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Abstract

Background: Single-cell RNA sequencing (scRNA-seq) data provide valuable insights
into cellular heterogeneity which is significantly improving the current knowledge on
biology and human disease. One of the main applications of scRNA-seq data analysis
is the identification of new cell types and cell states. Deep neural networks (DNNs)
are among the best methods to address this problem. However, this performance
comes with the trade-off for a lack of interpretability in the results. In this work we
propose an intelligible pathway-driven neural network to correctly solve cell-type
related problems at single-cell resolution while providing a biologically meaningful
representation of the data.

Results: In this study, we explored the deep neural networks constrained by several
types of prior biological information, e.g. signaling pathway information, as a way to
reduce the dimensionality of the scRNA-seq data. We have tested the proposed
biologically-based architectures on thousands of cells of human and mouse origin
across a collection of public datasets in order to check the performance of the
model. Specifically, we tested the architecture across different validation scenarios
that try to mimic how unknown cell types are clustered by the DNN and how it
correctly annotates cell types by querying a database in a retrieval problem.
Moreover, our approach demonstrated to be comparable to other less interpretable
DNN approaches constrained by using protein-protein interactions gene regulation
data. Finally, we show how the latent structure learned by the network could be
used to visualize and to interpret the composition of human single cell datasets.
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Conclusions: Here we demonstrate how the integration of pathways, which convey
fundamental information on functional relationships between genes, with DNNs, that
provide an excellent classification framework, results in an excellent alternative to
learn a biologically meaningful representation of scRNA-seq data. In addition, the
introduction of prior biological knowledge in the DNN reduces the size of the
network architecture. Comparative results demonstrate a superior performance of this
approach with respect to other similar approaches. As an additional advantage, the
use of pathways within the DNN structure enables easy interpretability of the results
by connecting features to cell functionalities by means of the pathway nodes, as
demonstrated with an example with human melanoma tumor cells.

Keywords: Deep neural network, Signaling pathway, Single cell, scRNA-seq, Gene
expression, Transcriptomics, Machine learning

Background
High-throughput sequencing technology has revolutionized research in the area of biol-

ogy and biomedicine. RNA sequencing (RNA-seq) allows the analysis of the entire tran-

scriptome. However, RNA-seq data represents an average of gene expression values

across thousands to millions of cells, i.e., is typically performed in “bulk” [1]. RNA-seq

produces accurate count data allowing the detection of transcripts even at low expres-

sion levels [2] and also permits the detection of splicing and previously unknown tran-

scripts [3]. RNA-seq has extensively and successfully been used to build prognostic

gene signatures [4, 5] and other biomedical problems like location of regulatory ele-

ments [6]., the identification of disease-associated single nucleotide polymorphisms [7],

and gene fusions [8]. Recent advances in RNA sequencing technologies have enabled

the direct sequencing of individual cells, known as single cell RNA sequencing (scRNA-

seq), which allows querying biological systems at an unprecedented resolution [9].

ScRNA-seq data provides valuable insights into cellular heterogeneity which may sig-

nificantly improve the understanding of biology and human disease [10, 11]. One of the

main applications of scRNA-seq data analysis consists of identifying new cell types and

cell states [12, 13]. This application raises key questions to address, such as how to de-

termine the similarity from expression profiles of cells or which cell types have an im-

portant role in diseased individuals. Consequently, two major computational challenges

in this scenario are how to group cells and how to identify new cell types, i. e., cluster-

ing analysis and cell retrieval.

Clustering analysis consists of finding the closest cell/gene group to a sample given a

population of cells. Aside from the data dimensionality problem (thousands of genes

and samples), single cell data is polluted with high levels of noise from heterogeneous

sources (gene dropout events, experimental and measurements errors etc.) To mitigate

such problems, dimensionality reduction is usually performed before clustering. On the

one hand, several unsupervised methods have been proposed to mitigate the influence

of noise by reducing the dimension. Three of the most popular methods for this pur-

pose are Principal Component Analysis (PCA) [14, 15], uniform manifold approxima-

tion and projection (UMAP) [16] and t-distributed stochastic neighbor embedding (t-

SNE) [17]. PCA performs a linear reduction of the dimension leading to gene-based ex-

plainable models that lack the ability to capture the complex patterns behind single cell

data, which can lead to poor performance or misleading interpretations in certain
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situations [15]. Instead, t-SNE and UMAP extract a low-dimensional representation of

the data by means of non-linear methods that retains the similarities of the high-

dimensional data but lacks direct biological interpretability even in the relationships be-

tween the clusters, although recent advances [18, 19] have corrected the cluster-based

miss-interpretations (while retaining the global structure). Together with the three of

the most popular methods for clustering analysis mentioned before, other novel

methods have recently emerged based on the success of unsupervised Deep Learning to

build a reduced number of features which capture cell heterogeneity and diversity, such

as scCAEs [20], which uses the embeddings learned through convolutional autoenco-

ders to feed a K-means-based clustering algorithm, scDeepCluster [21], which learns a

latent representation by explicitly modelling the scRNA-seq data generation process,

and scvis [22], that uses a feed forward neural network to learn the parameters of a re-

duced statistical representation of the gene expression space. On the other hand, moti-

vated by the unprecedented success of Deep Learning in supervised tasks, a method to

perform dimensionality reduction based on neural networks (NN) has recently been

proposed [23]. This method combines a NN model with a protein-protein interaction

(PPI) network to classify several cell types. This model is trained in a supervised way

and after that, the last hidden layer of the network is used as a low dimensional repre-

sentation of scRNA-seq data, which can be used for cell retrieval analysis. Cell retrieval

or cell type annotation consists of inferring the cell type of a given cell by querying a

reference database of annotated scRNA-seq data. For this challenge, traditional super-

vised methods such as Support Vector Machine (SVM) or Random Forest classifier

(RF) are often time-consuming [24] due to the huge size of the aforementioned refer-

ence databases.

In this work, we integrate prior biological information in network architectures as a

way to reduce the dimensionality of the scRNA-seq data in a supervised framework in

order to learn a reduced representation of the data that can be used for cell retrieval,

unsupervised clustering and biological knowledge extraction. Actually, the introduction

of biological information into the structure of machine learning models has recently

been recognized as an important asset to improve prediction accuracy and increasing

model interpretability [25]. In particular, we propose the use of signaling pathways, a

specific type of biological networks related to the knowledge available on cell function-

ality. Pathways can be found in repositories such as KEGG [26], and are represented as

graphs that encode the biological knowledge on the complex relationships among pro-

teins that allow them to carry out the functions that permits the survival of the cell, its

proliferation, differentiation into distinct cell types, interaction with the environment,

and many other biological processes. Pathways have already been used in the context of

machine learning based cancer classification [27, 28]. Unlike the limited functional in-

formation provided by other types of biological networks, like physical proximity,

encoded in protein-protein interaction (PPI) networks, or direct gene activation,

encoded in gene regulation networks (GRN) used in a previous approach [23], the rela-

tionships among proteins encoded in pathways link protein activity with cell phenotype

and behavior, which makes them ideal for distinguishing between cell types. Thus, in-

cluding in the DNN architecture pathway knowledge allows obtaining a smaller archi-

tecture (less nodes and hence faster inference), which is easier to interpret [25] and
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that performs as well as other methodologies in a set of cell type identification

benchmarks.

Moreover, the analysis of the biological relevance of the learned representations in a

set of cells belonging to different melanoma tumors found an excellent agreement with

what is already published in the literature. Therefore, the proposed model constitutes a

highly efficient strategy to precisely identify cell types in scRNA-seq data.

Results and discussion
To evaluate the performance of the proposed model four complementary analyses were

carried out: 1) several unknown cell-type scenarios were simulated to check the ability

of the model to properly cluster the new cell types, 2) the DNN were trained using a

small database of single cells and annotate a bigger collection of unseen cells (the so-

called retrieval analysis), 3) the unsupervised visualization capabilities of the representa-

tion learned by the model was demonstrated, and finally 4) the biological interpretabil-

ity of the pathway-primed network was assessed. For the first and second steps, the

validation schemes previously discussed in Materials and Methods were followed,

which allowed the comparison of this proposal with previous proposals [23] in the

same terms, using the same data (a collection of mouse single cell datasets) and splits.

For the third and fourth steps, the melanoma dataset was used following the data splits

(labelled as training and testing) defined in the original publication [29], allowing to

check performance of our approach. Table 1 describes the architectures used here. See

Supplementary Table 1, Additional File 1 for a complete list of the datasets, their public

accession codes and how to combine them. However, before the performance of our

model was benchmarked in unsupervised tasks, a more classical supervised performance

experiment was carried out.

Architecture, parameters and hyperparameter selection

Several activation functions (tanh, relu and sigmoid) and prepossessing steps

(normalization, log-transform and [− 1, 1]-scaling) for the DNN were tested. The

normalization and tanh were the better options for the mouse experiment, which is

congruent with previous findings [23]. Regarding the preprocessing steps, the combin-

ation of relu with logarithmic pre-processing worked better than other approaches in

Table 1 Details of input and hidden layers, as well as parameters for each architecture used

Dataset Architecture Nodes Layer 1 Nodes layer 2 Effective parameters (million)

Dense 100 – 0.95 M

Dense + pathway 100 + 92 – 0.95 M

Dense + PPI 100 + 348 – 0.96 M

Mouse Dense + PPI and GRN 100 + 696 – 1.01 M

Dense + PPI and GRN 100 + 696 100 1.08 M

Pathway 92 – 0.01 M

Pathway 92 100 0.02 M

Dense 100 – 1.80 M

Human Pathway 93 – 0.01 M

Pathway 93 100 0.02 M
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the human melanoma dataset. Detailed information about the number of parameters

and the dimensions of each architecture is shown in Supplementary Table 2, Additional

File 1 and Table 1, respectively.

Clustering and supervised performance

To test the performance of the learned representation of the proposed DNN, it was

compared against similar dimensionality-reduction-based clustering approaches. The

analysis consists of the following multi-step simulation: 1) combine a set of different

mouse single cell experiments into a single dataset (the so-called learning set), 2) keep

only those genes that appear in all the included experiments, 3) conduct a supervised

analysis and 4) simulate the clustering of unknown cells.

Table 2 provides a comparison of the performance of different models for supervised

tasks following a 100-times repeated stratified holdout cross-validation validation

schema with a test size of 0.30. Under this scheme, the model learns how to predict the

cell types (the output) from the cell’s gene expression profiles. The class distribution

can be consulted in Supplementary Table 3, Additional File 1: a clearly unbalanced set.

For each realization, the accuracy, the imbalanced-aware balanced accuracy, precision,

recall and F1 scores were computed. Although there were 16 classes to predict with

several underrepresented cell-types, the results were very good (and equivalent) for all

the models, with mean F1 scores above 0.8. The performance of the classification was

similar to the supervised performance reported [23]. Figure 1 shows the global metrics

distribution for each design, whereas Supplementary Fig. 1, Additional File 1 shows the

per-class metric distributions, where it is clear that the lower sampled classes clearly

cause a decline of the all-class scores.

However, the previous validation procedure does not properly address the key ques-

tions in scRNA-seq, such as how to identify unseen cell types or finding the most simi-

lar known cells to a new set of previously uncharacterized cells. To overcome the

limited conclusions of a conventional supervised testing approach, the validation

scheme described in Materials and Methods was followed, where each network is eval-

uated for randomly selected left out cells (LPGO) for P equal to 2, 4, 6, or 8 cell types

of the 16 cell types (repeated 20 times for each P). Therefore, each selection of P leads

to a clear division of train and test splits, where the knowledge-primed models can be

safely trained under a supervised modality using the train split and then an independ-

ent encoding can be computed (see “Materials and methods” section) for the test set.

Thus, by definition, none of the P cell types of the test have been seen by the model be-

fore, which ensures a fair comparison between the models in terms of the clustering

performance using the K-Means algorithm (see “Materials and methods” section). For

each realization, the following scores (higher is better) were computed: homogeneity,

completeness, V-measure, adjusted random index (ARI), adjusted mutual information

(AMI) and Fowlkes-Mallows. In addition, each realization was summarized by means

of the average of all the previous scores.

Table 3 provides a summary (the mean for each metric) of the results for the LPGO

(P = 4) analysis. For a complete report (all P) refer to Supplementary Table 4, Add-

itional file 1 and Fig. 2, which show the distribution of the different metrics across the
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different realizations. In all cases the pathway-based NN offers a comparable perform-

ance to the less interpretable PPI- and GRN-based models and the baseline dense NN.

Retrieval analysis

Cell type assignment or annotation is one of the most important tasks in single cell ex-

pression analyses since each study usually profiles several different types of cells [30].

However, cell-type retrieval is also a major challenge due mainly to marker absence,

overlap and noise-based problems when computing gene expression. Thus, the cells

need to be clustered and compared with reference pre-annotated databases. Although

groups of cells can be successfully grouped using unsupervised methods, it might not

be easy to find patterns while clustering, leading to cell groups that are difficult to in-

terpret from a biological point of view. In this work, an unsupervised biologically mean-

ingful encoding was extracted of new data by leveraging the representation and

comprehension capabilities of supervised neural networks with the interpretability of

pathway-based gene clusters, which is in line with the recent literature where it is ob-

served that supervised cell type assignment/annotation of newly-generated data using

annotated labels has become more desirable than unsupervised approaches [25, 29].

Fig. 1 Network performance. The figure depicts the global metrics distribution for each design in a
supervised task scenario. It shows the cell types prediction i.e., the performance of different models
following a 100-times repeated stratified holdout cross-validation schema with a test size of 0.30

Table 3 Unknown cell-type clustering performance of the different models analyzed for the LPGO
experiments (P = 4). Although our pathway-based models are nearly ten times smaller (sparse), the
performance is very close to the PPI-based NN. The mean of 20 splits was reported

Architecture Number of
nodes
(2nd hidden
layer)

Homogeneity Completeness V-measure ARI AMI Fowlkes-
Mallows

Average

Dense – 0.801 0.799 0.798 0.725 0.786 0.814 0.787

Dense with
pathways

– 0.804 0.797 0.798 0.718 0.786 0.811 0.786

Dense with
PPI

– 0.811 0.804 0.805 0.728 0.794 0.817 0.793

Dense with
PPI and GRN

– 0.820 0.808 0.812 0.746 0.802 0.827 0.802

Signaling
pathways

– 0.797 0.788 0.790 0.716 0.778 0.809 0.780

Signaling
pathways

100 0.775 0.803 0.786 0.729 0.774 0.820 0.781

Gundogdu et al. BioData Mining            (2022) 15:1 Page 7 of 21



In this work, two datasets that simulate the problems previously outlined (see “Mate-

rials and methods” section) were constructed: for the mouse dataset, the so-called

learning set is used for training and optimizing the different learning methods (i.e. the

pre-annotated database), whereas the retrieval set is comprised of new cells extracted

from different experiments. For each cell in the latter set its encoded representation is

computed using a model fitted with the former set and the most suitable cell type is re-

trieved by using the top k = 100 matches. Table 4 shows the performance in terms of

the Mean Average Precision (MAP) for each cell type and method. In contrast with the

previous experiments, the knowledge-based networks need the addition of dense nodes

in order to achieve a performance comparable to PCA. However, the biological priors

are still relevant since the average performance of knowledge-based networks adding

dense nodes is higher than the baseline dense network. Note that the validation scheme

provides a fair comparison between supervised and unsupervised models since the cells

of the retrieval set are encoded using pre-fitted models that could never use the ground

truth cell types. Also, Supplementary Fig. 2, Additional File 1 shows a visualization of

the encoding representation of the retrieval set.

Furthermore, the optimized versions of the pathway-based models that do not con-

tain dense nodes (see “Materials and methods” section) are on par with PCA, scvis [22]

and the DNN designs that use dense nodes. A remarkable achievement since the non-

dense architectures are sparser (~ 50 times) than the networks that depend on the

addition of dense nodes for the first hidden layer. In addition, there are slight increases

in the average performance when using deeper optimized models: from 0.474 to 0.491

in the pathway-based network (see Table 4). It is important to note that best scoring

networks use a biological layer free of dense nodes, which makes them easier to inter-

pret. Note that this kind of network design is marked with a “+” sign in the tables.

Encoding visualization and functional analysis in melanoma dataset

One of the key advantages of the method presented is the ability to use the model for

clustering analysis while retaining a sense of the underlying biological meaning of the

learned weights. The biological interpretation can be inferred from the pathway activa-

tion scores of the first hidden layer, whereas the clustering is performed by computing

Fig. 2 Clustering performance in the 4-left-out experiment. Each network is trained by leaving 4 cell types
out (LPGO technique). The cell types which are left-out are randomly selected, and the procedure is
repeated 20 times. After the neural network training is completed, the encoding (learned representation) is
computed for the test (left-out cells) and used as input to the K-Means algorithm. The output is then
evaluated using a comprehensive set of metrics (see “Materials and methods” section)
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the activation values of the last hidden layer, which can be used for data visualization

by coupling it with a 2D reduction method (t-SNE in this case).

To check the visualization and biological intelligibility capabilities of the proposed

pathway-based DNN, a recent human melanoma dataset [31] comprising 33 human

melanoma tumors from 31 patients, with more than 17,000 genes and 2761 single cell

expressions, in which 5 different cell types were profiled, was analyzed. To fairly evalu-

ate the proposed model, it was tested using the data splits (labelled as training and test-

ing) defined in the original publication [31]. The model rendered an excellent

performance (see Table 5 for the overall metrics and Supplementary Fig. 3 for the per-

class metrics), with F1-scores above 0.9, comparable to previously reported metrics

[23]. In addition, the clusters found by the model in the testing set can be visualized in

Fig. 3 for either the one- or two-layer designs with pathways as prior biological know-

ledge. In all cases, the training set was used for fitting any given model, whereas the

testing set has been used for checking the performance (supervised, visualization and

interpretability). The cell-type distribution of both splits can be consulted in Supple-

mentary Table 5, Additional File 1.

A functional analysis using the 10 highest-weighting groups (hidden nodes) for each

cell type was performed. Since the nodes represent pathways, the functions of the path-

ways represented by those nodes were assessed. Supplementary Table 6, Additional File

1 summarizes the top pathways related to each cell type. The learned NN associates

the 5 cell types with some very relevant pathways for the specific functions that are per-

formed by these cell types.

For example, B cells mediate the production of antigen-specific immunoglobulin (Ig)

against pathogens. The most important pathways for B cell functioning would be those

engaged in cell-to-cell communication, proliferation, protein expression, and secretion.

The pathways that appear among the 10 most relevant only for B-cells are: Aldoster-

one-regulated sodium reabsorption (hsa04960), Pancreatic secretion (hsa04972), Com-

plement and coagulation cascades (hsa04610) and Ovarian steroidogenesis (hsa04913).

Complement and coagulation cascades (hsa04610) consist of a nonspecific defense

mechanism against pathogens. Although the complement system works in innate im-

munity, complement effectors are engaged with humoral immunity at multiple stages

of B-cell differentiation and can influence B-cell biology on several levels through the

complement receptors that they express [32]. The rest are pathways mainly involved in

Fig. 3 2D TSNE showing the dimensional reduction result based on the learned representation (encoding)
of the data. Each pathway-based NN (1 and two layers designs) was trained using the training set and then
used to compute the encoding of the training and test sets
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the secretion of substances and ion flow through the cellular membranes. It is expected

in B cells that modules engaged in secretion processes are active, given that they ex-

pand their secretory organelles in their differentiation process [33].

Macrophages are innate immunity specialized cells that detect, phagocyte and destroy

pathogens and debris. They can interact with the adaptive immune system by present-

ing antigens to T cells, and are secretory active, since they release cytokines and other

substances that modulate the activities of other cell types. Among the most relevant

pathways for macrophages alone, we can find PI3K-Akt signaling pathway (hsa04151)

and Osteoclast differentiation (hsa04380). In the first one converge inflammatory and

metabolic signals that are very relevant for the regulation of macrophage responses

modulating their activation phenotype [34, 35]. The second one is relevant because

both osteoclasts and macrophages derive from the monocyte-macrophage lineage, and

monocytes use receptor/ligand systems that share signaling mechanisms with those

used by immune cells [36].

Furthermore, the GO analysis of the active genes in the top 10 pathways in NK cell

types reported the following enriched GO Terms related to immunity response: GO:

0002228 (natural killer cell-mediated immunity), GO:0002443 (leukocyte-mediated im-

munity) and GO:0002449 (lymphocyte-mediated immunity).

The GO analysis of the active genes in the top 10 pathways in TCD8 and TCD4 cell

types reported also enriched GO Terms related to T-cell proliferation and cytokine

production: GO:0042098 (T cell proliferation), GO:0050852 T cell receptor signalling

pathway) and GO:0042110 (T cell activation).

There are also several pathways that appear among the 10 highest-weighting nodes

for 4/5 of the cell types. In particular, it is worth mentioning Serotonergic synapse

(hsa04726). Although we are not working with nervous system cells, immunological

and nervous systems share molecular and functional properties, such as cytokine net-

works and cell surface receptors [37, 38]. Synapses are interfaces between cells that

transfer information from one cell to another, and in the immune system we can find

somewhat similar processes: immunological synapses and kinapses [39].

Another pathway that is relevant throughout cell types is Taste transduction

(hsa04742). The role of taste receptors in the immune response has been widely dis-

cussed and their expression has been reported in peripheral lymphocytes [40], NK cells

[41], and macrophages [42].

The aim was to shed some light on how the gene expression of the genes contained

in these pathways contribute to the algorithm being able to discern these cell types,

but, overall, among the top relevant pathways, many are related to the molecular mech-

anisms expected most active in immune cells, or contain mechanisms common to the

ones expected in their physiological functioning.

Conclusions
This work demonstrated how the integration of pathways with neural networks can be

used to learn a biologically meaningful representation of scRNA-seq data. Comparative

results provided evidence of the good performance of integrating pathways as prior

knowledge with neural networks, using smaller architectures than other NN-based ap-

proaches. The proposed approach obtained comparable results while being a more
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interpretable model thanks to the use of signaling pathways as the biological priors of

the model since they provide a curated set of specific functions.

Furthermore, the biological relevance of the model learned on the melanoma re-

search problem was also evaluated using the human scRNA-seq data [43]. Functional

analysis of the results revealed associations between the 5 cell types and several relevant

pathways for the specific functions that are performed by these cell types.

Materials and methods
Datasets

The DNN architecture was evaluated in two different scenarios: 1) a combination of

different Mus musculus single cell experiments used for a comparison with other clus-

tering and cell type annotation methodologies by means of the benchmarks [24], and 2)

a collection of single cell experiments of different human melanoma tumors [29] used

for the biological validation of our model.

Mouse dataset

Single cell gene expression data from several mouse tissue sites are downloaded from

the NCBI Gene Expression Omnibus (GEO) [44] database. There are more than 17,000

single cell expression profiles gathered in 33 datasets from different experiments and

laboratories (see Supplementary Table 1, Additional File 1 GEO_IDs).

Data has been grouped into two sets of samples, namely learning and retrieval data-

set. The learning dataset integrates three Mus musculus scRNA-seq datasets, which

contains 9437 genes and 402 cells involving 16 cell types. This dataset is used for train-

ing the supervised models and for clustering analysis. The retrieval dataset was created

by joining 31 datasets with more than 17,000 single cell expression profiles. It is used

during the retrieval analysis to test the proposed pathway-based DNN (see below) over

an independent set. Moreover, this dataset includes cell types that do not exist in the

learning dataset.

Human dataset

This dataset integrates multiple datasets (see [31]) from public repositories such as Broad

Single Cell Portal, Gene Expression Atlas - EMBL-EBI [45], NCBI Gene Expression

Omnibus [44] and CellBlast [46]. We use the exact training and testing divisions, as previ-

ously proposed [29], which can be downloaded from their companion website [43]. Note

that the dataset is already normalized using Transcript Per Million (TPM) [47].

The training dataset has more than 17,000 genes and 2761 single cell expressions for

5 different cell types (B-cell, Macrophage, NK, T.CD4, T.CD8), after removing the ma-

lignant, cancer-associated fibroblasts and endothelial cells. The testing dataset is used

to evaluate the performance of the supervised network and clustering analysis. This

dataset has 3415 samples, single cell expression profiles from 6 different cell types (B-

cell, Macrophage, NK, T.CD4, T.CD8 and Neg. cells). These two datasets are imbal-

anced datasets and NK is the least representative cell type for both datasets. Note that

the testing dataset has one additional unseen cell type. We applied log-normalization

(log(1 + x)) to both datasets.
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Sources of biological information

Although the predictive power of Deep Learning methods is enough to justify its use,

the explainability of machine learning models is a desirable goal [25]. By incorporating

prior biological knowledge, a double aim is pursued: i) to have an architecture in the

NN that captures the way in which proteins interact among them to define the pheno-

types we seek to characterize and ii) to provide a way to interpret the underlying bio-

logical mechanism behind the DNN-based method. In this work, signaling pathways, as

described in KEGG [26], were used as the main source of biological information to

constrain the network architecture. Pathways were used to define function-driven cu-

rated clusters (i.e. clusters of genes grouped by a biological common functionality using

pathways). In order to compare the use of signaling pathways with other types of bio-

logical information previously used [23] the genes have also been grouped by PPIs and

GRNs (see Table 6).

Neural network design

The neural network proposed here consists of one input layer, one or two hidden

(intermediate) layers and one output layer connected between them by a set of weights.

The input layer ciphers the gene expression values, whereas the output layer encodes

the probability of each cell type, which is learned as the information is propagated

throughout the intermediate layers back and forward, updating the weights at each iter-

ation (the so-called epochs). In the end, the network learns an internal representation

of the underlying function of the data which in our case is conditioned by the biological

priors used to construct the first hidden layer.

The neural network model is formulated as follows:

xi ¼ a Wi�x i−1ð Þ þ b i−1ð Þ
� �

where xi denotes the activation score in i th hidden layer, a is the activation formula, b

is bias value and W is the weight matrix (the edges of the neural network). The activa-

tion function for each hidden layer is either tanh for all the mouse single cell experi-

ments, or relu activation for human data. Finally, the softmax activation function is

used in the output layer.

Table 6 Number of nodes in the input layer (genes) and in the first hidden layer (biological
information) according to the type of biological information used to relate genes among them

Organism Biological information Source Number of genes
(input layer)

Number of nodes
(first hidden layer)

PPI [23] 3553 348

Mouse GRN [29] 8307 348

Signaling pathway [26] 3737 92

Human Signaling pathway [26] 2987 93
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tanh xð Þ ¼ 1−e −2xð Þ

1þ e −2xð Þ

relu xð Þ ¼ max 0; xð Þ

softmax xið Þ ¼ exiPn
j¼1e

xi

Since the aim was to solve a (classification) supervised problem, where the out-

puts to learn (the classes/labels) are the different cell types, the cross-entropy loss

was minimized as it is typically done in the literature. The cross-entropy loss is de-

fined as:

−
XM

c¼1
yo;c log po;c

� �

where M refers to the total number of cell types, y is a binary indicator if cell type c is

the correct label for a sample o and p is the predicted probability of observation o for

cell type c. Note that o traverses the sample space.

Prior biological information integration

In order to incorporate the biological priors, the first hidden layer was adjusted in two

ways: 1) each neuron/node corresponds to one biological unit, in this case there are as

many neurons as pathways and 2) the weights that arrive to a neuron are fixed to zero

when no input gene participates in the pathway associated to the node. In this way, bio-

logical priors were incorporated using known gene clusters with defined functions (the

pathways) at the same time that the size of the model is reduced, which can help with

over-fitting as well as training and inference time.

Architectures, parameters and hyperparameter selection

A total of 6 architectures were tested: with and without biological knowledge, and ei-

ther 1-layer or 2-layer options. See Table 1 for a detailed summary of the different ar-

chitectures. All models were implemented using the Keras API of Tensorflow [48],

with the pertinent modifications over the dense layer definition to include the biological

nodes. The models were trained using stochastic gradient descent (SGD) for mouse

analysis and the Adam optimizer for human analysis, using Glorot initialization [49]

and 100 training epochs with a mini-batch size of 10 (see Supplementary Table 2, Add-

itional File 1). Several activation functions (tanh, relu, linear and sigmoid) and prepos-

sessing steps (normalization, log-transform and [− 1, 1]-scaling) were also tested.

Additionally, we tested how the hyperparameter chosen can help to increase the per-

formance of the model by using the hyperband method [50] to optimize the learning

rate, momentum and decay of the SGD. The test was conducted using the mouse re-

trieval benchmark with remarkable gains in performance. The hyperband method pro-

vides an improvement over random search by reaching a trade-off between whole-

space (global) exploration and local exploitation thanks to a guided hyperparameter
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sampling which allocates most resources into promising regions, by iteratively exploit-

ing smaller neighborhoods of promising configurations, while still performing random

sampling in parallel. A parallel worker constantly evaluates the proposed configurations

in order to check for early stopping conditions. Note that the independence of the

hyperparameter optimization and performance evaluation is ensured since the cell type

retrieval task is composed of two independent sets of datasets: the learning dataset is

used to optimize and train the model while the retrieval set is used for checking the

performance. This validation schema also allows fair comparisons between the opti-

mized and non-optimized models over the same set of cells.

Encoded information

As mentioned before, while the NN learns how to predict any given cell type seen dur-

ing the training, the intermediate layers learn a representation of the problem, which

can be used for unsupervised tasks by detaching the output layer during the inference.

Thus, with only one trained model both, unsupervised and supervised tasks are solved,

by either computing the activation values of the last hidden layer or using the whole

model (predicting the activation of the output nodes), respectively. Furthermore, if the

Fig. 4 Encoding information in the DNN. a. The proposed network is based on a feedforward neural
network. b. The integration of biological knowledge is implemented into the first hidden layer, i.e. each
neuron/node corresponds to one biological unit. c. The learned representation or encoding (the activation
of the last hidden layer) can be used as the input of the TSNE algorithm to produce a 2D visualization of
the data. Finally, the supervised performance of the network can be evaluated with classical ML metrics
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computation is stopped at the first hidden layer the activation values of the biological

nodes are obtained, which can be translated into pathway activities, which can be sum-

marized by any cell group, e.g. cell types. Finally, the weights that connect the biological

layer with the input can be further inspected to understand the role played by each

gene when inferring the pathway activities of any given group of cells. Figure 4 summa-

rizes the encoding of the network.

Validation methodology

To compare the proposed approach with the relevant literature, the validation schemes

already proposed [23], which consist of (1) simulating how a method clusters unseen

cells and (2) cell type retrieval from a large database was implemented.

In order to check the performance of the proposed method when clustering unseen

cells (with respect of where the model is trained) a 20 times repeated leave P groups

out (LPGO) cross-validation scheme for P ∈ (2,4,6,8), where the groups are defined by

the cell types, was performed in the mouse dataset. During each run, the method is

tested in a fold which contains all the cells that belong to P cell types and fitted with a

training fold composed of samples of the complementary groups. Once a model is

trained, the output layer is detached and the learned representation of the testing sam-

ples is computed. That is, the single cells were encoded into a reduced space, which are

finally clustered using K-Means. Then, different metrics are used to compare the true

labels (never seen by the model) with the clusters identified by the proposed method.

In addition to the unseen cell type clustering simulation, a retrieval analysis experi-

ment was carried out, which involves inferring the cell type of a sample by querying a

reference database of annotated scRNA-seq data. For this purpose, the model was fitted

using the full learning set. Then, the unsupervised capabilities of the model were used

to obtain the encoded representation of the learning and retrieval sets of cells. To

measure the performance of cell retrieval, the k = 100 nearest neighbors (using the eu-

clidean distance between the encoding representations) of the learning set to each re-

trieval sample were computed. Finally, the performance was checked by computing the

MAP of the matches.

Both validation schemes closely match those presented in a previous work [23], mak-

ing the results of this approach completely comparable to the different methodologies

already benchmarked there. In fact, as a safeguard, the PCA-based methods were re-

implemented and the results obtained were the same. In addition, we have also bench-

marked the scvis method (using the default hyperparameters), a state of the art deep-

generative model for single cell dimensionality reduction [22].

Encoding visualization

As a side effect of the unsupervised capabilities of the proposed model, the learned rep-

resentation of the data can be used to visually inspect the structure of the data by mak-

ing use of two-dimensional unsupervised transformations of the learned features (e.g

TSNE, PCA, etc.) In particular, the learned representation is the encoded information

obtained after computing the activation values of the last hidden layer and detaching

the output layer from the model. The learned feature dataset constructed from the

encoded information (see Fig. 4) can be used as input to the TSNE or PCA algorithm
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mentioned above to visually inspect the structure of the data, which allows observing in

two dimensions the cell type patterns through the samples. Finally, note that the

learned representation can capture nonlinear trends in the data with a goal-oriented

dense vision (cell type classification) which provides an advantage with respect to fully

unsupervised models. Furthermore, the noise-filtering capabilities of the model, derived

from both the topology and the sparsity-inducing priors used, can help with the visuali-

zations [23, 51].

Biological analysis

To further determine the potential biological relevance of the proposed DNN models,

the top 10 most highly weighted nodes in the hidden layer for each output layer node

were identified (i.e., the 10 top pathways for each cell type). A literature search was per-

formed to identify published associations between the pathways and the cell types using

the PubMed repository. Furthermore, the resulting networks were analyzed in the con-

text of Gene Ontology (GO) with the Funcassociate tool [52]. Detection of statistically

overrepresented GO terms was done with the hypergeometric test, using multiple-

testing adjustments with the Benjamini and Hochberg false discovery rate [53] and a

significance level of α = 0.05, using the FatiGO tool [54].
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