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Abstract

Motivation: Inferring the properties of a protein from its amino acid sequence is one of the key problems in bioinfor-
matics. Most state-of-the-art approaches for protein classification are tailored to single classification tasks and rely
on handcrafted features, such as position-specific-scoring matrices from expensive database searches. We argue
that this level of performance can be reached or even be surpassed by learning a task-agnostic representation once,
using self-supervised language modeling, and transferring it to specific tasks by a simple fine-tuning step.

Results: We put forward a universal deep sequence model that is pre-trained on unlabeled protein sequences from
Swiss-Prot and fine-tuned on protein classification tasks. We apply it to three prototypical tasks, namely enzyme
class prediction, gene ontology prediction and remote homology and fold detection. The proposed method per-
forms on par with state-of-the-art algorithms that were tailored to these specific tasks or, for two out of three tasks,
even outperforms them. These results stress the possibility of inferring protein properties from the sequence alone
and, on more general grounds, the prospects of modern natural language processing methods in omics. Moreover,
we illustrate the prospects for explainable machine learning methods in this field by selected case studies.
Availability and implementation: Source code is available under https://github.com/nstrodt/UDSMProt.
Contact: nils.strodthoff@hhi.fraunhofer.de or wojciech.samek@hhi.fraunhofer.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Inferring protein properties from the underlying sequence of amino
acids (primary structure) is a long-standing theme in bioinformatics
and is of particular importance in the light of advances in sequenc-
ing technology and the vast number of proteins with mostly un-
known properties. A rough estimate for this number is given by the
size of the sparsely annotated TrEMBL dataset (158M) and should
be set into perspective by comparison to the size of well-curated
Swiss-Prot (The UniProt Consortium, 2018) dataset (560K) with a
much more complete annotation of the protein properties.

There is a large body of literature on methods to infer protein
properties, most of which make use of additional handcrafted fea-
tures in addition to the primary sequence alone (Cozzetto et al.,
2016; Dalkiran et al., 2018; Gong et al., 2016; Håndstad et al.,
2007; Li et al., 2017, 2018; Shen and Chou, 2007). These features
include experimentally determined functional annotations (such as
Pfam; El-Gebali et al., 2019) and information from homologous, i.e.
evolutionary-related proteins. The latter are typically inferred from
well-motivated but still heuristic methods such as the basic local
alignment search tool (BLAST; Madden, 2013) that searches a data-
base for proteins that are homologous to a given query protein, via
multiple sequence alignment. Handcrafted features based on experi-
mental results rely on a preferably complete functional annotation

and are therefore likely to fail to generalize for incompletely anno-
tated proteins (Price et al., 2018). Handcrafted features derived
from multiple sequence alignments rely on alignment algorithms
that typically scale at least linearly with query and database size.
This time complexity is not able to keep up with the present size and
the exponential growth rates of present protein databases.

These bottlenecks urge for the development of methods that
allow to directly predict protein properties from the sequence of
amino acids alone, which is, therefore, a topic on the agenda of
many research institutions (Bileschi et al., 2019; Rao et al., 2019;
Rives et al., 2019). Methods from deep learning, and, in particular,
self-supervised algorithms from natural language processing (NLP),
are promising approaches in this direction.

The machine learning (ML) community recently gained interest
in protein classification as possible application area for deep learn-
ing methods (see e.g. AlQuraishi, 2019; Bileschi et al., 2019; Rao
et al., 2019; Rives et al., 2019; Upmeier zu Belzen et al., 2019). In
NLP, self-supervised approaches have shown tremendous prospects
across a wide variety of tasks (Devlin et al., 2019; Howard and
Ruder, 2018; Liu et al., 2019; Peters et al., 2018; Radford et al.,
2018, 2019; Song et al., 2019; Yang et al., 2019), which rely on lev-
eraging implicit knowledge from large unlabeled corpora by pre-
training using autoregressive language modeling or autoencoding
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tasks. This approach goes significantly beyond the use of pre-trained
word embeddings, where only the embedding layer is pre-trained,
whereas the rest of the model is initialized randomly.

Protein classification tasks represent a tempting application do-
main for such techniques exploiting the analogy of amino acids as
words, protein domains as sentences and proteins as text para-
graphs. In this setting, global protein classification tasks, such as en-
zyme class prediction, are analogous to text classification tasks (e.g.
sentiment analysis). Protein annotation tasks, such as secondary
structure or phosphorylation site prediction, map to text annotation
tasks, such as part-of-speech tagging or named entity recognition.
Although this general analogy has been recognized and exploited al-
ready earlier by Asgari and Mofrad (2015), self-supervised pre-train-
ing is a rather new technique in this field. Existing literature
approaches in this direction (Rao et al., 2019; Rives et al., 2019)
show significant improvements for models that were pre-trained
using self-supervision compared with their counterparts trained
from scratch on a variety of tasks and demonstrate that models le-
verage biologically sensible information from pre-training.
However, none of them explicitly demonstrated that pre-training
can bridge the gap to state-of-the-art approaches that mostly rely on
handcrafted features such as position-specific scoring matrices
(PSSMs) derived via BLAST.

Our main contributions in this article are the following: (i) we
put forward a universal deep sequence model for protein classifica-
tion (UDSMProt) that is pre-trained on Swiss-Prot and fine-tuned
on specific classification tasks without any further task-specific
modifications. (ii) We demonstrate that this model is able to reach
or even surpass the performance level of state-of-the-art classifica-
tion algorithms many of which make use of PSSM features. This
indicates the feasibility of inferring protein properties from the se-
quence alone across a variety of different tasks. (iii) We demonstrate
the particular effectiveness of our approach for small datasets.

2 Algorithms and training procedures

2.1 UDSMProt: universal deep sequence models for

protein classification
The idea of UDSMProt is to apply self-supervised pre-training to a
state-of-the-art recurrent neural network (RNN) architecture using
a language modeling task. In this way, the model learns implicit rep-
resentations from unlabeled data that can be leveraged for down-
stream classification tasks. We aim to address a range of different
classification problems within a single architecture that is universal
in the sense that only the dimensionality of the output layer has to
be adapted to the specific task. This facilitates the adaptation to
classification tasks beyond the three exemplary tasks considered in
this work. For fine-tuning on the downstream classification tasks,
all embedding weights and long short-term memory (LSTM) weights
are initialized using the same set of weights obtained from language
model pre-training. As we will demonstrate, this is a particularly
powerful choice for small datasets.

Presently, there are two main objectives for self-supervised pre-
training in NLP, autoregressive language modeling and autoencod-
ing (see Yang et al., 2019 for a concise introduction to both con-
cepts). Autoregressive language modeling is an inherently
unidirectional approach whereas autoencoding directly incorporated
bidirectional context. One notable example of the autoregressive
category is the RNN-based AWD-LSTM language model (Merity
et al., 2018) compared with BERT (Devlin et al., 2019) as main pro-
ponent for the autoencoding category. Autoregressive approaches,
such as ULMFit (Howard and Ruder, 2018), can be trained with
considerably smaller computational budget than autoencoding,
transformer-based architectures, while still showing very competi-
tive performance on NLP text classification tasks (see e.g. Xie et al.,
2019) and are, therefore, the method of choice for our intended
task.

Our proposed method relies on an AWD-LSTM language model
(Merity et al., 2018), which is, at its heart, a three-layer LSTM regu-
larized by different kinds of dropouts (embedding dropout, input

dropout, weight dropout, hidden state dropout and output layer
dropout). During language model training, gradients are backpropa-
gated using backpropagation through time (BPTT) with variable
length sequences as in (Merity et al., 2018) using batches of �70
tokens and the output layer remains tied to the weights of the
embedding layer. For classifier training, we use BPTT for text classi-
fication (Howard and Ruder, 2018), where gradients are accumu-
lated potentially over multiple batches without resetting the LSTM’s
hidden state and backpropagated explicitly up to a maximum con-
text of 1024 tokens. Specific model parameters are listed in
Supplementary Table S2. The training procedure for transfer learn-
ing is largely inspired by ULMFit and proceeds as follows: In a first
step, we train a language model on the Swiss-Prot database. In a se-
cond step, the language model’s output layer is replaced by a
concat-pooling layer (Howard and Ruder, 2018) and two fully con-
nected layers (see Fig. 1 for a schematic illustration). When fine-tun-
ing the classifier, we gradually unfreeze layer group by layer group
(four in total) for optimization, where we reduce the learning rate
by a factor of two compared with the respective previous layer
group (Howard and Ruder, 2018). A single model is by construction
only able to capture the context in a unidirectional manner, i.e.
processing the input in the forward or backward direction. As sim-
plest approach to incorporate bidirectional context into the final
prediction, we train separate forward and backward language mod-
els with corresponding fine-tuned classifiers. An ensemble model is
obtained by averaging the output probabilities of both classifiers.
We use a one-cycle learning rate schedule (Smith, 2018) during
training for 30 epochs in the final fine-tuning step. All hyperpara-
meters were optimized based on the model performance on a separ-
ate validation set, while we report performance on a separate test
set. Our way of addressing the specific challenges of the remote
homology datasets are described in Section 3.4. In all cases, we use
binary/categorical crossentropy as loss function and the AdamW
optimizer (Loshchilov and Hutter, 2019). Note that a potential
intermediate step where one fine-tunes the generic language model
on the corpus underlying the classification step, as proposed by
Howard and Ruder (2018), did only show an improvement in terms
of language model quality but did not result in an improved down-
stream classification performance. This step was therefore omitted
for the results presented below.

2.2 Baseline model
In our experiments below, we mostly compare directly to reported
results from approaches in the literature on predefined datasets.
However, this does not allow for in-depth comparisons that modify
for example details of the training procedure. To still allow to relate
the results of the proposed method to state-of-the-art performance,
we use a baseline model that reaches state-of-the-art performance
on literature benchmarks and that can henceforth be used as proxy
for models considered in the literature.

The performance of literature approaches on many protein clas-
sification tasks has been driven to a large extend by the inclusion of
different kinds of handcrafted features rather than sophisticated
model architectures or training procedures. The most beneficial in-
put features throughout a variety of different classification tasks are
obviously the PSSMs based on a multiple sequence alignment com-
puted via position-specific iterative BLAST (PSI-BLAST; Madden,
2013). PSI-BLAST can compare query sequences with a given se-
quence database and returns a list of local alignments solved with
heuristics instead of optimal local alignments solved with the more
time-consuming Smith–Waterman algorithm. PSI-BLAST is then
used to find more distant relatives of a query protein, where a list of
closely related proteins is created to get an initial general profile se-
quence. This profile sequence is used as a new query for the next it-
eration where a larger list of proteins is found for which again a
profile sequence is computed. This process is repeated to a desired
number of iterations. In our experiments, we used the same parame-
ters as reported in the literature (Dalkiran et al., 2018; Li et al.,
2018; Shen and Chou, 2007), namely three iterations with an evalue

of 0.001 as threshold for which an alignment is considered as signifi-
cant. Although the raw sequences from Swiss-Prot contain 20
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standard and six non-standard amino acids, PSSM features are com-
puted only for the 20 standard amino acids. The raw sequence of
length L was then one-hot encoded into an L� 26 matrix which is
concatenated with the L� 20 PSSM feature matrix yielding an L�
46 input matrix overall. To make use of the full parallelization capa-
bilities while retaining most information, we padded the sequences
to a maximum length of 1024 residues.

For all following experiments, we used a convolutional neural
network (CNN) with seven layers. Each convolutional layer was fol-
lowed by a rectified linear unit and max pooling by a factor of 2.
The number of filters across layers is: 1024, 512, 512, 512, 256, 256
and 256 (with valid padding mode) each with a filter size of 3. The
convolutional stage was followed by flattening layer and three dense
layers (512, 256 and 128) each followed by dropout (with 25%
dropout rate) and finally a softmax layer with nodes for each class
(e.g. six nodes for Level 1 enzyme prediction). For all models, we
minimized categorical crossentropy with AdaMax, a variant of
adaptive moment estimation (Adam) based on the infinity norm
(Kingma and Ba, 2015), which lead to slightly better results in our
CNN experiments compared with the original Adam optimizer. The
hyperparameters follow those provided in this article.

3 Results and discussion

The results are organized as follows: we discuss language modeling
as baseline task in Section 3.1 and then demonstrate the capabilities
of UDSMProt on three prototypical protein classification tasks,
namely enzyme class prediction in Section 3.2, gene ontology (GO)
prediction in Section 3.3 and remote homology detection in Section
3.4. For enzyme class prediction, we provide an extensive evaluation
highlighting several important aspects.

3.1 Language modeling
The language modeling task involves predicting the next token for a
given sequences of tokens and is one of the key NLP tasks for dem-
onstrating the general understanding of a language. In this particular
case, it builds up an implicit knowledge about the structure of pro-
teins, which can potentially be leveraged for downstream classifica-
tion tasks.

Our character-based language model operates on protein se-
quence data tokenized on the level of amino acids (see Fig. 1).
Interestingly, the language model performance depends strongly on
the way the similarity threshold is incorporated in the train–test split
procedure. For this reason, we split the data into train, validation
and test set with ratios 90:5:5 and compare two methods: (i) random
splits without taking sequence similarity into account and (ii) splits
according to UniRef50 cluster assignments. Although the model
trained on a random split reaches a perplexity of 6.88 and a corre-
sponding next character prediction accuracy of 0.409, the model

trained on a cluster-based split only reaches a perplexity of 11.75
with 0.244 accuracy. However, these differences in language model
performance do not lead to measurable differences in the down-
stream performance (see Supplementary Section S3 for a detailed
discussion). In Supplementary Section S3, we also investigate the im-
pact of the model architecture on the language performance within
several ablation studies. Language model performance metrics inher-
ently depend on the dataset and the vocabulary size and it is hard to
estimate their significance. As simplest baseline, language model pre-
diction accuracies can be put into perspective by comparison to ran-
dom guessing corresponding to an accuracy of 0.04, which conveys
that the language model acquired non-trivial knowledge about the
underlying construction principles of proteins. We analyze the learn-
ed representations in two ways: first, we visualize the learned amino
acid embeddings via t-SNE and find good agreement with their
known physio-chemical properties (Taylor, 1986). Second, we ana-
lyze the model’s outputs after the contact-pooling-layer which hints
at the fact that language model pre-training compared with training
from scratch leads to a more efficient encoder representation (see
Supplementary Section S4).

3.2 Enzyme class prediction
We start our analysis on downstream classification tasks with en-
zyme classification for the reason that it is a conceptually simple
task for which a large number of annotated examples are available.
The main experiments in this section are organized in a two-step
process: first, we analyze the proposed approach on custom datasets
in a well-defined experimental environment comparing to a baseline
model operating on PSSM features (Section 3.2.2). As a second step,
we directly compare to literature results demonstrating the proposed
method indeed reaches or even exceeds state-of-the-art performance
for this task (Section 3.2.3).

3.2.1 Task and datasets

Enzyme prediction is a functional prediction task targeted to predict
the enzyme commission (EC) number from a hierarchical numerical
classification scheme for enzymes based on the chemical reactions
they catalyze. In particular, we consider discriminating enzyme ver-
sus non-enzyme (Level 0), predicting main enzyme class (Level 1)
and enzyme subclass (Level 2). A powerful EC classification algo-
rithm of the pre-deep-learning era was provided by EzyPred (Shen
and Chou, 2007), which owed its success to the design of a hierarch-
ical approach and to appropriate input features, which are a com-
bination of the functional (BLAST against a Pfam database) and
evolutionary information (PSI-BLAST against the Swiss-Prot data-
base). For hierarchical classification (Levels 0–2), a simple k nearest
neighbor classifier (KNN) was trained in order to achieve convinc-
ing results. EzyPred was superseded by DEEPre (Li et al., 2018)
where deep learning was applied to raw sequence and homology

Fig. 1. Schematic illustration of the training procedure, here for the amino acid sequence MSLR. . .RI. The < BOS >-token marks the beginning of the sequence. The red

arrows show the context for forward language model for predicting next character (S) given sequence < BOS >M of length 2. For fine-tuning on the downstream classification

tasks, all embeddings weights and LSTM weights are initialized using the same set of weights obtained from language model pre-training. This has to be contrasted with the

use of pre-trained embeddings, where just the embedding weights are initialized in a structured way before the downstream fine-tuning step
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data as input and that was recently extended toward multi-
functional enzyme classification (Zou et al., 2019). Instead of train-
ing simple classifiers on highly engineered features, they trained fea-
ture representation and classification in an end-to-end fashion with
a hybrid CNN-LSTM-approach. Recently, ECPred (Dalkiran et al.,
2018) also showed competitive results by building an ensemble of
well-performing classifiers (Subsequence Profile Map with PSSM
(Sarac et al., 2008), BLAST-KNN (Madden, 2013) and Pepstats-
SVM using peptides statistics (Rice et al., 2000). Nevertheless, the
drawbacks described in Section 1 remain, i.e. requiring functional
annotations of homologous proteins, which are not guaranteed for
evolutionary distant or insufficient annotated proteins.

In addition to the existing DEEPre (similarity threshold 40%)
and ECPred (similarity threshold 50%) datasets (Dalkiran et al.,
2018; Li et al., 2018), we also work with two custom EC40 and
EC50 datasets, which provide all cluster members as opposed to
only cluster representatives (with similarity threshold 40 and 50%)
by combining best practices from the literature for the dataset con-
struction (see Supplementary Section S1 for a detailed description).

3.2.2 Effect of similarity threshold and redundant sequences

In order to investigate the benefits of the proposed approach in com-
parison to algorithms relying on alignment features, we based our
initial analysis on the custom EC40 and EC50 datasets. This ap-
proach represents a very controlled experimental setup, where one
can investigate the effect of the chosen similarity threshold, the im-
pact of redundant sequences during training and potential sources of
data leakage during pre-training in a reliable way.

We base our detailed analysis of the proposed method
UDSMProt (compared with a baseline algorithm operating on
PSSM features) on EC prediction tasks at Level 0 (enzyme versus
non-enzyme), Level 1 (main enzyme class) and Level 2 (enzyme sub-
class). It is a well-known effect that the difficulty of the classification
problem scales inversely with the similarity threshold, as a higher
similarity threshold leads to sequences in the test set that are poten-
tially more similar to those seen during training. In the extreme case
of a random split, i.e. by disregarding cluster information, the test
set performance merely reflects the algorithm’s capability to ap-
proximate the training set rather than the generalization perform-
ance when applied to unseen data. The failure to correctly
incorporate the similarity threshold is one of the major pitfalls for
newcomers in the field. Here, we perform Levels 0, 1 and 2 predic-
tion on two different datasets, namely EC40 (40%) and EC50 (50%
similarity cutoff). Both datasets only differ in the similarity thresh-
olds and the version of the underlying Swiss-Prot databases.

If not noted otherwise, CNN models are trained on representa-
tive sequences as this considerably reduces the computational bur-
den for determining PSSM features and is in line with the literature
(see e.g. Dalkiran et al., 2018; Li et al., 2018). In contrast,
UDSMProt is conventionally trained using the full training set

including redundant sequences, whereas the corresponding test and
validation sets always contain only non-redundant sequences. For
the EC50 dataset, non-redundant sequences enlarge the size of the
training set from 45 to 114k and from 86 to 170k sequences for
Levels 1/2 and 0, respectively. For EC40, the size is enlarged from
20 to 100k and from 46 to 150k for Level 1/2 and 0, respectively.

In Table 1, we compare the two classification algorithms
UDSMProt and the baseline CNN that were introduced in Section 2
in terms of classification accuracy, which is the default metric con-
sidered in the literature for this task. There is a noticeable gap in per-
formance across all experiments between CNN(seq; non-red.) and
CNN(seq þ PSSM; non-red.) which is a strong indication for the
power of PSSM features. This gap can be reduced by the use of re-
dundant sequences from training clusters (CNN(seq)) but still
remains sizable. Most importantly, the gap can be closed by the use
of language model pre-training. Disregarding the case of the EC40
dataset at Level 0, the best-performing UDSMProt outperforms the
baseline algorithms that make use of PSSM features. Combining in-
formation from both forward and backward context consistently
improves over models with unidirectional context. As another obser-
vation, pre-training leads to a consistent advantage compared with
models trained from scratch that cannot be compensated by increas-
ing the number of training epochs for the models trained from
scratch.

Table 1 illustrates that the UDSMProt classification models
benefit from redundant training sequences for the downstream clas-
sification task, where the benefit is greater as the similarity threshold
decreases. Comparing corresponding results from different similar-
ity thresholds, i.e. results from EC40 to those from EC50, reveals
the expected pattern, in the sense that lowering the similarity thresh-
old complicates the classification task as test sequences show smaller
overlap with sequences from the training set.

Finally, we wanted to use this task to raise the awareness for the
issue of data leakage that has—to the best of our knowledge—not
received much attention in the literature. Our point of concern is the
common practice of pre-computing features such as PSSMs (or pre-
training) on the full dataset disregarding the train–test splits for the
downstream classification tasks, which inevitably leads to a system-
atic over-estimation of the model’s generalization performance by
implicitly leveraging information about the test set during the train-
ing phase. In an attempt to quantify the size of this effect, we com-
pute two sets of PSSM features, one set computed based on the
whole Swiss-Prot database [corresponding classification model:
CNN(seqþPSSM; non-red.; leakage)] and a separate set based only
on cluster members from the training data [corresponding classifica-
tion model: CNN(seqþPSSM; non-red.; clean)]. It turns out that the
model with PSSM features computed on a consistent train–test split
always performs slightly worse than its counterpart that relies on
PSSM features computed on the whole dataset. However, from a
practical perspective, the effect of test data leakage remains small

Table 1. EC classification accuracy on the custom EC40 and EC50 datasets

Level EC40 EC50

0 1 2 0 1 2

Baseline Seq; non-red. 0.83 0.38 0.25 0.88 0.71 0.70

Seq 0.84 0.61 0.47 0.92 0.80 0.79

SeqþPSSM; non-red.; clean 0.91 0.84 0.72 0.95 0.94 0.91

SeqþPSSM; non-red.; leak. 0.92 0.85 0.71 0.95 0.95 0.92

UDSMProt Fwd; pretr.; non-red. 0.82 0.79 0.71 0.93 0.94 0.92

Fwd; from scratch 0.87 0.79 0.74 0.94 0.94 0.92

Fwd; pretr. 0.89 0.84 0.83 0.95 0.96 0.94

Bwd; pretr. 0.90 0.85 0.81 0.95 0.96 0.94

Fwdþbwd; pretr. 0.91 0.87 0.84 0.96 0.97 0.95

Note: The best-performing classifiers are marked in bold face.

Fwd/bwd, training in forward/backward direction; seq, raw sequence as input; non-red, training on non-redundant sequences, i.e. representatives only; pretr.,

using language model pre-training; leak., leakage PSSM features computed on the full dataset.
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(see Supplementary Section S3 for a corresponding discussion in the
context of LM pre-training). In Supplementary Section S6, we pro-
vide a more extensive evaluation of the effect by varying the size of
the training database that is used for calculating PSSM features.

To reiterate the main findings of the experiments carried out in
this section, the most crucial observation is that language model pre-
training is capable of closing the gap in performance between mod-
els operating on PSSM features compared with models operating on
the sequences alone. The second main observation is that redundant
sequences rather than cluster representatives only have a positive im-
pact on the downstream classification training. The most obvious
explanations for this observation are inhomogeneous clusters that
contain samples with different labels that carry more fine-grained in-
formation than a single label per cluster representative.

Finally, data leakage arising from inconsistent train–test splits
between pre-training and classification is a possible source of sys-
tematic over-estimation of the model’s generalization performance
and arises e.g. by pre-computing features (such as PSSM or Pfam
features) on the full Swiss-Prot database without excluding down-
stream test clusters. From our experiments on PSSM features in the
context of EC prediction, its effect was found to be small in particu-
lar for large pre-training datasets such as Swiss-Prot, but it should
be kept in mind for future investigations.

3.2.3 Comparison to literature benchmarks

In order to relate our proposed approach to state-of-the-art methods
in literature, we conducted an experiment on two datasets provided
by ECPred (Dalkiran et al., 2018) and DEEPre (Li et al., 2018).
One of the purposes of this analysis is to justify our choice of the
CNN baseline algorithm by demonstrating that it performs on par
with state-of-the-art algorithms that do not make use of additional
side-information, e.g. in the form of Pfam features. When comparing
to literature results on the DEEPre dataset, we exclude models rely-
ing on Pfam features from our comparison. Leaving aside the very
unfavorable scaling with the dataset size (Bileschi et al., 2019) and
possible issues with data leakage due to features computed on the
full dataset, methods relying on these features will fail when applied
to proteins without functional annotations (see also the discussion
in Dalkiran et al., 2018). In fact, a recent study estimated that at
least one-third of microbial proteins cannot be annotated through
alignments on given sequences (Price et al., 2018). Most notably,
this excludes the most elaborate DEEPre (Li et al., 2018) model
(with 0.96 Level 0, 0.95 Level 1 and 0.94 Level 2 accuracy on the

DEEPre dataset) and EzyPred (Shen and Chou, 2007; with 0.91
Level 0 and 0.90 Level 1 accuracy) from the comparison.

Table 2 shows the results of this experiment (see Supplementary
Section S5 for details on the evaluation procedure). Note, that a con-
volutional model (as our baseline) seemed sufficient when compared
with the hybrid model of DEEPre [using convolutional layers fol-
lowed by a recurrent layer (LSTM)] as can been seen in Table 2
where our baseline even surpassed the reported performances (91
versus 88% for Level 0 and 84 versus 82% for Level 1). Also for
testing on ECPred, our baseline approach yielded competitive
results indicating a well-chosen baseline model. These results justify
a posteriori our design choices for the CNN baseline model.

Turning to the performance of the proposed UDSMProt, we find
a solid prediction performance reaching state-of-the-art perform-
ance reported in the literature for algorithms operating on PSSM
features. Considering the results of the previous section, the results
on the DEEPre dataset represent only the lower bound for the
achievable performance as it profits considerably from redundant
training sequences, which could, however, not be reconstructed
from the given representatives without the underlying cluster assign-
ments. Considering the sizable performance gaps between training
on redundant and non-redundant datasets in Table 1, it is even more
remarkable that UDSMProt already reaches state-of-the-art per-
formance when trained on non-redundant sequences. A notable ob-
servation is that our approach outperforms DEEPre by a large
margin for Level 2 when excluding Pfam features. For ECPred we
report both the performance for training on the original training set
as well as the performance on a redundant training set comprising
all corresponding Uniref50 cluster members as shown in the three
bottom rows in Table 2. In terms of Level 0 performance, the pro-
posed approach outperforms ECPred and it shows competitive per-
formance at Level 1.

To summarize, our baseline model reaches state-of-the-art per-
formance compared with literature approaches disregarding those
that incorporate features from functional annotations (such as
Pfam) and can therefore be used as proxy for state-of-the-art algo-
rithms in the following investigations. This finding enhances a poste-
riori also the significance of the results established for the EC40 and
EC50 datasets in Section 3.2.2. The proposed UDSMProt model is
very competitive on both literature datasets.

3.2.4 Impact of dataset size

In this section, we aim to demonstrate the particular advantages of
the proposed UDSMProt-approach in the regime of small dataset
sizes. To investigate this effect in a clean experimental setup, we
conducted an experiment with consecutively decreasing training set
sizes, while keeping test and validation sets fixed. The hyperpara-
meters were kept fixed to those of the run with full training data.

For this experiment, we used the EC50 dataset as described in
Supplementary Section S1 with numbers per class as shown in
Supplementary Table S1 and trained a Level 1 classifier for each
split. We compared our proposed approach (UDSMProt with pre-
training and trained from scratch) with baseline models (CNN with
PSSM features and CNN on redundant sequences only) for seven
different training set sizes measured in terms of clusters compared
with the number of clusters in the original training set.

The results from Figure 2 show an interesting pattern: the bidir-
ectional UDSMProt model always outperforms the CNN baseline
model and, most interestingly, the gap between the two models
increases for small dataset sizes, which suggests the representations
learned during language model fine-tuning represent a more effect-
ive baseline for fine-tuning than using PSSMs as fixed input features.
As a second observation, also the gap to the models trained from
scratch widens. Reducing the number of training clusters by 50%
only leads to a decrease in model performance by 3%, whereas the
performance of the model trained from scratch drops by 8%.

To summarize, both observations represent strong arguments for
applying UDSMProt in particular to small datasets. Our results sug-
gest to make language model pre-training a standard procedure in
these cases.

Table 2. EC classification accuracy on the published DEEPre and

ECPred datasets compared with literature results from DEEPre (Li

et al., 2018) and ECPred (Dalkiran et al., 2018) disregarding models

relying on Pfam features

Level DEEPre (acc.) ECPred

(mean F1)

0 1 2 0 1

ECPred — — — 0.96 0.96

DEEPre (seqþPSSM) 0.88 0.82 0.43 — —

Baselinea (seqþPSSM) 0.91 0.84 0.59 0.97 0.94

UDSMProta Fwd; pretr. 0.86 0.81 0.75 0.95 0.93

Bwd; pretr. 0.86 0.83 0.73 0.97 0.93

Fwdþbwd; pretr. 0.87 0.84 0.78 0.97 0.94

Fwd; pretr.; red. — — — 0.97 0.95

Bwd; pretr.; red. — — — 0.97 0.95

Fwdþbwd; pretr.; red. — — — 0.98 0.95

Note: Results on the DEEPre dataset were evaluated using 5-fold cross-

validation.

Fwd/bwd, training in forward/backward direction; seq, raw sequence as in-

put; pretr., using language model pre-training.
aResults established in this work.
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3.3 GO prediction
To stress the universality of the approach, we now present results
for GO prediction, a functional multi-label classification task.

3.3.1 Task and dataset

A more general although closely related problem to enzyme predic-
tion is GO prediction. GO is an international bioinformatics initia-
tive to unify a part of the vocabulary for the representation of
proteins attributes. It covers three domains, namely cellular compo-
nents (CCOs), molecular functions (MFOs) and biological processes
(BPOs). The nomenclature is organized into hierarchies ranging
from coarse to fine-grained attributes. Similar to enzyme class pre-
diction, the first proposed approaches in this field relied on hand-
crafted features like functionally discriminating residues with PSSM
(Gong et al., 2016) and classification models consisting of an array
of support vector machines (Cozzetto et al., 2016). State-of-the-art
methods based on neural networks are DeepGO (Kulmanov et al.,
2018) and DeepGOPlus (Kulmanov and Hoehndorf, 2019), where
the latter also leverages Diamond (BLAST; Buchfink et al., 2015) in
an ensemble model. The best-performing method from the CAFA3
challenge (Zhou et al., 2019), GoLabeler (You et al., 2018b), is an
ensemble method that was recently outperformed by DeepText2GO
(You et al., 2018a), an ensemble method based on knowledge
extraction.

To allow for a direct comparison with the most recent state-of-
the-art methods, we work with a dataset constructed using a time-
based split (Kulmanov and Hoehndorf, 2019; You et al., 2018b),
where the Swiss-Prot annotations before January 2016 are used as
training set and those between January 2016 and October 2016
serve as test set (The underlying raw data are available from the
data repository accompanying; Kulmanov and Hoehndorf, 2019.).
The models are evaluated in each of the three categories MFO, BPO
and CCO using the two main metrics of the CAFA3 challenge
(Zhou et al., 2019), namely a protein-centric maximum F-measure,
Fmax and Smin, which quantifies the semantic distance between pre-
dicted and ground truth annotations (see Clark and Radivojac,
2013, for details). These metrics are complemented by the area
under the precision-recall-curve that was also reported by You et al.
(2018a,b) and Kulmanov and Hoehndorf (2019).

3.3.2 Experimental setup and results

As the distribution of GO-labels is very long-tailed, we follow the
approach by Kulmanov et al. (2018) and Kulmanov and Hoehndorf
(2019) and predict only GO-terms that occurred at least 50 times in
the training dataset resulting in 5101 unique GO-labels across all
three GO categories. As only modification compared with the EC
prediction task, we enlarge the size of the hidden layer of the classi-
fier to 1024. We train a single model for all three GO categories

optimizing a binary crossentropy loss in this case, since we are deal-
ing with a multi-label classification task. Similarly to (Kulmanov
and Hoehndorf, 2019), due to the large size of output layer, we do
not explicitly take into account the ontological nature of GO but
use a flat output layer of dimension 5101. To illustrate the prospects
of ensembling different classifiers, we also report results for ensem-
bling our pre-trained (forward and backward) model with BLAST
results from DiamondScore using the same relative weighting used
by Kulmanov and Hoehndorf (2019).

The results in Table 3 demonstrate the strong performance of
UDSMProt also in the domain of GO prediction. In particular, the
forward–backward model outperforms state-of-the-art methods
based on neural networks in terms of Fmax for all three GO catego-
ries and even reaches a new state-of-the-art result across all consid-
ered single-model approaches for Fmax in the CCO category as well
for all three categories in terms of area under the precision-recall
curve (AUPR). Combining its predictions with BLAST-KNN fea-
tures from DiamondScore following Kulmanov and Hoehndorf
(2019) leads to very competitive results compared with state-of-the-
art ensemble methods in terms of Fmax and AUPR even establishing
new state-of-the-art results for both metrics in the BPO category. At
this point, we would like to stress that the results presented here
were obtained without any hyperparameter tuning, using the exact
same parameters as for EC prediction apart from changing the
dimensionality of the hidden layer, which is in strong contrast to
most literature approaches. This suggests that further task-specific
hyperparameter tuning might still further enhance the overall per-
formance. The results presented in this section substantiate our
claims regarding the universality of transferring implicit knowledge
to task-specific requirements.

On the architectural side, it remains to explore in detail if expli-
citly incorporating the label hierarchy represents an advantage,
which one might suspect from DeepGO outperforming its successor
DeepGOCNN. The rich literature on this subject is reviewed in Silla
and Freitas (2010; see also Wehrmann et al., 2018, for a recent deep
learning perspective on this subject). Possible solutions range from
combining different classifiers via appropriate post-processing pro-
cedures, consistency-enforcing loss terms, custom output layers or
hierarchical multi-label classification methods (Nakano et al., 2019;
Vens et al., 2008). A more detailed analysis is beyond the scope of
this article.

3.4 Remote homology and fold detection
As third demonstration of the universality of our approach, we con-
sider remote homology detection tasks. The corresponding datasets
consist of a few hundred training examples and are thus situated
clearly in the small dataset regime investigated in Section 3.2. This
substantiates the claims made in Section 3.2 in a real-world setting.

3.4.1 Task and datasets

Remote homology detection is one of the key problems in computa-
tional biology and refers to the classification of proteins into struc-
tural and functional classes, which is considered to be a key step for
further functional and structural classification tasks. Here, we con-
sider remote homology detection in terms of the SCOP database
(Murzin et al., 1995), where all proteins are organized in four levels:
class, fold, superfamily and family. Proteins in the same superfamily
are homologous and proteins in the same superfamily but in differ-
ent families are considered to be remotely homologous. Remote
homology detection has a rich history and the interested reader is
referred to a review article on this topic by Chen et al. (2018). We
will compare to ProDec-BLSTM (Li et al., 2017) with a bidirection-
al RNN operating on PSSM input features building on earlier work
(Hochreiter et al., 2007). A classical baseline method is provided by
GPkernel (Håndstad et al., 2007), who apply kernel-methods to se-
quence motifs.

For remote homology detection, we make use of the SCOP 1.67
dataset as prepared by Hochreiter et al. (2007), which has become a
standard benchmark dataset in the field. Here, the problem is
framed as a binary classification problem where one has to decide if

Fig. 2. Dependence of the EC classification accuracy (Level 1; EC50 dataset) on the

size of the training dataset. UDSMProt performs better than the baseline model also

in the regime of small datasets that is particularly important for practical

applications
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a given protein is contained in the same superfamily or fold as a
given reference protein. The superfamily/fold benchmark is com-
posed of 102/85 separate datasets and we report the mean perform-
ance of all models across the whole set. The standard metrics
considered in this context are AUC and AUC50, where the latter
corresponds to the (normalized) partial area under the ROC curve
integrated up to the first 50 false positives, which allows for a better
characterization of the classifier in the domain of small false positive
rates, which is most relevant for practical applications, than the
overall discriminative power of the classifier as quantified by AUC.

3.4.2 Experimental setup and results

The remote homology and fold detection tasks are challenging for
two reasons. The datasets are rather small and the task comprises
102 or respectively 85 different datasets that would in principle re-
quire a separate set of hyperparameters. To keep the process as sim-
ple as possible, we decided to keep a global set of hyperparameters
for all datasets of a given task. The procedure is as follows as no val-
idation is provided for the original datasets, we split the training
data into a training and a validation set based on CD-HIT clusters
(threshold 0.5). We optimize hyperparameters using the mean AUC
for all datasets of a given task measured on the validation set. Most
importantly, this involves fixing a (in this case constant) learning
rate that is appropriate across all datasets. Using these hyperpara-
meter settings, we perform model selection based on the validation
set AUC, i.e. for each individual dataset, we select the model at the
epoch with the highest validation AUC. We evaluate the test set
AUC for these models and report the mean test set metrics.

The results of these experiments are shown in Table 4. Both for
homology and fold detection according to most metrics, the
UDSMProt model trained from scratch performs worse than the ori-
ginal LSTM model (Hochreiter et al., 2007). This is most likely due
to the fact that the UDSMProt model is considerably larger than the
latter model and most datasets are fairly small with a few hundreds
training examples per dataset. This deficiency is overcome with the
use of language model pre-training, where both unidirectional mod-
els perform better than the LSTM baseline model. This observation
is in line with the experiments in Section 3.2.4 that demonstrates the
particular effectiveness of the proposed approach for small datasets.
The best-performing model from the literature, ProDec-BLSTM, is
a bidirectional LSTM operating on sequence as well as PSSM fea-
tures. Interestingly, reaching its performance in terms of overall
AUC required the inclusion of bidirectional context, i.e. the for-
ward–backward ensemble model. The proposed method also clearly
outperforms classical methods such as GPkernel (Håndstad et al.,
2007) both on the fold and the superfamily level. The excellent

results on remote homology and fold detection support our claims
on the universality of the approach as well as the particular advan-
tages in the regime of small dataset sizes.

4 Case studies with insights from explainable ML

Even though deep neural networks are still often perceived as black-
box models, there has been a paradigm shift in the past few years due
to the advances in the field of explainable ML. In this section we out-
line possible applications of interpretability methods to gain deeper
insights into the models and the structure of proteins itself (see also
Upmeier zu Belzen et al., 2019, for first applications in this direction).
Here we focus on post hoc interpretability methods that return attri-
bution heatmaps in the input space, i.e. the protein sequence itself,
that relate to its impact on the classification decision. Attribution
methods such as integrated gradients (Sundararajan et al., 2017) re-
late to parts of the input sequence that influenced the classifier to-
ward/against a certain classification decision. These methods are
therefore particularly suited to identify sequence motifs. The represen-
tative example in Figure 3 shows this for the case of EC classification,
where the classifier identifies a short sequence motif, known as the
‘DEAH’ box, as indicative for EC Class 3. Similarly, the classifier is
strongly influenced toward EC Class 6 by regions surrounding the
‘HIGH’ and ‘KMKS’ motifs (see Supplementary Fig. S4). A statistical

Table 3. GO prediction performance on a dataset based on a time-based split as in (Kulmanov and Hoehndorf, 2019; You et al., 2018b) in

comparison to literature results collected by DeepGOPlus (Kulmanov and Hoehndorf, 2019)

Methods Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

Single Naive 0.306 0.318 0.605 12.105 38.890 9.646 0.150 0.219 0.512

DiamondScore 0.548 0.439 0.621 8.736 34.060 7.997 0.362 0.240 0.363

DeepGO 0.449 0.398 0.667 10.722 35.085 7.861 0.409 0.328 0.696

DeepGOCNN 0.409 0.383 0.663 11.296 36.451 8.642 0.350 0.316 0.688

Ensemble DeepText2GO 0.627 0.441 0.694 5.240 17.713 4.531 0.605 0.336 0.729

GOLabeler 0.580 0.370 0.687 5.077 15.177 5.518 0.546 0.225 0.700

DeepGOPlus 0.585 0.474 0.699 8.824 33.576 7.693 0.536 0.407 0.726

UDSMProta Fwd; from scratch 0.418 0.303 0.655 14.906 47.208 12.929 0.304 0.284 0.612

Fwd; pretr. 0.465 0.404 0.683 10.578 36.667 8.210 0.406 0.345 0.695

Bwd; pretr. 0.465 0.403 0.664 10.802 36.361 8.210 0.414 0.348 0.685

Fwdþbwd; pretr. 0.481 0.411 0.682 10.505 36.147 8.244 0.472 0.356 0.704

Bwdþbwd; pretr. þ DiamondScore 0.582 0.475 0.697 8.787 33.615 7.618 0.548 0.422 0.728

Note: Best overall results (highest Fmax and AUPR; lowest Smin) are marked in bold face and best single-model results are underlined.

Fwd/bwd, training in forward/backward direction; pretr., using language model pre-training.
aResults established in this work.

Table 4. Remote homology and fold detection performance on the

SCOP 1.67 benchmark dataset compared with literature results

from GPkernel (Håndstad et al., 2007), LSTM_protein (Hochreiter

et al., 2007) and ProDec-BLSTM (Li et al., 2017)

Methods Superfamily level Fold level

AUC AUC50 AUC AUC50

UDSMProt
a

GPkernel 0.902 0.591 0.844 0.514

LSTM_protein 0.942 0.773 0.821 0.571

ProDec-BLSTM 0.969 0.849 — —

Fwd; from scratch 0.706 0.552 0.734 0.653

Fwd; pretr. 0.957 0.880 0.834 0.734

Bwd; pretr. 0.969 0.912 0.839 0.757

Fwdþbwd; pretr. 0.972 0.914 0.862 0.776

Fwd/bwd, training in forward/backward direction; pretr., using language

model pre-training. The best-performing classifiers are marked in bold face.
aResults established in this work.
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analysis of these findings is beyond the scope of this manuscript but
represents an interesting direction for future research.

Secondly, we revisit the glutaminase example put forward by
DEEPre (Li et al., 2018). The first and the third isoforms of the
amino acid sequence with the UniProt accession number O94925
are enzymes, whereas the second isoform shows no enzymatic activ-
ity. This behavior is correctly captured by a model trained on EC
Level 1 and no-enzyme data. The attribution map for the first iso-
form in Supplementary Figure S5 highlights regions beyond position
170 that are not contained in the sequence of the second isoform.
The attribution map based on integrated gradients for the second
isoform (see Supplementary Fig. S6), already shows high relevance
toward the end of the sequence, where the sequence deviates from
the canonical sequences. This is even more clearly visible in an
occlusion-based attribution map (Li et al., 2016; see Supplementary
Fig. S7), which shows the impact of sequentially exchanging amino
acids by the unknown amino acid X and the corresponding change
in the non-enzyme class prediction score. In any case, correlating
known sequence properties from UniProt with interpretability meth-
ods represents a very promising direction for future work to gain
deeper insights on the one hand into protein classification models
and on the other hand into protein substructures.

5 Summary and outlook

In this work, we investigated the prospects of self-supervised pre-
training for protein classification tasks leveraging the recent advan-
ces in NLP in this direction. Protein classification represents an ideal
test bed for NLP methods. Most importantly, a single, universal
model architecture with no task-specific modifications apart from a
fine-tuning step that operates on the sequence of amino acids alone
is able to reach or even exceed state-of-the-art performance on a
number of protein classification tasks. This is achieved by powerful,
implicitly learned representations from self-supervised pre-training,
whereas most state-of-the-art algorithms make use of PSSM features
obtained from BLAST database searches that scale unfavorably with
dataset size. In addition, the proposed method shows particular
advantages for small datasets. Differently from typical NLP tasks,
the dataset creation and the evaluation procedure has to be carried
out with particular care, as small differences in the procedure can
have large impact on the difficulty of the classification problem and
hence on the comparability of different approaches. This applies in
particular to a well-defined way of handling the similarity threshold,
i.e. dealing with homologous sequences that differ only by a few
amino acids when splitting into train and test sets. These factors
urge for the creation of appropriate benchmark datasets that convert
raw data from an exemplary subset of the many existing protein
classification tasks into benchmark datasets in a transparent manner
that allow for a rigorous testing of ML algorithms in this setting.

Given the insights gained from the three classification tasks, we
can draw the following general conclusions for generic protein clas-
sification tasks:

1. Considering the fact that UDSMProt was able to reach or sur-

pass state-of-the-art performance suggests that problem-specific

architectures are less important than the training procedure, at

least for models that are powerful enough. This allows to design

task-independent, universal classification algorithms that can be

applied without much manual intervention to unseen classifica-

tion tasks.

2. Redundant sequences are a valuable source of information also

for downstream classification tasks. This fact is in tension with

the standard practice in bioinformatics, where in many cases

only representatives without the corresponding cluster assign-

ments are presented. To ensure comparability, benchmarking

datasets should always include full information to reproduce the

cluster assignments used during dataset creation, which would

allow at least retrospectively to reconstruct the complete dataset

from a given set of representatives.

3. Bidirectional context is important, which is reflected by the fact

that in all cases forward-backward-ensembles reached the best

performance and in most cases improved the performance of

unidirectional models considerably. Ensembling forward and

backward models is in fact the simplest—although at the same

time a quite inefficient—way of capturing bidirectional context.

From our perspective, this represents an opportunity for

approaches such as BERT (Devlin et al., 2019; Liu et al., 2019)

or XLNet (Yang et al., 2019), which are able to capture the bi-

directional context directly. This might be particularly import-

ant for more complicated protein classification tasks such as

sequence annotation tasks like secondary structure or phosphor-

ylation site prediction that go beyond the prediction of a single

global label.

Leveraging large amounts of unlabeled data in the form of large,
in parts very well-curated protein databases by the use of modern
NLP methods, represents a new paradigm in the domain of proteo-
mics. It will be interesting to see how this process continues with the
rapidly evolving algorithmic advances in the field of NLP. Apart
from the huge prospects in terms of quantitative prediction perform-
ance, the recent advances in the field of explainable ML research
open exciting new avenues for deeper insights into the inner struc-
ture of proteins themselves.
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