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Simple Summary: The debilitating effects of heat stress on poultry production have been well
documented. Heat stress already results in severe economic loss worldwide. Regarding the decline in
the reproductive performance of heat-stressed hens, the exact mechanisms involved are still unknown.
The present study was conducted to elucidate the molecular mechanisms underlying heat-stress-
induced abnormal egg production in laying hens. Our results confirmed that laying hens reared under
heat stress had impaired laying performance. Follicular granulosa cells cultured in vitro are sensitive
to the effects of heat stress, showing an increase in apoptosis and cellular ultrastructural changes.
These effects appeared in the form of heat-stress-elevated progesterone, with the increased expression
of steroidogenic acute regulatory protein, cytochrome P450 family 11 subfamily A member 1, and
3b-hydroxysteroid dehydrogenase, along with inhibited estradiol synthesis through the decreased
expression of follicle-stimulating hormone receptor and the cytochrome P450 family 19 subfamily
A member 1. Collectively, laying hens exposed to high temperatures showed damage to granulosa
cells that brought about a decline in egg production. This study provides a molecular mechanism for
the abnormal laying performance of hens subjected to heat stress, which may help when developing
novel strategies to reverse the adverse impact.

Abstract: This study was conducted to elucidate the molecular mechanisms underlying heat stress
(HS)-induced abnormal egg-laying in laying hens. Hy-Line brown laying hens were exposed to
HS at 32 ◦C or maintained at 22 ◦C (control) for 14 days. In addition, granulosa cells (GCs) from
preovulatory follicles were subjected to normal (37 ◦C) or high (41 ◦C or 43 ◦C) temperatures in vitro.
Proliferation, apoptosis, and steroidogenesis were investigated, and the expression of estrogen and
progesterone synthesis-related genes was detected. The results confirmed that laying hens reared
under HS had impaired laying performance. HS inhibited proliferation, increased apoptosis, and
altered the GC ultrastructure. HS also elevated progesterone secretion by increasing the expression
of steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member
1 (CYP11A1), and 3b-hydroxysteroid dehydrogenase (3β-HSD). In addition, HS inhibited estrogen
synthesis in GCs by decreasing the expression of the follicle-stimulating hormone receptor (FSHR)
and cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The upregulation of heat shock
70 kDa protein (HSP70) under HS was also observed. Collectively, laying hens exposed to high
temperatures experienced damage to follicular GCs and steroidogenesis dysfunction, which reduced
their laying performance. This study provides a molecular mechanism for the abnormal laying
performance of hens subjected to HS.
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1. Introduction

High ambient temperatures are harmful to the physiology and production perfor-
mance of animals, especially laying hens. The optimum temperature range is 19–22 ◦C
for laying hens (the thermoneutral zone); temperatures above this range immediately
necessitate the implementation of physiological methods for thermoregulation to cope
with heat stress (HS). Hens are particularly vulnerable to HS, owing to their physiological
characteristics, including extended egg production cycles up to 75–80 weeks of age [1],
feather coverage, and a lack of sweat glands [2,3].

Under heat stress conditions, hens not only show appetite loss, increased water con-
sumption, impaired endocrine systems, and acid-base imbalance [4] but also impairments
in their reproductive functions [5,6], such as ovulation and oviposition. It has been reported
that HS can lower egg production, egg size, egg quality, and eggshell thickness [7–11].
Reduced feed consumption could be the cause of this impairment in reproductive functions.
However, the decreased rate of egg production under high environmental temperatures
seems not to be connected with feed intake; Rozenboim et al. [5] suggested that debil-
itated ovarian functions caused by high environmental temperature might account for
reproductive failure. Ovarian follicle development plays an important role in determining
poultry laying performance. In the ovarian follicles of laying hens, sex steroids, including
estradiol (E2) and progesterone (P4), are mainly produced by granulosa cells (GCs) and
theca cells [12]. Heat stress can decrease both E2 and P4 levels in the serum of laying
hens and impair egg production by reducing the number of follicles [13]. However, the
molecular mechanisms underlying the dysfunction of GCs in poultry under heat stress
remain unclear.

During follicle development, follicle-stimulating hormone (FSH) and luteinizing hor-
mone (LH) stimulate the cells of the granulosa layer, then the cells begin to express
steroid acute regulatory proteins (StAR) and trigger cytochrome P450 cholesterol side-
chain cleavage (P450scc, encoded by cytochrome P450 family 11 subfamily A member 1
[CYP11A1]) [14]. The transfer of cholesterol from the outer to the inner mitochondrial
membrane is performed by StAR, followed by P450scc transforming cholesterol into preg-
nenolone, which is then converted to progesterone via 3-hydroxysteroid dehydrogenase
(3β-HSD/HSD3B1) [15]. Androgen precursors are synthesized in the thecal cells and are
then transported to GCs, where these androgens can be converted to estradiol by aro-
matase cytochrome P450 (P450arom, encoded by CYP19A1); this process is achieved via
the combination of FSH with its receptor (FSHR) [16].

Heat shock proteins (HSPs) have cytoprotective functions against damage that is
induced by stress conditions and mediate repair [17]. As the most abundant and sensitive
protein of the HSP superfamily, heat shock 70 kDa protein (HSP70) expression is signifi-
cantly activated in the follicular GCs of hens undergoing heat treatments [18]. However, to
date, regarding laying hens experiencing heat stress, the relationship between HSP70 and
reduced steroid hormone synthesis in GCs has rarely been discussed and studied.

Taken together, although the debilitating impact of heat stress on laying performance
has been well documented, the exact mechanisms involved require further investigation.
Therefore, we conducted the present study to determine the effect of heat stress on egg
production in laying chickens and its possible mechanisms. To further elucidate the
molecular mechanisms of heat-induced ovarian injury, follicular GCs were subjected to
high-temperature treatments in vitro, and proliferation and steroidogenesis in GCs were
investigated. The expression of estrogen and progesterone synthesis-related genes was
also detected.

2. Materials and Methods

The experimental procedures were approved by the Research Committee of the Jiangsu
Academy of Agricultural Sciences and were carried out strictly in accordance with the
Regulations for the Administration of Affairs Concerning Experimental Animals (Decree
No. 63 of the Jiangsu Academy of Agricultural Science on 8 July 2014).
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2.1. Laying Hens, Housing, Heat Stress, and Data Collection

Sixty-four 30-week-old Hy-Line laying hens were housed in two environmentally
controlled chambers equipped with a heater, air conditioner, humidifier, dehumidifier, and
controller. Each treatment was replicated 8 times and 4 hens were housed per cage for each
replicate. Each cage had dispensing nipples and water available ad libitum. The hens were
fed ad libitum with a commercial corn and soybean-based diet containing approximately
17.5% CP, 11.2 MJ/kg ME, 3.52% Ca, 0.48% total P, 0.78% Lys, and 0.54% Met.

During the initial 2 weeks, the hens were adapted to the chambers at an ambient
temperature of 22 ◦C and relative humidity of 50%. The chambers were illuminated with
white LEDs and the photoperiod included 16 h of light and 8 h of dark. At 32 weeks of
age, the hens in the first chamber were continuously maintained under thermoneutral
conditions (22 ◦C) (control group), while for the hens in the second chamber, the tempera-
ture was gradually increased (∼2 ◦C per 1 h) to reach 32 ◦C and was then kept constant
throughout the 14 days (heat stress group). The humidity in both chambers was kept at
50%. Vaccination and medical programs were performed in accordance with common
veterinary care practices.

During the day before heat stress (day 0) and the 14-day stress period (day 1–14), eggs
were collected and weighed between 9:00 a.m. and 10:00 a.m. each day. Per hen, daily egg
production (EP), egg weight (EW), and egg mass (EM) were recorded individually in all
cages on a daily basis. EM was calculated using EP and mean EW.

2.2. Isolation, Culture, and Treatment of Granulosa Cells

Preovulatory follicular GCs were isolated from hens, according to the method de-
scribed in a previous study, with minor modifications [19]. In brief, 10 Hy-line brown laying
hens (35 weeks of age) were sacrificed by cervical dislocation 2 h after laying eggs, and
the ovarian tissue was collected. Follicles larger than 10 mm (preovulatory follicles) were
separated and the granulosa layers were separated rapidly. After washing, the granulosa
layers were treated with 0.2% collagenase II (Gibco, Gaithersburg, MD, USA) for 15 min
at 37 ◦C. The type-II collagenase was inactivated by adding pre-cooled M199 medium
(Thermo Fisher Scientific, Waltham, MA, USA). Through a series of filters, centrifugation,
and washing, trypan blue was used for the determination of cell viability. The GCs were
cultured in 12-well culture plates, at a density of 1 × 106 or 2 × 105 cells/well at 37 ◦C, in
5% CO2 in air. The basic culture medium used was M199 medium, which was then supple-
mented with 10% fetal bovine serum (Gibco) and 1% penicillin-streptomycin. After 12 h of
incubation, the medium was replaced with fresh medium containing 5% fetal bovine serum,
1% penicillin-streptomycin, 10.0 ng/mL 19-hydroxyandrostenedione (Sigma-Aldrich Corp,
St. Louis, MO, USA), and 1 ng/mL FSH (Sigma-Aldrich). The wells were divided into
3 groups thereafter; the control group was continuously cultured at 37 ◦C, whereas the
other two groups were further cultured at 41 ◦C and 43 ◦C as the heat treatment group. In
other chicken cell cultures and duck granulosa cells, temperatures mimicking heat stress
varied between 40 and 45 ◦C [20–22]. Hence, the temperatures of 41 ◦C and 43 ◦C in the
middle region were chosen in our study. Each group contained three replicates and three
separate cultures were conducted. After 12, 24, and 36 h of culture, the cells and culture
medium were collected for further analyses.

2.3. Flow Cytometric Analysis of Apoptotic Cells

Apoptosis or viability analysis was analyzed with flow cytometry after the combined
application of annexin V-FLUOS and propidium iodide, as described in our previous
study [23]. Briefly, the GCs were first digested with 0.25% trypsin, then three parallel
harvested cells samples were thoroughly washed twice, centrifuged, and resuspended.
Subsequently, the cell suspension was supplemented with the binding buffer and annexin V-
FITC. The cells were then incubated in the dark at 20–25 ◦C for 10 min. After centrifugation,
the labeled cells were resuspended in a binding buffer containing propidium iodide. Finally,
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the samples were analyzed using FACS (Becton, Dickinson and Company, Franklin Lake,
NJ, USA).

2.4. Measurement of Cell Viability

The GCs viability after heat treatment was assessed using a CCK-8 cell viability assay
kit (Shanghai QC Bio Science & Technologies Co., Ltd., Shanghai, China) according to the
manufacturer’s instructions. After heat treatment for 12, 24, and 36 h, the optical density
(OD) of GCs cultured in 96-well plates (2 × 103 cells per well) was measured at 490 nm
using a Biotek Eon microtiter plate reader. Cell viability was calculated by the proportion of
the absorbance value to that of the control. Blank wells (no cells) and control wells (vehicle
alone) were also included. Three separate cultures were performed, and each sample was
assayed in triplicate.

2.5. Ultrastructure Observation

Ultrastructural observation of GCs cultured in vitro under heat treatment was con-
ducted following the method used in our previous study [23]. Chicken GCs cultured
on coverslips were subjected to heat treatment, fixed, dehydrated, dried, coated, and
observed under a scanning electron microscope (EVO LS10; Carl Zeiss, Oberkochen, Baden-
Württemberg, Germany).

2.6. Hormone Secretion Measurements

Estradiol (E2) and progesterone (P4) concentrations in the culture medium were deter-
mined by enzyme-linked immunosorbent assay using the ELISA Quantitative Diagnostic
Kit for estradiol or progesterone (North Institute of Biological Technology, Beijing, China).
The methods used are described in our previous study [24]. The intra- and inter-assay
variation coefficients (CV) for E2 were 15%, while the intra- and inter-assay CV for P4
were both under 10%. Each sample was measured in triplicate, and three separate cultures
were conducted.

2.7. RNA Isolation and Quantitative Polymerase Chain Reaction (q-PCR)

The total RNA from GCs was extracted using a commercial kit (RNAiso Plus, Takara
Bio Inc., Shiga, Japan). The qPCR was performed according to the methods in our previous
studies [25,26]. Gene-specific primers were designed using Primer 3.0 software and are
provided in Table 1. At first, PCR and agarose gel electrophoresis were performed to
validate the primers. The results showed that the band of the product was single, and the
sizes were the same as expected. In addition, the dissolution curve of q-PCR was a single
peak with no primer dimer, and the amplification efficiency is between 90% and 105%. The
relative expression levels of the different genes in GCS were calculated using the formula of
2−∆∆CT [27] and were normalized against the expression levels of β-actin. Each treatment
was conducted in triplicate, with three separate cultures being performed.

2.8. Statistical Analysis

The mean values of egg production, egg weight, and egg mass were compared between
the control and heat treatment groups, using Student’s t-test. All other data were analyzed
by one-way analysis of variance (ANOVA), with heat treatment as the factor, followed
by Tukey’s multiple comparison tests. All data are expressed as the mean ± SEM of
three separate experiments. Differences between means were considered to be statistically
significant at p < 0.05. Statistical analyses were performed using SPSS software (Version
11.0; SPSS Inc., Chicago, IL, USA).
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Table 1. The primer sequences for qPCR.

Genes Accession Number Primer Sequence (5′–3′) Fragment Size (bp)

β-actin NM_205518.2 F: TGTCCCTGTATGCCTCTGGT
R: GGGCACCTGAACCTCTCATT

355

HSP70 NM_001006685.1 F: CGGGCAAGTTTGACCTAA
R: TTGGCTCCCACCCTATCTCT

250

HSP90 NM_001109785.2 F: AGTCCCAGTTCATTGGCTAC
R: TCCAGTCATTGGTGAGGCT

324

CYP11A1 NM_001001756.1 F: ACCGTGACTACCGCAACAAG
R: AGGCCTCCCCTGTCTTGA

54

3β-HSD NM_205118.1 F: GCCAAAGAGGAGCAAACCAGAG
R: TCCAGCAGTAAGCGAACGATCC

104

StAR NM_204686.3 F: CGCTGCCATCTCCTACCAACACAG
R: GACATCTCCATCTCGCTGAAGG

197

FSHR NM_205079.2 F: ATGTCTCCGGCAAAGCAAGA
R: AACGACTTCGTTGCACAAGC

147

CYP17A1 NM_001001901.3 F: CCACTACCCTGAGGTCCAGA
R: GTATTCCCCGATGCTGGTGT

196

CYP19A1 NM_001001761.4 F: CTCGGGGCTGTGTAGGAAAG
R: TGTCTGTACTCTGCACCGTC

86

3. Results
3.1. Effect of Heat Exposure on the Reproductive Activities of Laying Hens

As shown in Figure 1, the initial egg production (EP), egg weight (EW), and egg mass
(EM) were similar between the treatment and control groups before heat exposure (d0).
Daily egg production per hen began to drop rapidly in the heat treatment group compared
with that in the control group (Figure 1A). As expected, after 4 days of heat exposure, EP
dropped from 90.63% in the control group to 71.88% in the heat treatment group, a decrease
of 18.75% (p < 0.05), and continued to drop during the 2 weeks of heat stress exposure, to a
decrease of 62.5% (p < 0.01). Heat stress also affected egg weight (Figure 1B). Under heat
stress conditions, egg weight declined (p < 0.01) in the heat treatment group compared with
that in the control group on day 3 and remained low during heat treatment. Consequently,
heat stress-exposed hens also had lower egg masses, which dropped to 35.68 g/D (p < 0.01)
after 2 weeks of heat stress exposure.
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Figure 1. Effect of heat stress on the performance of laying hens. (A) Egg production, measured as 
percentages of laying hens/total hens. (B) Average egg weight of laying hens. (C) Egg mass, 
measured as g per egg produced/hen/D, on the day before heat stress (d0) and on each heat-stressed 

Figure 1. Effect of heat stress on the performance of laying hens. (A) Egg production, measured
as percentages of laying hens/total hens. (B) Average egg weight of laying hens. (C) Egg mass,
measured as g per egg produced/hen/D, on the day before heat stress (d0) and on each heat-stressed
day (d1–d14) in control or stressed (HS) hens. The mean (±SEM) of 8 replicates, with each replicate
containing 4 hens. Values with different letters are significantly different (p < 0.05).

3.2. Effects of Heat Treatment on Cell Viability and Apoptosis of GCs

Cell morphological observations and FSHR immunohistochemistry staining confirmed
that the cultured cells were GCs (Supplementary Figure S1). According to the results in
Figure 2A, the viability of follicular GCs after heat treatment at 43 ◦C for 12 h (p < 0.05),
24 h (p < 0.01), and 36 h (p < 0.01) was significantly lower than that in the control group.
The cells exposed to heat treatment at 41 ◦C showed obviously lower viability than the
control group at 36 h (p < 0.01). Cell viability was significantly decreased by heat treatment,
indicating that high temperatures affected the proliferative ability of GC cells.
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Figure 2. The effect of heat stress on cell vitality and apoptosis of granulosa cells. Primary cultured
chicken GC were kept at 41 ◦C or 43 ◦C for 12 h, 24 h, or 36 h. (A) CCK-8 assay. (B,C) Flow cytometric
analysis, with cells in the area of the lower right corner (Q3) indicating FITC Annexin V-positive cells.
(D) Scanning electron microscope after heat treatment for 12 h, 24 h, and 36 h. The boxed areas at
1000× were magnified to 5000× and were observed. * p < 0.05, ** p < 0.01.

To confirm these observations, flow cytometry analysis was conducted. As shown in
Figure 2B,C, the cell apoptosis rate in the 43 ◦C group was significantly increased (p < 0.05)
at 12, 24, and 36 h when compared to that in the 37 ◦C group, and the percentage of
apoptotic cells in the heat stress-treated group increased with the increase in culture time.
However, in the 41 ◦C treatment group, the number of FITC Annexin V-positive cells was
significantly higher (p < 0.05) than in the control group (37 ◦C) after only 24 h of heat
treatment (Figure 2B,C).

Cell morphology and ultrastructure were closely related to cell viability. The mor-
phology and ultrastructure of apoptotic cells changed differently. As shown in Figure 2D,
when examined using scanning electron microscopy, compared to cells in the control group
(37 ◦C), cells in the heat treatment groups (43 ◦C group at 24 and 36 h; 41 ◦C group at 24 h)
exhibited condensed cytoplasm around the nucleus, as well as rounded shrinkage. The cell
membrane surface also looked rough, and cavitations appeared.

3.3. Effects of Heat Treatment on Progesterone and Estradiol Synthesis in GCs

The secretion of P4 and E2 in follicular GCs under high-temperature culture con-
ditions is detailed in Figure 3. In the presence of 1.0 ng/mL FSH and 10.0 ng/mL
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19-hydroxyandrostenedione, in comparison with the control group (37 ◦C), heat treatment
at 43 ◦C for 24 h increased progesterone synthesis by approximately 1.5-fold, compared
with that in the control group (p < 0.01) (Figure 3A). However, from 24 to 36 h, the increase
in progesterone secretion from GCs in the 43 ◦C group showed a downward trend. In the
41 ◦C heat-treatment group, the level of P4 was higher (p < 0.05; Figure 3A) than that in the
control group (37◦C group) after only 24 h of treatment.
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Figure 3. Effects of heat treatment on progesterone and estradiol synthesis in granulosa cells. Primary
cultured GCs were kept at 37 ◦C, 41 ◦C and 43 ◦C for 12 h, 24 h, and 36 h, respectively. Progesterone
(A) and estradiol (B) concentrations were analyzed using ELISA methods. * p < 0.05, ** p < 0.01.

In contrast, when purified chicken GCs were cultured for 12 and 36 h under a 43 ◦C
heat treatment, E2 concentrations in the culture medium were lower (p < 0.05; Figure 3B)
than those in the 37 ◦C control group (Figure 3B). Unexpectedly, E2 levels had a transient
elevation after 12 h, while the levels in the 43 ◦C treatment group were higher than the
control group at 24 h, although the difference was insignificant (p > 0.05). However, in the
41 ◦C heat treatment group, E2 concentrations were lower (p < 0.05) than those in the 37 ◦C
control group after only 36 h of treatment (Figure 3B).

3.4. Effect of Heat Treatment on the Expression of Progesterone- and Estradiol-Synthesizing
Enzymes in GCs

A high culture temperature significantly affected the mRNA expression of progesterone-
and estradiol-synthesizing enzymes. As shown in Figure 4A, CYP11A1 gene expression
was strongly upregulated (p < 0.01) in the 41 ◦C and 43 ◦C groups at 24 h but began to
decrease and was lower than that in the cells cultured under control conditions, especially
the CYP11A1 gene expression in the 41 ◦C group at 36 h (p < 0.05). The StAR and 3β-HSD
mRNA levels were also significantly upregulated after heat treatment at 41 ◦C (p < 0.05)
and 43 ◦C (p < 0.01) for 12 h (Figure 4B,C). Conversely, after 36 h of treatment, StAR and
3β-HSD gene expression decreased in the 41 ◦C and 43 ◦C heat treatment groups, and the
3β-HSD gene expression in the 43 ◦C group was significantly lower than that in the control
group (Figure 4B,C).

There was no significant difference (p > 0.05) in CYP17A1 gene expression between
the control and 41 ◦C heat-treatment groups at each time point (Figure 4D). The gene
expression of CYP17A1 in the 43 ◦C group was significantly higher than in control cells at
12 h (p < 0.01). However, at 24 and 36 h, its expression level in the 43 ◦C group showed
a downward trend and was significantly lower (p < 0.05) than control. In contrast, the
transcription levels of CYP19A1 in the 41 ◦C and 43 ◦C groups showed a decreasing trend
after heat treatment, and both the transcription levels in the 41 ◦C (p < 0.05) and 43 ◦C
group (p < 0.01) were significantly lower than those in normal culture conditions at 24 and
36 h (Figure 4E). Similarly, the 43 ◦C heat treatment decreased the FSHR mRNA levels in
chicken follicular cells after 24 and 36 h (p < 0.05, Figure 4F).
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3.5. Effect of Heat Treatment on the Expression Levels of HSP70 and HSP90 in GCs

Following heat stress treatments, HSP70 and HSP90 levels were assessed using qPCR.
As shown in Figure 5A,B, the expression of both HSP70 and HSP90 showed a sharp increase
(p < 0.05) after the 41 ◦C and 43 ◦C heat treatments for 12, 24, and 36 h. Especially in the
cells exposed to 43 ◦C, the HSP70 mRNA levels were 36-, 25-, and 35-fold those of control
after 12, 24, and 36 h of treatment, respectively.
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4. Discussion

This study clearly shows that high environmental temperatures markedly limit the
egg-laying performance of laying hens. These effects were mediated through HSPs and
involved steroidogenesis dysfunction in an in vitro chicken granulosa cell culture system.
This is probably the mechanism by which heat stress downregulates FSHR and CYP19A1
expression and upregulates StAR expression.

High temperatures above the thermoneutral zone can influence the process of egg
formation [28], especially in the case of temperatures exceeding 30 ◦C. In our study, heat
treatment (32 ◦C) led to negative effects, including a decrease in egg production (25%),
egg weight (4.9 g), and egg mass (18.43 g/day), in hens reared under heat stress. Our
current results showing decreased laying rates are consistent with previous findings [6,29],
which reported that heat stress reduced egg production in heat-stressed laying hens. Other
researchers have also shown that exposure to either cyclic or constant heat stress for 1 week
could decrease the EW [7,8]. Another study revealed an increase in EW after 2 weeks
of heat stress; however, this was probably because the hens were younger in that study,
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which offset the EW-reducing effect of heat treatment [9]. As a result of the reduction in
egg production and weight, egg mass was also negatively impacted by the high ambient
temperature. In keeping with our findings, a significant decrease in the egg mass of heat
stress-exposed hens was also reported [10]. All these results validate the impaired efficiency
of reproductive performance in laying hens suffering from environmental thermal stress.

High temperatures influence hen reproduction, as indicated by oocyte quality, eggshell
weight, eggshell quality, fertility, egg production, and egg weight [9,30]; however, despite
ovarian follicular development playing a critical role in egg production and the nega-
tive effects of heat stress on follicular development, the potential mechanisms remain
unknown. In previous studies, compared to hens maintained under thermoneutral con-
ditions (24–26 ◦C), those exposed to heat stress showed a significant reduction in follicle
number [5,13]. Nevertheless, knowledge about the adverse effects of heat stress on the
steroidogenic function of ovarian follicles is still limited. This study has addressed this
knowledge gap by utilizing a culture system in which preovulatory follicular GCs are
present as the main source of estrogen and progesterone secretion.

In the present study, high ambient temperatures decreased the viability and increased
the apoptosis of follicular GCs, accompanied by changes in the cellular morphology and
ultrastructure. Another study also confirmed that laying hens raised in a high-temperature
environment showed increased percentages of TUNEL-positive apoptotic nuclei in mural
GCs [13]. Heat-stress-induced apoptosis in follicular cells may indicate a functional deficiency.

The current results showed that heat stress decreased E2 secretion levels from GCs,
but increased P4 concentrations in the culture medium. This is consistent with an in vivo
study showing that P4 concentration was significantly higher and E2 concentration was
lower in the large yellow follicular fluid of stressed hens than in the controls, although both
E2 and P4 levels in serum had decreased [13]. Heat stress decreased the E2 concentration
in the culture media of duck or bovine GCs but did not alter P4 concentration [22,31]. It
is well-known that progesterone is mainly produced by large yellow follicles of laying
hens, while small yellow follicles only produced a small amount of P4, and heat stress can
cause a decline in the number of large yellow and hierarchical follicles [13]. We speculate
that, under heat stress, despite the elevated progesterone production in vitro or in yellow
follicular fluid in vivo, the total amount of progesterone production decreased as the large
yellow follicle numbers declined. Hence, elevated serum progesterone levels are not
typically seen.

To better understand the underlying molecular regulatory mechanisms, several differ-
entially expressed transcripts implicated in steroidogenesis (e.g., StAR and 3β-HSD) were
investigated. The basic enzymatic pathways that catalyze cholesterol into progesterone,
including P450scc, 3β-HSD, and StAR, are often the main rate-limiting proteins in proges-
terone formation [32]. In the present study, the mRNA expression levels of StAR, 3β-HSD,
and CYP11A1 in GCs increased early in the heat stress groups, which is in agreement with
previous findings that heat stress also upregulated StAR and 3β-HSD expression in duck
follicular cells [22]. We also found that StAR, 3β-HSD, and CYP11A1 gene expression
decreased after 36 h of heat exposure. In bovine GCs cultured under high temperatures,
the mRNA expression of CYP11A1 and StAR also decreased [31]. This discrepancy may
be related to differences in the effects of heat stress on steroidogenic gene expression in
different cell environments. In addition, CYP17A1 gene expression initially increased,
but finally decreased. CYP17A1 encodes P450c17 and is in charge of the conversion of
progestin to androgen [33]. Heat stress downregulates CYP17A1 expression, which may
aggravate the accumulation of progesterone. Based on the above results, the increase in
StAR, 3β-HSD, and CYP11A1 expression and the consequent over-secretion of progesterone
may be a compensatory scheme in response to the unmet steroid production demanded
by ovarian cells [34]. Unexpectedly, 36 h of heat treatment decreased StAR, CYP11A, and
3β-HSD expression in GCs, whereas progesterone production continually increased. In
fact, the increase in progesterone secretion from GCs in the high-temperature culture group
was less than that in the normal cells after 24 h of culture, which indicated that the rate of
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progesterone synthesis began to decrease slowly. This was closely related to the downregu-
lation of StAR, CYP11A, and 3β-HSD expression at this time point. The reasons for this
progesterone synthesis/secretion pattern after heat stress are unclear; it may be associated
with higher apoptosis and the cell function diminishing as this process progresses, but
future experiments are necessary to verify this.

As heat stress influences E2 synthesis in GCs, we examined the expression of genes
encoding the proteins essential for E2 production. Our results indicated that heat stress
decreased FSHR and CYP19A1 gene expression in GCs. As is well known, FSH, FSHR, and
CYP19A1 are intimately connected to estradiol production in GCs [35]. Heat stress also
inhibits estrogen synthesis in duck GCs through the reduction of CYP19A1 expression [22].
In the present study, reduced estrogen concentrations in the culture medium of heat
treatment cells were accompanied by decreasing FSHR and CYP19A1 transcription levels,
which locally implies that heat stress potentially alters the amount of circulating E2 as the
pathway that produces E2 is inhibited, resulting in compromised reproductive functions,
such as ovulation. Considering both current and previous results, it can be assumed that the
repression of heat stress on steroid hormone secretion could be due to the reduction in cell
proliferation and the disruption of steroid hormone synthesis. However, the mechanism
behind the transient elevation of E2 levels after 12 h is still unknown; we inferred that
GCs may have a compensatory effect and temporarily increased the secretion of E2 after
heat stress (between 12 to 24 h), but continuous high temperature destroyed the steroid
hormone synthesis function of GCs, while the E2 production from the heat-stressed cells
was lower than that from the normal cells.

It is well documented that, in response to various stressors, HSP family genes will
be activated in cells. In our present study, the expression of some HSP family genes,
such as HSP70 and HSP90, was significantly increased in heat-stress-challenged GCs.
HSP70 is the most pronounced and is involved in GC functions; high temperatures can
stimulate the transcription of HSP70 in ovarian follicular GCs [19,31,36]. HSP70 levels
in the peripheral blood of laying hens also showed a marked increase when exposed to
a high-temperature environment [37]. In addition, in porcine GCs, the HSP70 reduced
the activity of FSHR and CYP19A1 promoters, along with the decreased synthesis of
estradiol [38]. HSP70 is related to the inhibition of hormone-sensitive steroidogenesis
and can hamper cholesterol translocation to the mitochondrial cytochrome P450scc [39].
Under heat stress, HSP synthesis may be an adaptive cellular response that helps maintain
cellular homeostasis.

Actually, in the context of laying hens, although studies have shown the altered
impact of heat stress on steroid hormone synthesis in vivo [40], the influence of heat stress
on steroid hormone synthesis in vitro has never been researched. In addition, tests on
the action of heat stress on steroidogenic gene expression in vitro were previously only
conducted in ducks [24]. Therefore, our study is the first to show the effects of heat stress
both on steroid hormone synthesis and the expression of the related genes in hen follicular
GCs in vitro. Our results verified the results in vivo showing that heat stress elevated P4
concentration but decreased E2 concentration in the large yellow follicular fluid [14] and
clarified its molecular mechanism by steroidogenic gene expression.

5. Conclusions

The above results can be summed up by saying that laying hens exposed to high
environmental temperatures exhibit impaired laying performance. Follicular GCs cultured
in vitro are sensitive to the effects of high culture temperature, showing an increase in
apoptosis and cellular ultrastructural changes. Heat stress elevated P4 secretion by increas-
ing the expression of StAR, CYP11A1, and 3β-HSD. The results also demonstrated that
estradiol synthesis in GCs was inhibited under heat stress through repressing FSHR and
CYP19A1 expression. The upregulation of HSP70 under heat stress was also observed.
Collectively, laying hens exposed to high temperatures showed damage to follicular GCs
and egg production. This study provides a molecular mechanism for the abnormal laying
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performance of laying hens exposed to heat stress. To the best of our knowledge, this is the
first study to demonstrate in vitro the effects of heat stress on steroidogenic gene expression
and steroid hormone synthesis in hen follicular GCs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12111467/s1. Figure S1: Characterization of cultured follicular
GCs from laying hens and FSHR fluorescence immunostaining. Table S1: Ingredients and nutrient
composition of the experimental basal diet (as fed basis) fed to laying hens.
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