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Abstract: (Tb0.6Y0.4)3Al5O12 transparent ceramics were successfully fabricated by solid-state reactive
sintering using Tb4O7, Y2O3, and α-Al2O3 powders as raw materials. The effect of (Tb+Y)/Al ratio on
microstructure evolution and densification process was investigated in detailed. The results showed
that the grain growth kinetics were significantly affected by (Tb+Y)/Al ratio. Al-rich and Tb-rich
phases appeared in part of the samples of different ratios. Particularly, excess aluminum increased
the diffusing process, leading to a higher densification rate, while samples with excess terbium ratios
displayed a smaller grain size and lower relative density. The optical quality was highly related to the
amount of the secondary phase produced by different (Tb+Y)/Al ratios. Finally, (Tb0.6Y0.4)3Al5O12

transparent ceramics have been fabricated through pre-sintering in vacuum, followed by hot isostatic
sintering (HIP), and the best transmittance of sample with a 4 mm thickness was approximately 78%
at 1064 nm.
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1. Introduction

Magneto-optical material, including glass, single crystal, and transparent ceramic, is the crucial
constitution of the optical isolators in high-power laser systems [1–3]. At present, due to the advantages
of large Verdet constant, high thermal conductive, and low absorption, Tb3Ga5O12 (TGG) is one of the
most commonly used commercial magneto-optical material of Faraday isolators [4–6]. Compared to
TGG, Tb3Al5O12 (TAG) has a higher Verdet constant, which makes it a highly sought magneto-optical
isolator material for future applications [7]. However, it is difficult to obtain TAG single crystals, due to
incongruent melting [8–10]. Although many efforts have been devoted to solving this problem, the size
of crystals is still too limited to meet the requirement of practical application [11,12]. This phenomenon
can be effectively avoided by fabricating TAG transparent ceramic below the phase transition point,
thanks to the cubic structure.
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TAG transparent ceramic has been studied for many years since it was firstly reported in
2011 [13]. A large number of studies have been done investigating the preparation method, ion doping,
and magneto-optical property improvements. More importantly, it was found that Y-doping can
avoid strain generation and crack initiation during the sintering process. Chen et al. [14] successfully
fabricated (Tb1−xRx)3Al5O12 (R = Y, Ce) ceramics by a two-step sintering method, and confirmed that
Y3+ addition improved the optical quality of the TAG ceramics. Duan et al. [15] found Y-doping can
optimize the microstructure of the TAG transparent ceramics and achieve a smaller average grain size.
In 2017, Ikesue et al. [16] produced (Tb1−xYx)3Al5O12 transparent ceramics with ultralow optical loss
for practical applications, promoting the commercial development of TAG transparent ceramics.

Even though most former studies have claimed that highly transparent TAG or TAG-based
ceramics were fabricated, there was still numerous scatters that existed in the samples (pores,
second phases, impurities, grain boundaries) which limited further improvement of the transmittance.
Generally, in order to avoid the second phase, the ratio of RE/Al (RE is rare earth, such as Y, Lu,
Dy) must be carefully controlled as 3/5, according to the binary phase diagram of RE2O3-Al2O3.
Much research has been devoted to understanding the effect of composition deviation on several
common garnet structures. Hu et al. [17] found that excess lutetium restrained abnormal grain growth
by the impurity drag effect, while excess Al2O3 pinned in the grain boundary limited the fast migration
of grain boundaries in Pr: LuAG transparent ceramics. Stanek et al. [18] studied the variation of lattice
parameter with stoichiometry deviation, and non-stoichiometry in YAG proceeded through cation
antisite defects, which would be a theoretical foundation in vacancy diffusion during the densification
process. Liu et al. [19] investigated that a small excess of yttrium was tolerable for the optical quality of
ceramics compared with excess alumina. They deduced that the average grain size abruptly decreased,
and the porosity increased with the increasing of both excess Al2O3 and Y2O3. However, related
works have not been carried out in TAG ceramic system, though it would be meaningful for obtaining
transparent ceramics with excellent magneto-optical properties.

Generally, Tb4O7 instead of Tb2O3 is usually used as the raw material to prepare TAG transparent
ceramics, owning to the instability of Tb2O3 at room temperature [20,21]. However, the precise contents
of Tb3+ and Tb4+ in Tb4O7 powder can be hardly measured. In other words, Tb4O7 should actually
be described as Tb4O7±x, making precise control of Tb/Al ratios impossible. Therefore, investigate
different ratios will be significant for fabrication of high optical quality ceramics. In this paper,
(Tb0.6Y0.4)3Al5O12 transparent ceramics were fabricated by reactive sintering in vacuum, followed
by hot isostatic sintering (HIP) treatment and Tb4O7, Y2O3, and α-Al2O3 were used as raw powders.
The effect of (Tb+Y)/Al ratio on the phase formation, densification process, and microstructure
evolution was elaborately investigated.

2. Materials and Methods

2.1. Experimental Procedure

(Tb0.6Y0.4)3Al5O12 transparent ceramics with different (Tb+Y)/Al mole ratios (0.5964, 0.6000,
0.6036, 0.6073, and 0.6110) were fabricated with high-purity commercial Tb4O7 (99.99%, Jiahua Corp.
Ltd., Jiangyin, China), Y2O3 (99.99%, Jiahua Corp. Ltd., Jiangyin, China), and α-Al2O3 (99.99%,
Sumitomo Chemicals, Tokyo, Japan) powders. The particle sizes of three raw powders were 2, 1,
and 0.2 µm, respectively. Meanwhile, 0.5 wt % TEOS (99.99%, Alfa Aesar Company, Beijing, China)
and 0.1 wt % MgO (99.99%, Alfa Aesar Company, Beijing, China) were added as sintering aids.
The powder mixtures was dispersed in 99.99% ethyl alcohol and ball-milled in nylon tank for 15 h.
Then, the slurries were dried at 80 ◦C in oven for 24 h and sieved through a 100-mesh screen. After this,
they were uniaxially pressed into plates in Φ 12 mm stainless steel molds at 20 MPa and cold isostatic
pressing at 200 MPa for 5 min. In order to remove organics, plates were calcined at 800 ◦C for 6 h in a
muffle furnace. The green bodies were pre-sintered at varieties temperatures (from 950 to 1550 ◦C)
in a vacuum furnace (ZW-50-20, Chenrong Corp. Ltd., Shanghai, China) under a vacuum level of
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~10−3 Pa for 4 h, followed by HIP at 1600 ◦C under 196 MPa Ar atmosphere. Finally, all samples
were annealed at 1350 ◦C for 10 h in a muffle furnace (SSX-2-16, Yifeng Corp. Ltd., Shanghai, China),
and mirror-polished to 4 mm on double sides.

2.2. Characterization

The phase compositions of pre-sintering plates were identified by X-ray diffraction (XRD; D2,
Bruker, Hamburg, Germany) with Cu Kα radiation. The microstructures of the ceramics were
characterized by scanning electron microscopy (SEM; JSM-6510, JEOL, Akishima, Japan). The element
mapping was conducted with energy dispersive spectroscopy (EDS; SwiftED3000, HITACHI, Tokyo,
Japan). The densities of the transparent ceramics were measured by Archimedes method. The in-line
transmittances of the polished samples were measured by UV–vis–NIR spectrophotometer (Lambda
950; Perkin-Elmer, Waltham, MA, USA).

3. Results and Discussion

3.1. Phase Formation Process

The X-ray diffraction patterns in Figure 1 demonstrate the phase formation of the pre-sintered
samples with 0.6000 ratio. The results confirm that Tb and Y react with Al2O3 and form a solid
solution of yttrium terbium aluminum garnet (YTbAG). Specifically, Tb4O7 deoxygenates to Tb2O3

beyond 950 ◦C and Tb2O3, Y2O3, and Al2O3 can be detected at this temperature. Yttrium terbium
aluminum monoclinic phase (YTbAM) forms at 1050 ◦C while the diffractions of raw powders
still exist. With the temperature increasing, YTbAM and yttrium terbium aluminum perovskite
phase (YTbAP) simultaneously appear at 1150 ◦C, and the diffraction intensity of YTbAM decreases.
Meanwhile, YTbAP and some YTbAG are detected at 1250 ◦C while YTbAM has disappeared. When the
temperature reaches 1350 ◦C, a pure YTbAG phase is generated and all peaks match well with TAG
standard card (PDF#17-0735). No residual intermediate phases remain to be detected. In summary,
YTbAM, YTbAP, and YTbAG appear in order with the reaction processing, which can be described by
the formulas

Tb4O7 → Tb2O3 + O2 (beyond 950 ◦C), (1)

Tb2O3 + Y2O3 + Al2O3 → YTbAM (950–1050 ◦C), (2)

YTbAM + Al2O3 → YTbAP (1050–1250 ◦C), (3)

YTbAP + Al2O3 → YTbAG (1250–1350 ◦C). (4)
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3.2. Densification and Microstructure

The relationship between relative density and pre-sintering temperature is shown in Figure 2.
This indicated that the relative densities improved simultaneously with the increase of temperature
for all samples. A rapid densification process between 1350 and 1450 ◦C can be observed, and the
rate slows down from 1450 to 1550 ◦C. The density fluctuations tend to be flat when the temperature
continues to increase. Regularly, the relative density decreases with the ratio of (Tb+Y)/Al increasing.
The relative density of the 0.5964 ratio sample is 78%, while it is just 71% for the 0.6110 ratio sample at
1350 ◦C. Density distinction among different ratio samples constantly decreases as the pre-sintering
temperature rises further. Finally, all of the densities with the different (Tb+Y)/Al ratios are almost
coincident at 1550 ◦C, and they are above 99%.
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Figure 2. Relationship between relative density and pre-sintering temperature with different
(Tb+Y)/Al ratios.

Figure 3 shows the thermal etching surface of the as-prepared ceramics with different (Tb+Y)/Al
ratios (0.5964, 0.6000, 0.6036, 0.6073, and 0.6110) pre-sintered from 1350 to 1500 ◦C. It is clearly
observed that the average grain size of ceramics increases and the porosity decreases with the sintering
temperature increasing, regardless of (Tb+Y)/Al ratios. Open pores can be easily observed at 1350 ◦C
which change to being closed around 1400 ◦C. When the sintering temperature reaches 1450 ◦C,
the samples possess uniform grains as well as high density. The microstructure evolution as well as
porosity changes are consistent with the results displayed in Figure 2. It is worth mentioning that
second phases at grain boundaries appear in part of the (Tb+Y)/Al ratio samples (0.5964, 0.6000,
0.6073, and 0.6110) when the sintering temperature reaches 1450 ◦C, and they are marked with red
circles. For samples with (Tb+Y)/Al ratios of 0.5964 and 0.6000, the residual pores and average grain
size are obviously larger than those samples with other ratios (0.6073 and 0.6110) below 1450 ◦C.
The density distinction decreases with continually increasing temperature. However, for the sample
with (Tb+Y)/Al ratio of 0.6036, the grain boundaries are clean and free from second phases and
abnormal grains at each temperature. Unluckily, intergranular pores appear at 1500 ◦C and are unable
to be removed by HIP treatment.
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represent 1350, 1400, 1450, and 1500 ◦C).

SEM micrograph and the corresponding EDS mapping images of various elements of the
pre-sintered sample with two (Tb+Y)/Al ratios (0.6000 and 0.6073) are shown in Figure 4. Figure 4a
indicates that Al2O3 second phases are detected in the sample with a ratio of 0.6000. Due to the
lower atomic number, it looks darker. Meanwhile, Tb and Y disappear in this area. The mapping
result of 0.6073 ratio is showed in Figure 4b, and excess Tb second phases exist in the bright area.
Surprisingly, an interesting phenomenon occurs that the content of Si is also enriched. This may be
caused by generation of a terbium silicate compound. Similar results were already reported in Nd:
YAG transparent ceramics [22,23].Materials 2019, 12, x FOR PEER REVIEW 6 of 9 
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The rare earth-controlled densification and average grain size were already discovered in
YAG [24,25]. In this investigation, it can be explained that (Tb+Y)/Al ratios affect the sintering behavior
via generating structural defects which can promote or inhibit densification and grain growth, relying
on their atoms’ diffusion kinetics. When excess Al reacts with terbium in the system, it generates a high
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concentration of vacancies, which increases the diffusion rate during the sintering process. The second
phase does not produce a pinning effect, and the grain boundaries migrate, sequentially, with higher
temperature. When Tb is in excess, it consumes the bulk concentration of rare earth vacancies so that
the diffusion kinetics of rare earth species would be limited. This also indicates that excess terbium
hinders the grain growth which is significantly effective at lower temperatures.

HIP treatment is a typical method in fabricating optical ceramics, because it can remove residual
intergranular pores and further improve the densification. There is more suitable microstructure of
pre-sintering ceramics before HIP due to no intragranular pores, higher relative density, and smaller
grain size. Therefore, the microstructures of samples pre-sintered at 1450 ◦C and treated by 1600 ◦C
HIP are displayed in Figure 5. It can be seen that residual pores are removed through HIP treatment.
At the same time, the average grain size also obviously grows despite the second phases remain in
some samples.
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3.3. Optical Quality

Figure 6 shows the in-line transmittance curves of samples pre-sintered at 1450 ◦C followed by
1600 ◦C HIP treatment. Specifically, excess aluminum enormously affects the transmittance both in the
visible and near-infrared region, while the transmittance lines of excess terbium samples are lower than
the sample with 0.6036 ratio, and it decreases quickly along with the wavelength decreasing. Actually,
this phenomenon is explained by the Mie scattering caused by residual pores [26]. The absorption
peak at 484 nm is attributed to the Tb3+: 7F6 → 5D4 transition. The best optical quality sample,
whose transmittance reaches 78% at 1064 nm, is obtained by a (Tb+Y)/Al ratio of 0.6036. Macroscopic
observations of (Tb0.6Y0.4)3Al5O12 transparent ceramics with different (Tb+Y)/Al ratios are displayed
inside. The samples with 0.6036, 0.6073, and 0.6110 ratios are transparent, with words being clearly
seen below the photograph, while 0.5964 and 0.6000 ratio samples are opaque. The bright yellow
appearance is connected with the valence state of terbium.Materials 2019, 12, x FOR PEER REVIEW 7 of 9 
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4. Conclusions

(Tb0.6Y0.4)3Al5O12 transparent ceramics were fabricated by vacuum pre-sintering and HIP
treatment. Due to the uncertain volume of terbium in Tb4O7 raw powders, the influence of different
(Tb+Y)/Al ratios on the densification process and optical properties of (Tb0.6Y0.4)3Al5O12 transparent
ceramics were studied in detail. Meanwhile, results indicated that excess aluminum ((Tb+Y)/Al =
0.5964 and 0.6000) made the densification process faster, while excess terbium ((Tb+Y)/Al = 0.6073
and 0.6110) caused decay and hindered grain growth. More importantly, the excess aluminum or
terbium caused second phases to appear, which seriously affected the sample optical properties. Finally,
transparent ceramic with (Tb+Y)/Al = 0.6036 pre-sintered at 1450 ◦C in vacuum, followed by HIP
treatment at 1600 ◦C, resulted in better optical quality and a transmittance of up to 78% at 1064 nm in a
sample of 4 mm thickness was obtained.
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