidden layers. Each neuron be-
tween its input and output undergoes a linear followed 
by a non- linear operation. In DL- KBP, the ability of deep 
ANN to teach itself, through multiple hidden layers be-
tween input and output layer, provides the flexibility of 
presenting raw information without having to extract dif-
ferent geometric features.
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In layered format, each neuron receives infor-
mation from the neurons in the previous layer and 
passes processed information to neurons of the 
next layer. Alternatively, residual connections can 
be added to connect neurons in non- adjacent layers 
such as ResNet proposed by He et al.170 The ResNet 
architecture has been presented with different num-
bers of layers: ResNet (18, 34, 50, 101, 152). Many 
DNN architectures have been presented for various 
applications. The fully convolutional neural network 
(FCN) and fully connected CNN (FCNN) have been 
applied so far for the dose prediction task (Table 6). 
Figure 4 shows the flowchart of the CNN and its ex-
tended networks.

3.2.2 | Convolutional neural network

CNNs, including fully convolutional neural network 
(FCN) and fully connected CNN (FCNN), have been 
applied so far for the dose prediction task (Table 6). 
Figure 4 shows the flowchart of the CNN and its ex-
tended networks. Different architectures have been 
proposed in the literature to enhance the performance 
of CNN. U- Net, originally built for the segmentation of 
neuronal structures in electron microscope stacks,23 
is one of the most widely used architectures in CNN. 
In addition to segmentation, it is also used for image- 
to- image translation tasks that outputs an image that 
has a one- to- one voxel correspondence with the input. 
U- Net permits effective feature learning even with a 
small number of training sample size. Milletary et al. 

proposed a three- dimensional variant of U- Net known 
as V- Net.171

3.2.3 | Generative adversarial network

Generative adversarial network (GAN) is a widely used 
supervised learning method in DL.172 Two major com-
ponents of GAN are generative network and discrimi-
nator network that are trained concurrently to compete 
against each other. The goal of the generative network 
is to generate artificial data that can approximate a 
target data distribution from a low- dimensional latent 
space, whereas the goal of the discriminator network 
is to recognize the data presented by the generator 
and flag it as either real or fake. For the dose predic-
tion task, the artificial data generator is replaced by the 
predicted dose map, which then goes through the dis-
criminator in order to be identified as a realistic or an 
unrealistic dose distribution. Both, dose map generator 
and discriminator, networks get better over the course 
of training to reach Nash equilibrium, which is the mini-
max loss of the aggregate training protocol.172 Some 
of the popular variants of GAN include CycleGAN,173 
conditional GAN (cGAN),174 and StarGAN.175 GAN is 
widely used in medical imaging.13,16,17,176

3.2.4 | Reinforcement learning

Reinforcement learning (RL) trains an agent, connected 
to its environment through perception and action, to 

F I G U R E  4  Flow chart of convolutional neural network (CNN) with its extended networks
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make adjustments based on the interaction between 
the agent and the environment. The agent gets certain 
indications about the current knowledge of the environ-
ment at each step of its interaction. Based on this indi-
cation, the agent then chooses an action to generate 
an output. This action changes the state of the environ-
ment, the value of this state transition is communicated 
to the agent through a reward function. The agent's be-
havior can learn to do this over time through exploration 
and exploitation.163

3.2.5 | Deep learning in dose prediction

DL- based dose prediction methods can be categorized 
according to DL properties such as network architec-
tures (CNN, GAN, etc.), input image types (CT only, CT 
+ OAR + PTV contours, etc.), output types (2D or 3D 
dose distribution), and sample size (training, testing, 
etc.). As shown in Figure 1, DL- based dose prediction 
methods have gained popularity among the researchers 
only in the past few years, there are nearly 30 publica-
tions on DL- based dose prediction as of August 2020. 
These DL- based dose prediction publications are tabu-
lated in Table 6 along with their network architectures, 
input, and output characteristics. Figure 5 represents 
the total number of DL- based dose prediction investi-
gations per treatment site. This follows a similar trend 
to that observed for traditional KBP methods with the 
highest number of investigations being on prostate and 
head/neck cancer sites. Here, we categorized DL- based 

dose prediction publications thus far into three groups 
based on network architectures: I) CNN –  namely U- Net 
architecture, II) GAN, and III) RL. We first provide the 
review of work for each network architecture followed 
by their applicability on various dose prediction appli-
cations and limitations. Subsequently, we discuss the 
influence of different parameters in DL- based dose pre-
diction methods.

3.2.6 | Overview of CNN- based works

As shown in Table 6, U- Net has been widely used CNN 
architectures used for predicting dose distributions. U- 
Net is effective in terms of end- to- end learning of global 
and local features because it consists of encoding and 
decoding paths. The decoding path concatenates the 
features from both previous layers in the encoding path 
and features from current layers in the decoding path. 
Many variants of U- Net including 3D U- Net have ap-
peared in the literature for dose prediction purposes 
(Table 6).

Earlier work in DL- based dose prediction methods 
involved predicting doses in a 2D manner.25,27 Sumida 
et al. used the U- net model, initially proposed by 
Ronneberger et al.23 to make 2D dose prediction. The 
network was trained to make dose prediction for Acuros 
XB (AXB) from low- resolution dose calculated through 
AAA algorithm and CT.144 Similarly, Nguyen et al. also 
trained a seven- level hierarchy with a modified version 
of the original U- Net to make dose prediction for a pros-
tate case.27

More recent works were focused on predicting 3D 
dose distributions using DL methods. To overcome 
increased computation load in 3D dose prediction, 
Nguyen et al. proposed Hierarchically Densely U- Net 
(HD U- Net), which not only was able to predict 3D 
dose distribution, but also outperformed dose pre-
dictions made by the standard U- Net model.135 HD 
U- Net combines DenseNet's efficient feature propa-
gation and utilizes U- Net's ability to infer both local 
and global features by connecting each layer to every 
other layer in a feed- forward fashion, yielding better 
RAM usage, and better generalization of the model. 
To further simplify the 3D dose prediction problem 
and increase prediction accuracy, Xing et al. pro-
jected the 2D fluence maps onto the 3D dose distri-
bution using a fast and inexpensive ray- tracing dose 
calculation algorithm and trained HD U- Net to map 
the ray- tracing low accuracy dose distribution (does 
not consider scatter effect) into an accurate dose dis-
tribution calculated using collapsed cone convolution/
superposition algorithm.145

DL- based methods have also been expanded to pre-
dict pareto optimal dose distributions so that physicians 
can learn the desired dosimetric trade- offs in real- time 
and learn the viability of different dosimetric goals. Ma 

F I G U R E  5  The total number of DL- based dose prediction 
investigations for various cancer sites. NC, Nasopharyngeal 
Cancer; PD, Personalized Dosimetry
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et al. constructed the 3D U- Net architecture to predict 
individualized dose distribution for different tradeoffs.137 
In predicting the pareto dose distribution, the network 
should be able to map many dose distributions from 
single anatomy, and in doing so differentiate between 
the clinical consequences of corresponding predicted 
dose distributions. To address this clinical tradeoff 
problem across different dose distributions, Nguyen 
et al. proposed the differentiable loss function based on 
the DVH and adversarial loss in addition to traditional 
voxel- wise mean square error (MSE) loss to train the 
network.147 Along the same line of work, Bohara et al. 
incorporated beam information to predict pareto dose 
distribution using anatomy beam model proposed by 
Barragán- Montero et al.138

U- Net architecture has also been used for radio-
pharmaceutical dosimetry.134,140 The network was 
trained to predict 3D dose rate maps given the mass 
density distribution and radioactivity maps. The cur-
rent clinical standard is the decades- old Medical 
Internal Radiation Dose Committee (MIRD) formulism 
which is limited by somewhat crude analytical equa-
tions. The long- term goal of the U- Net studies is to 
create a stable DL- based dose estimation model that 
achieves a precision close to that of Monte Carlo 
simulations.

He et al. proposed the residual network, known 
as ResNet, to mitigate the difficulty of training DNN 
caused by gradient vanishing.170 He et al. reformu-
lated the layers as a learning residual function in-
stead of directly fitting a desired underlying mapping. 
Chen et al. and Fan et al. proposed the DL method 
based on ResNet with 101 and 50 weight layers, re-
spectively, to predict dose distribution for head/neck 
cancer IMRT patients.133,143 Since networks with very 
deep layers are difficult to train due to vanishing gradi-
ent, such networks used shortcut connections to add 
to the outputs of the stacked layers.170 More recently, 
Liu et al. proposed ResNet for dose prediction in the 
nasopharyngeal cancers for Helical Tomotherapy. To 
achieve multi- scale feature learning, Liu et al. divided 
the ResNet into several parts without fully connected 
layers and respectively combined with input data to 
achieve pixel- wise feature abstraction and extraction in 
the structural image.130

3.2.7 | Overview of GAN- based works

GAN entails a pair of neural networks: a generator and a 
discriminator. From the treatment planning standpoint, 
the generator could be represented as the treatment 
planner who generates the plan, and the discriminative 
network could be represented by a radiation oncologist 
who evaluates the generated plan. Both the treatment 
planner and a radiation oncologist get better at per-
forming their tasks as they become more experienced 

over time. Only a handful of studies have investigated 
the performance of GAN for dose prediction task as 
shown in Table 6.

Mahmood et al. demonstrated the first use of 
2D GAN for predicting dose for each 2D slice inde-
pendently for oropharyngeal cancer. Subsequently, 
Babier et al. proposed the first 3D GAN for the predic-
tion of full 3D dose distributions, which outperformed 
the 2D GAN model proposed by Mahmood et al. pre-
sumably owing to its ability to learn the 3D features in 
contrast to 2D features by 2D GAN networks. Recently, 
Vasant et al. proposed a novel 3D attention- gated gen-
erative adversarial network (DoseGAN) as a superior 
alternative to the current state of the art dose prediction 
networks.24 Spatial self- attention allows networks to 
emphasize portions of the intermediate convolution lay-
ers. Attention gated GAN can potentially offer deeper 
and more efficient discrimination, while being trained 
in parallel with the generator network and facilitating 
the model convergence.24,177 This addresses the issue 
of keeping the number of network parameters as low 
as possible in conventional GAN. Attention- gated GAN 
proposed by Vasant et al. outperformed conventional 
2D and 3D GAN in all dosimetric criteria including PTV 
and OARs.24

All four studies 24,131,142,148 on GAN- based dose 
predictions constructed a generator and discriminator 
network using the pix2pix architecture proposed by 
Iosa et al.178 In these studies, U- Net is used as a dose 
map generator that passes a contoured CT image slice 
through consecutive layers, a bottleneck layer, and 
subsequent deconvolution layers. U- net also uses skip 
connections to easily pass high- dimensional informa-
tion between the input (CT image slice or contoured 
structures) and the output (dose slice).

3.2.8 | Overview of RL- based works

RL is a unique framework that resembles the work-
flow of treatment planning optimization. RL has been 
combined with DNN to accomplish human- level perfor-
mances for decision- making tasks.179 In order to imple-
ment the RL- based framework for dose prediction task, 
in- house treatment planning system and RL architec-
ture must be synchronized in a single pipeline, which 
is implemented by only a few research groups.151,180 
Recently, RL was used to train a DNN named virtual 
treatment planner network, which learns to adjust treat-
ment planning parameters to improve plan quality simi-
lar to the treatment planning process.152,180 The use of 
the trained network to perform treatment planning im-
proved plan quality score compared to the initial plan. 
In comparison to U- Net and GAN, deep RL is one of 
the least studied networks for dose prediction tasks 
presumably due to the high action space of the actual 
treatment planning process.
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3.2.9 | Overview of learning processes

Three commonly used learning processes include un-
supervised learning (USL), semi- supervised learning 
(SSL), and supervised learning (SL). In this section, we 
briefly present a review of SL due to its wide adoption 
in dose prediction application. SL refers to a technique 
that utilizes labeled data with input- output correspond-
ence to train the model. The learning goal during train-
ing is defined by the paired input data and output target. 
While both, traditional KBP and DL- based KBP, meth-
ods largely use the SL framework to train models, each 
presents a different framework with regards to labeled 
data with input. For instance, one subcategory of SL 
is regression analysis, which establishes a relation-
ship among the variables by estimating how one set of 
variables affect their corresponding response variables 
(i.e., relationship between the distance of OAR to target 
and doses to OAR). As can be seen in Tables 1- 3, vari-
ous regression analyses were performed in traditional 
KBP methods. DL- based KBP methods use CNN to 
learn contour- to- dose mappings in a supervised man-
ner with the clinically generated dose map being the 
learning target. The discriminator in the GAN- based 
model learns to discriminate between predicted dose 
map and real clinical dose map, therefore, belongs to 
supervised learning. Therefore, the network is trained 
through adversarial loss and able to predict more real-
istic dose distributions.177

3.2.10 | Influence of various parameters on 
DL- based model performance

Input parameters
In terms of the number of input parameters, Williems 
et al. studied the impact of four different inputs (Table 6) 
for dose prediction under with and without data nor-
malization of dose distribution. The order of models in 
terms of performance was CT + isocenter + contours 
>CT + contours >CT + isocenter >CT only. While the 
dose distribution normalization had more benefits for 
CT + contours, it was found to be less necessary for 
CT +isocenter + contours model. Whereas, normaliza-
tion produced hot and cold spots for CT + isocenter 
model.136

While many studies use only CT with anatomical 
information (i.e., PTV and OAR contours) as inputs to 
the CNN27,132,135 as can be seen in Table 6, Barragán- 
Montero et al. included beam geometry information 
along with anatomical information as inputs. As a re-
sult, the model was able to learn from the database 
that was heterogeneous in terms of beam configura-
tions (i.e., noncoplanar),132 which was the limitation of 
the network proposed in the earlier studies.27 For rectal 
cancer IMRT, Zhou et al. showed improvements in the 
prediction accuracy by including beam configurations 

as input to the network compared to that of without 
beam configurations.149 For head/neck cancer, Chen 
et al. investigated the influence of adding out of field la-
bels into the network training to deal with inability of 2D 
network to account for radiation beam geometry. It re-
sulted in a better overall performance compared to the 
network excluding out- of- field labels.133 For prostate 
cancer, Murakami et al. compared the performance of 
CT- only- based GAN with contour- based GAN in pre-
dicting target dose map and found prediction perfor-
mance of contoured- based GAN to be superior.

Loss functions
In terms of losses, MSE is one of the most widely used 
cost functions in DL methods as it has many desirable 
properties from an optimization standpoint. Owing to its 
simplicity, well- behaved gradient, and convexity, majority 
of previous studies including the ones shown in Table 6 
utilized only MSE loss for dose prediction. Nguyen et al. 
combined domain- specific loss function based on DVH 
with adversarial loss and MSE loss for the training of 
deep neural networks. While this approach outperformed 
dose predictions compared to the MSE- based trained 
model, for the same computational system, it increased 
the training time to 3.8 days with 100000 iterations com-
pared to 1.5 days for MSE only based network.147

Lee et al. and Chen et al. utilized mean absolute 
error (MAE) cost function between the ground truth 
and dose rate map predicted by CNN.133,134 As com-
pared to MSE, MAE is more robust to outliers but may 
be less efficient to find the solution, whereas MSE 
provides a more stable and closed- form solution. 
Other loss functions may include Huber loss, smooth 
mean absolute error, quantile loss, and log cosh loss 
function. So far, the MSE loss function has been the 
standard cost function used in DL- based dose predic-
tion studies.

Sample size
In general, the DL- based methods require a large num-
ber of high- quality data to be effective. Small datasets 
in DL can be challenging as it may result in overfit-
ting. Data augmentation,144 dropout layer,164 estima-
tion based on the training and the validation curves,135 
synthesizing new data based on physics principles,181 
and incorporating regularizations to model param-
eters 182 have been used in the literature to prevent 
overfitting. The process of data augmentation, more 
commonly used in dose prediction approaches, is to 
expand the dataset by synthesizing additional realistic 
samples from available samples. It is important to note 
here, however, that the process of augmentation to be 
used depends on the suitability of the context. For the 
purpose of dose prediction, we have presented the av-
erage training and testing sample size for each treat-
ment site in Figure 6 for all DL- based dose prediction 
methods to date, which provides the readers with an 
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approximate range of training and testing dataset for 
each cancer site.

As shown in Table 6, three investigations on prostate 
cancer have been reported for predicting pareto opti-
mal dose distributions.137,138,147 For each patient in the 
training set, 10, 100, and 500 plans were generated by 
Ma et al. Nguyen et al. and Bohara et al. respectively, 
to sample the pareto surface with different tradeoffs. 
An optimal number of plans per patient in training set 
is unknown as it may depend on case to case basis. 
Nonetheless, in the case of predicting pareto optimal 
plans, it may be ideal to stay within a clinically relevant 
regime by including only those plans that cover dosim-
etric trade- offs presented by a physician.

Kandalan et al. studied the issue of generalizing DL- 
based dose prediction models and make use of transfer 
learning to adapt a DL dose prediction model to differ-
ent planning styles in the same institutions and plan-
ning practices at different institutions. A source model 
was adapted to four different planning styles only with 
14– 29 cases.150 A long- term goal of these studies is to 
generate a universal model that can easily be trans-
ferred to different institutions for a similar task.

4 |  DISCUSSION

With the goals of improving plan quality and efficiency, 
researchers have investigated KBP to guide treatment 

planning for a new patient. In the last decade, there has 
been a rapid growth in the number of publications in tra-
ditional KBP dose prediction. More recently, the num-
ber of publications on DL has increased exponentially 
because of its flexibility and superior performances 
compared to many state- of- the- art techniques. Over 90 
articles have been published on traditional KBP dose 
prediction methods between 2011 and August 2020, 
whereas over 17 publications have already been pub-
lished on DL- based dose prediction as of August 2020.

In general, most publications demonstrate improve-
ments in comparison to manually optimized clinical 
plans in terms of both treatment planning quality and 
efficiency. A large number of manuscripts were pub-
lished on traditional methods between 2015 and 2018, 
with the highest number of publications in 2017. This 
is presumably due to the commercialization of the 
RapidPlanTM in Eclipse® treatment planning software 
in 2014, which allowed researchers from different cen-
ters to perform retrospective studies for investigating 
the influence of various parameters on the quality of 
plans generated through commercial KBP module. In 
addition to RapidPlanTM, RayStation allows a scripting 
option that allows user to implement a mathematical 
dose prediction model as demonstrated in.89 However, 
the automatic treatment planning module of RayStation 
has not been largely investigated as it may not be widely 
available to the users to perform retrospective investi-
gations. An auto planning by Pinnacle (APP) is another 
commercially available software. It is a protocol- based 
method that performs iterative optimization steps 
to reach a final plan compared to using the machine 
learning- based method.122 Nonetheless, we have also 
tabulated these additional APP- based clinical studies 
with their key findings in Table 7.

In terms of modality, both (traditional KBP and DL 
KBP) methods were mostly applied to IMRT, VMAT, 
and other noncoplanar intensity- modulated external 
beam radiation therapy treatments. Only a small num-
ber of studies were reported for the purpose of mag-
netic resonance imaging- guided therapy (MRgRT).129 
The number of traditional KBP and DL- based publica-
tions for on- table adaptation may increase in the future, 
owing to recent technical developments such as MR- 
Linear Accelerator (MR- Linac). In terms of treatment 
sites, prostate, head/neck, and lung were among the 
most investigated sites in both traditional KBP and DL- 
based methods. Other disease sites— complex abdom-
inal or cranial— were studied less often. This trend was 
anticipated as both KBP techniques require large train-
ing sets, and prostate, lung, and head/neck are among 
the more common and static disease sites treated with 
external beam radiation therapy. Therefore, the avail-
ability of a prior plan is likely to be one of the predictive 
factors for future model development.

In KBP, three commonly reported dose predic-
tion metrics in the literature are the entire DVH curve 

F I G U R E  6  The average training and testing sample size 
in DL- based dose prediction methods for each cancer site. The 
values are averaged over the number of investigations listed on 
the top x- axis and the error bars represent standard deviation. NC, 
Nasopharyngeal Cancer; PD, Personalized Dosimetry
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(Table 1), one or more dose metrics (Table 2), and 
voxel- based dose prediction (Table 3). For DVH only 
prediction model, DTH of the OARs, volumes of PTV 
OARs excluding external or body structure, and patient- 
specific anatomical information are used as the input 
to the model, whereas the output is the DVH curve of 

each OAR (i.e., bladder and rectum). In this case, dose 
outside of the PTV region may not be accounted for 
unless body structure is included in the model, which, 
in turn, would provide information regarding dose con-
formality or gradient outside the PTV. However, includ-
ing the body structure in the model has not been a 

TA B L E  7  Summary of research papers on automatic plans generated in Pinnacle (APP) with their key findings

Ref.
Cancer
Site Key Findings

183 Esophageal APP plans were preferred for 31/32 patients and achieved lower mean doses to the lungs. APP plans 
and manually created plans achieved similar target coverage

124 Advanced head/neck In a 10 patients’ study, the human- driven plans achieved better target homogeneity, whereas the 
APP consistently achieved better OAR sparing. Overall, an improved tradeoff process between 
homogeneity and OAR sparing in APP could further enhance its benefits.

184 Oropharyngeal The performance of cross- institutional OVH- based KBP compared to APP was studied on 25 
patients and the plan quality was found to be comparable for both techniques.

185 Oropharyngeal APP plans were clinically acceptable and achieved comparable PTV coverage with better OARs 
sparing

121 Breast In a 25 patients’ study, dose homogeneity was found to be significantly better in APP plans 
compared to manual plans (p < 0.001).

186 Prostate In a 23 patients’ study, doses to the PTV and rectum by APP were comparable to manually optimized 
plans. APP plans achieved lower doses to bladder and femoral heads compared to manual plans 
(p < 0.05)

187 Nasopharyngeal Impact of APP was studied on IMRT and VMAT plans on 10 patients with three dose level target 
volumes. Better parotid sparing was achieved by APP- VMAT versus APP- IMRT (p < 0.01). PTVs 
coverage was comparable in both techniques.

123 Head/Neck APP produced clinically acceptable plans in all 26 cases with better sparing of OARs. APP plans 
achieved a comparable plan quality score to the previously delivered plans in 94% of the 
evaluations.

188 Prostate In 100 patients’ study, 98 plans met all clinical constraints with significant improvement bladder and 
rectum sparing in higher dose region (V72 Gy). Proposed automated treatment planning workflow 
reduced operator time to less than 5 min.

189 Head/Neck Script- based APP plans achieved higher points compared to manually created plans (67.0 vs. 62.3), 
however, resulted in increased monitor units up to 35.5%.

190 Whole brain In a 10 patients’ study, APP- based 2 coplanar VMAT and 9- field plans were compared. With 
comparable dosimetric results, both APP- based plans achieved clinically acceptable and 
deliverable plans and eliminated the need of generating pseudo- structures by the planners.

191 Breast (Tangential) Automated planning was found to be applicable in 1661/1708 patients with treatment planning time to 
be around 5 to 6 minutes on standard commercially available planning system hardware.

192 Lung SBRT In a 56 patients’ study, APP plans significantly reduced D2% for the spinal cord, esophagus, heart, 
aorta, and main stem bronchus and maintained target coverage compared to manually created 
treatment plans.

193 Liver SBRT In a 10 patients’ study, APP plans resulted in comparable to manual plans, but with reduced doses to 
the spinal cord and planning time.

194 Prostate Evaluated the adaptability of APP across clinics with different planning protocols and demonstrated 
that APP configurations can be shared and implemented across multiple centers.

195 Partial breast 
irradiation

In a 23 patients’ study, APP plans were compared with manually created plans. No significant 
differences in OARs were observed, but APP plans achieved significant improvements in PTV 
coverage compared to manual plans.

196 Nasopharyngeal In a 25 patients’ study, APP and manual plans had similar ratings including PTV coverage and doses 
to OARs for 19/25 patients. APP plans reduced planning duration time by 17%

197 Locally advanced 
Head/Neck

The performance of 1) APP plans 2) RapidArc- based automatic interactive optimizer 3) RapidPlan 4) 
RapidPlan with automated setup fields and 5) RayStation multicriteria optimization was studied 
retrospectively on 16 head/neck cases. All systems generated comparable treatment plans, but 
APP plans performed the best for parallel organs with minor dose differences.

Abbreviations: APP, Auto planning by Pinnacle; D2%, Dose received by 2% of the volume; OARs, organs at risk; PTV, planning target volume.
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common practice for the DVH- only prediction model.46 
Moreover, the voxel- based dose prediction model pre-
dicts the dose distribution accounting for doses to each 
voxel within the patient's image set,96,127 hence pro-
vides spatial information including dose gradient out-
side of the PTV and dose conformality. However, the 
voxel- based approach relies heavily on the quality of 
the plans used to build the model as the inclusion of 
outliers can compromise the model performance. Even 
for RapidPlanTM- based KBP, several studies indicated 
the need to investigate the proper identification of out-
lier plans.60,65,72 Outlier identification in RapidPlanTM 
involves statistics and regression plots for each struc-
ture, suggesting Cook's Distance >10.0, Studentized 
Residual >3.0, Areal Difference of Estimate >3, and 
Modified Z- score >3.5 as potential outliers.118 To an 
extent, this also requires removal of outliers in an iter-
ative manner with either stopping the removal once no 
significant improvement is observed or identification of 
the outliers followed by the re- planning of all the out-
liers so that it can be reused in the training cohort.116 
The time required to address the issue of outliers may 
vary across institutions, as those without standard-
ized contouring and planning techniques may have 
many dosimetric outliers, which in turn can result in a 
time- consuming process of eliminating outliers either 
through visual inspection or additional statistical anal-
ysis. In the literature, there only limited effort toward 
establishing a systematic process for identifying dosi-
metric and geometric outliers. To our knowledge, cur-
rently, there is no well- established workflow for outlier 
identification and mitigation in terms of model creation 
for both KBP techniques. Therefore, a standardized 
automated method of outlier identification and model 
creation could further enhance the treatment planning 
experience.53

KBP research is growing rapidly. Past work has been 
surveyed before, though much has changed since then 
and even old work can be given a new context in light 
of more recent advancements. In contrast to a previous 
review that calculated an average number of training 
and testing dataset used in each year,28 we calculated 
the average number of training and testing datasets 
used for each cancer site for traditional KBP and DL 
KBP in Figures 3 and 6, respectively. Table 5 provides 
site- specific training and validation dataset size for the 
RapidPlanTM KBP module. This could inform readers of 
a range of training sample size used in the literature for 
each treatment site. Direct comparison of training sam-
ple size between the traditional and DL- based KBP was 
not made as DL- based dose prediction is a relatively 
new technique with a fewer number of investigations 
per site compared to traditional KBP methods.

There are key differences between traditional KBP 
and DL methods for dose prediction. In contrast to 
DL, an inherent limitation of traditional methods is that 
it is unable to extract important features and patterns 

hidden within the raw dataset. Both, similarity mea-
sures in atlas- based methods and input features to 
model- based methods require considerable effort to 
design handcrafted features (i.e., overlap volume histo-
gram, OAR distance to the PTV, projections, etc.) that 
can be processed either to identify the best- matched 
case or into a representation from which patterns 
within the input can be classified through a classifier. 
In traditional KBP, PCA has been widely used in the 
literature for feature selection owing to its simplicity. 
However, a major limitation of PCA is that it learns a 
low dimensional representation of data only with a lin-
ear projection. Whereas DNNs can be used to address 
this issue and untangle non- linear projections. For in-
stance, an autoencoder is a type of neural network that 
is consisted of encoder, which encodes the input into 
a low dimensional latent space, and decoder, which 
restores the original input from the low dimensional la-
tent space.198 DL- based dose prediction methods use 
an autoencoder type of neural network as shown in 
Table 6.

Multiple DL networks have been investigated for 
dose prediction. The two most widely investigated 
networks, thus far, included CNN and GAN. From the 
results so far, it appeared that GANs may be a good 
choice for dose prediction tasks over conventional 
CNNs for several reasons. First, GAN has been proven 
to perform well in lesion detection and data augmenta-
tion tasks.148,199 In addition, GAN does not rely on pure 
spatial loss, such as mean square error between dose– 
volumes, which makes it a suitable candidate not only 
for the dose prediction of conventional radiation ther-
apy but also for SBRT in which dose heterogeneity is 
prevalent.177 Furthermore, Babier et al. found that GAN 
models did not require significant parameter tuning 
and architecture modifications during implementations 
compared to other conventional methods.148 However, 
in contrast to CNN, one limitation of conventional GAN 
is that they are difficult to train and require the number 
of network parameters to be as low as possible. Future 
studies are anticipated to account for such shortcom-
ings by proposing the extension of networks such as 
attention- gated GAN.24 Finally, Deep RL is one of 
the least studied networks for generating a treatment 
plan presumably due to the high action space of the 
actual treatment planning process. One application 
of RL in dose prediction would be to adjust treatment 
planning parameters such as dose– volume objectives, 
constraints, and corresponding weights to reach the 
desired treatment plan. However, this would require 
synchronizing DL framework and inverse optimizer in a 
single pipeline, which may not be feasible with inverse 
optimizer of commercial TPS due to its “black box” na-
ture. Therefore, applying RL for generating a treatment 
plan may require in- house built TPS 152 that can be 
presented with DL network architectures in the same 
pipeline.
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4.1 | Method comparison of KBP dose 
predictions

KBP model performance varies as does the geometric 
and dosimetric complexity of treatment plans for differ-
ent disease sites. For these reasons, KBP performance 
is presented here for specific disease sites. For head/
neck cancer, the difference between the traditional KBP 
predicted and actual median doses for the parotids 
ranged from −17.7% to 15.3%,48 whereas it ranged be-
tween –  7.7 and 13.5% for DL- based dose prediction.133 
With the same level of prediction accuracy, DL- based 
KBP was able to predict median dose for 80% of parot-
ids compared to 63% by the traditional KBP method.133 
Kajikawa et al. made the direct comparison of dose dis-
tribution predicted by the DL method with that generated 
by RapidPlanTM for prostate cancer.141 This dosimetric 
comparison showed that CNN significantly predicted 
DVH accurately for D98 in PTV- 2 and V35 V50, V65 in the 
rectum. Given that features automatically extracted by 
DL methods can include both geometric/anatomic fea-
tures and the mutual tradeoffs between the OARs, it 
gives an edge to DL methods in terms of dose predic-
tion accuracy compared to traditional KBP methods that 
mainly rely on DVH and geometry- based expected dose.

For oropharyngeal cancer, Mahmood et al. di-
rectly compared the GAN approach for generating 
predicted dose distribution with several traditional 
approaches including bagging query 3,200 and gener-
alized PCA,47 random forest.102 Through the gamma 
analysis,201 Mahmood et al. demonstrated that GAN 
plans were the most similar to the clinical plans and 
achieved 4.0% to 7.6% improvements in the frequency 
of clinical criteria satisfaction compared to traditional 
approaches.131

For prostate SBRT, Vasant et al. compared the per-
formance of the proposed attention gated GAN with an 
earlier approach that used relative distance map infor-
mation of neighboring input structures.127 In contrast to 
conventional radiation therapy, SBRT produces hot spots 
within the target volume. The mean absolute difference 
in V120 between KBP- like approach and actual plan was 
fourfold higher compared to that achieved by the atten-
tion gated GAN technique, demonstrating the ability of a 
DL- based method to predict cold spots and hotspots that 
are prevalent in SBRT dose distributions. While both, tra-
ditional and DL- based KBP methods used the data from 
previously treated patients to make dose prediction for 
a new patient, DL- based methods have been shown to 
outperform several traditional KBP methods as demon-
strated by some studies in the literature.131,141

4.2 | Future trends

According to published articles on each KBP method in 
recent years, a bulk of research on further developments 

of models has shifted from traditional KBP methods to 
DL- based methods. This is presumably due to the re-
cent success of DL in various medical applications as 
well as its potential in dose prediction task. In terms of 
traditional KBP methods, future investigations are an-
ticipated to be retrospective in nature by clinically avail-
able tools (i.e., RapidPlanTM, APP). Since DL- based 
methods appear to be in their initial development stage, 
their possibilities are expected to be further explored 
through the development of new DL models and in dif-
ferent areas of dose prediction tasks in treatment plan-
ning workflow including adaptive radiotherapy in the 
near future.

Adaptive radiotherapy (ART) involves adjusting dose 
distribution based on anatomical changes observed on 
intra- procedural imaging such CBCT. The standard 
approach requires a physician to perform the recon-
touring of OAR and tumor regions followed by plan 
re- optimization, which is difficult to implement with a 
patient on the table due to time constraints. To date, 
only one study has been reported to adopt DL meth-
ods for the purpose of ART of head/neck cancer.146 The 
future trend will certainly be toward utilizing DL- based 
methods to present dose prediction models of dosime-
try changes and radiotherapy response for ART.

Post- dose prediction, the main component of treat-
ment planning workflow includes ensuring the achiev-
ability of the predicted dose plans, which often involves 
inverse treatment planning through manual interven-
tion. Only a handful of studies extended such KBP in a 
fully automated pipeline that not only predict the dose 
distribution but also generates a complete treatment 
plan with minimum human interaction in traditional 
52,101,184,202,203 and DL- based methods.131,148,151 The 
accurate deliverability of the predicted plans is crucial 
and it must account for various mechanical, physical, 
and algorithmic constraints. It is important to note here 
that good predictions with the low error may not nec-
essarily lead to the final deliverable plan with the same 
performance on clinical criteria. For instance, five of 
the seven prediction methods investigated by Babier 
et al. resulted in significantly worse clinical criteria sat-
isfaction despite lower error post- dose predictions.148 
We, therefore, believe synchronizing an inverse optimi-
zation engine with dose prediction methods hold great 
potential in improving treatment planning efficacy and 
efficiency of DL KBP. Alternatively, a DL- based fluence 
prediction has also been proposed for real- time pros-
tate treatment planning.151 This approach follows the 
conversion of predicted fluence maps to a deliverable 
treatment plan through delivery parameter generation 
and dose calculations directly in a treatment planning 
software. Such approaches do not require an inverse 
optimization process and involve minimal human inter-
vention. After generating a clinically acceptable plan, 
a subsequent task in many clinics involves patient- 
specific quality assurance (QA) measurements that are 
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performed routinely prior to actual treatment delivery. 
This QA step is not feasible if adapting a plan for a pa-
tient currently on the treatment table. Several ML204 and 
DL205 approaches have been reported for predicting 
gamma analysis pass rates for patient- specific IMRT 
QA that may prove to be an acceptable surrogate for 
actual measurements or be an acceptable complement 
in an overarching QA program. More effort is needed to 
incorporate such approaches into the treatment plan-
ning pipeline to establish a fully automated workflow.

One of the challenges in data- driven algorithms, in-
cluding both ML and DL, is that it requires a large set 
of high- quality data. Since the quality of data and ra-
diotherapy practices vary from one center to the other, 
the heterogeneity in previously treated plans becomes 
a major obstacle in the deployment of data- driven solu-
tions in the field of radiation oncology. To address this 
issue, the concept of transfer learning for model adapta-
tion to different learning styles at different centers may 
be investigated further in the future. A long- term goal of 
this area of investigations would be to incorporate data- 
driven predictive tools as a part of the clinical pathway. 
Pooled data from multiple institutions are the likely path 
forward for creating KBP models for rare disease sites.

Finally, while the emergence of traditional ML and 
modern DL methods in the form of KBP has had a pos-
itive impact in radiotherapy clinics, adopting several 
practices from computer vision (CV) communities can 
further contribute to the growth of KBP on a larger scale. 
Data sharing is one category of CV that focuses on col-
laborative analysis and publishing on the web.206– 208 
Within KBP communities, an exclusive platform may be 
used to share, combine, and analyze the dataset within 
the boundaries of HIPAA (Health Insurance Portability 
and Accountability Act). Through collaborative analysis, 
individuals from different centers can run KBP mod-
els on the dataset from their centers and later merge 
with other versions of the data available on this plat-
form. Practice of publishing code is another area that 
the KBP community may adopt from CV as it matures. 
Availability of codes along with a corresponding paper 
on web (i.e., paperswithcode.com) aids the reproducibil-
ity of research, and provides useful information and de-
tails that may not be sufficient to provide in publications 
(i.e., training strategies, detailed list of hyper- parameter 
values, network structure, data augmentation, etc.). 
Eglen et al. compiled general guidelines from different 
areas of science for sharing computer codes and pro-
grams.209 By advocating for such guidelines, the KBP 
community may embrace reproducibility, transparency, 
and reusability of research products.

5 |  CONCLUSION

In the last decade, a tremendous amount of work 
has been done to improve treatment plan quality and 

efficiency through knowledge- based planning re-
search. We have reviewed over 120 articles covering 
two major KBP methods for dose prediction: tradi-
tional KBP methods and the more recent DL- based 
KBP. Many traditional KBP methods are shown to be 
equivalent or superior to an experienced planner with 
greater efficiency. Recent developments in DL- based 
KBP methods also hold a great potential to further im-
prove the accuracy of the dose prediction task with-
out compromising on efficiency. Both traditional and 
DL- based KBP methods need further development 
for many other disease sites. Given the commercial 
availability of the traditional KBP module, more retro-
spectives studies are foreseen in the future. However, 
new DL- based KBP methods are actively being intro-
duced and trending in a steep upward direction and its 
commercialization may be anticipated in near future. 
There are various areas of future research, several of 
which have been highlighted in this review, required 
to achieve an ultimate goal of a fully automated treat-
ment planning system.
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