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Abstract

Background: Published genetic risk scores for breast cancer (BC) so far have been based on a relatively small
number of markers and are not necessarily using the full potential of large-scale Genome-Wide Association Studies.
This study aimed to identify an efficient polygenic predictor for BC based on best available evidence and to assess
its potential for personalized risk prediction and screening strategies.

Methods: Four different genetic risk scores (two already published and two newly developed) and their
combinations (metaGRS) were compared in the subsets of two population-based biobank cohorts: the UK Biobank
(UKBB, 3157 BC cases, 43,827 controls) and Estonian Biobank (EstBB, 317 prevalent and 308 incident BC cases in 32,
557 women). In addition, correlations between different genetic risk scores and their associations with BC risk
factors were studied in both cohorts.

Results: The metaGRS that combines two genetic risk scores (metaGRS2 - based on 75 and 898 Single Nucleotide
Polymorphisms, respectively) had the strongest association with prevalent BC status in both cohorts. One standard
deviation difference in the metaGRS2 corresponded to an Odds Ratio = 1.6 (95% CI 1.54 to 1.66, p = 9.7*10− 135) in
the UK Biobank and accounting for family history marginally attenuated the effect (Odds Ratio = 1.58, 95% CI 1.53
to 1.64, p = 7.8*10− 129). In the EstBB cohort, the hazard ratio of incident BC for the women in the top 5% of the
metaGRS2 compared to women in the lowest 50% was 4.2 (95% CI 2.8 to 6.2, p = 8.1*10− 13). The different GRSs
were only moderately correlated with each other and were associated with different known predictors of BC. The
classification of genetic risk for the same individual varied considerably depending on the chosen GRS.

Conclusions: We have shown that metaGRS2, that combined on the effects of more than 900 SNPs, provided best
predictive ability for breast cancer in two different population-based cohorts. The strength of the effect of
metaGRS2 indicates that the GRS could potentially be used to develop more efficient strategies for breast cancer
screening for genotyped women.

Keywords: Polygenic risk score, Genetic predisposition to disease, Breast cancer, Risk stratification, Personalized
medicine
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Background
Breast cancer (BC) is the most frequent cancer among
women in the world, being also the second leading cause
of cancer death in women in more developed regions
after lung cancer [1]. As early diagnosis for BC could
lead to successful treatment and good prognosis for re-
covery, it is important to develop efficient risk prediction
algorithms that aid to identify high-risk individuals.
Although many countries have implemented mammog-
raphy screening programs, they are mostly applied to all
women in certain age categories without any additional
stratification by other risk factors. However, the benefits
of such screening programs are often debated. Existing
tools to assess BC risk [2–4] are often not systematically
used in screening due to insufficient up-to-date risk fac-
tor’s information. Also, they only capture the heritable
component either in the form of family history or using
the information on rare genetic variants (BRCA1/2).
It has been estimated in twin studies that the heritabil-

ity of breast cancer ranges from 20 to 30% [5]. However,
only 5–10% of BC cases have a strong inherited compo-
nent identified in a form of rare genetic variants [6],
indicating that in addition there should be a consider-
able polygenic component in the disease liability. This is
also supported by the results of large genome-wide asso-
ciation studies (GWAS) – more than 100 genomic loci
have been identified as being associated with BC in
Europeans [7].
Based on the GWAS results, several efficient polygenic

risk scores (GRS) have been developed for common
complex diseases that in many cases could be used to
improve the existing risk prediction algorithms [8–11].
It is natural to expect that a similar GRS for BC may aid
risk prediction in clinical practice.
So far, several studies have combined the SNPs with

established genome-wide significance in a GRS for BC.
Sieh et al [12] used 86 SNPs and Mavaddat et al [13] 77
SNPs to calculate a GRS, both showing a strong effect of
the score in predicting future BC cases. Few studies have
also demonstrated the incremental value of adding GRS
to proposed BC prediction algorithms [14, 15]. Although
several different GRSs have been proposed for BC risk
prediction, no head-to-head comparison of the scores has
been found in the literature. It has also not been assessed,
whether the number of SNPs in the GRS could be
increased. The latter was also problematic due to unavail-
ability of summary statistics from large-scale GWASs.
In 2017, the large scale GWAS by Michailidou et al

[7] released summary statistics for around 11.8 million
genetic variants. Almost at the same time, UK Biobank
released their GWAS results for BC for ~ 10.8 million
SNPs. As evidence from studies on other common com-
plex diseases have indicated that predictive ability of a
GRS can be improved by adding the effects of a large

number of independent SNPs in addition to the ones
with established genome-wide significance, we intended
to explore this approach using both summary files.

Methods
Study cohorts
In the present analysis, the data of 32,557 female partici-
pants of the Estonian Biobank (EstBB) [16] has been
used, with 317 prevalent and 308 incident cases of BC.
Incident disease data was obtained from linkages with
the Estonian Health Insurance Fund, Estonian Causes of
Death Registry and Estonian Cancer Registry (latest up-
date in December 2015).
We have also analyzed the data of 46,984 women (incl

3157 BC cases) of European ancestry from the UK Bio-
bank [17] who passed the main quality control and were
not included in the UKBB breast cancer GWAS [18].
More details about cohorts can be found in the

Additional file 2 and overview of the characteristics of
the cohorts is given in the Additional file 1: Table S1.

Statistical methods
General concept of genetic risk scores (GRS)
The general definition of a GRS was based on the
assumption that the polygenic component of the trait
(e.g. disease risk) can be approximated by a linear com-
bination of k independent SNPs:

GRSi ¼
Xk

j¼1

β jXij

where βj is the weight of each SNP and Xij represents
the number of risk alleles for j − th SNP (j = 1,… , k) for
the i − th individual, (i = 1, … , n.). Typically the esti-
mated (logistic) regression coefficients from a large-scale
GWAS meta-analysis are used as weights βj.
Published versions of GRS can be divided to two main

categories. We called a GRS multigenic, if the number of
SNPs (k) is relatively small, containing only the SNPs
with established genome-wide significance from a
GWAS. A polygenic GRS contained a large number of
SNPs (often k > 1000) and was either based on all avail-
able independent SNPs (with pairwise correlation not
exceeding a pre-defined threshold) or the ones that
satisfy some p-value threshold (often ≥0.05).
In the present paper, we computed two multigenic and

two polygenic GRSs, whereas the polygenic GRSs were
developed using the PRSice software [19].

Computation of multigenic and polygenic GRSs and
analysis of their association with prevalent breast cancer
First we calculated two previously published multigenic
GRSs for the EstBB data – both scores contained only
those SNPs from the originally published versions that
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were available with acceptable imputation accuracy in
the EstBB.

1. The score denoted by GRS70, based on Sieh et al
[12](70 SNPs out of 86 were available).

2. The score GRS75, based on the 75 SNPs of the 77-
SNP score by Mavaddat et al [13].

Next, polygenic GRSs were developed based on sum-
mary statistics of two different GWAS meta-analyses.
First, two sets of independent SNPs were obtained so
that: a) the SNPs with available summary statistics were
genotyped or imputed with acceptable quality in the
EstBB; b) the pairwise correlations between SNPs did
not exceed a pre-specified threshold of r2 > 0.1 (more de-
tails on SNP selection provided in the Additional file 2).
Subsequently, the selected SNPs were further filtered
based on their p-value in the meta-analysis (using one of
the pre-specified p-value thresholds). The corresponding
effect estimates of the filtered subset were then used as
weights to compose the GRSs. Altogether, we used 22
different p-value thresholds to compose 44 different
versions of GRSs – 22 based on first meta-analysis and
22 based on the second one. To select the best predict-
ing GRSs out of 44, age-adjusted logistic regression
model comparing 317 prevalent BC cases and 2000 ran-
domly chosen controls in the EstBB cohort was used
and the scores with the smallest p-value for the GRS-
phenotype association were selected (calculations about
power to detect GRS-phenotype associations provided in
Additional file 2). The resulting polygenic scores were:

3. The score GRSONCO, based on the summary
statistics of the Breast Cancer Association
Consortium meta-analysis of BC with 122,977 cases
and 105,974 controls [7].

4. The score GRSUK, based on the summary statistics
of the GWAS conducted on the UK Biobank data
(comparing 7480 BC cases and 329,679 controls
including both men and women [18]). The reported
linear regression coefficients were transformed into
corresponding log odds ratios, following the rules
described by Lloyd-Jones et al [20], before using
them as weights in the GRS.

5. Thereafter, Pearson coefficients of correlation
between all GRSs (GRS70, GRS75, GRSONCO,

GRSUK) were calculated. Then GRSs were
combined into three different versions of metaGRS,
following the ideas by Inouye et al [21]: metaGRS4
as the weighted average of all four GRSs,
metaGRS3 as the weighted average of three GRSs
with the strongest association with incident BC and
finally metaGRS2 based on top two predicting
GRSs. To construct metaGRS, log (odds ratios) of

GRSs from training set from logistic regression
model were used as weights.

Finally, the UK biobank data was used to further com-
pare previously mentioned 7 GRSs and to address the
attenuation of GRS’ effect while accounting for family
history of BC and to study associations between BC risk
factors and GRSs. While modelling in UK biobank, age
at recruitment and 15 principal components were in-
cluded in the model. The entire workflow was visualized
in the Fig. 1.

Analysis of the GRS effects on incident BC
All 7 GRSs were evaluated in the analysis of incident BC
in 30,240 women from the EstBB cohort who did not
have an existing BC diagnosis at recruitment and were
not included in the case-control set used to select the
best polygenic GRSs. Cox proportional hazard models
were used to estimate the crude and adjusted Hazard
Ratios (HR) corresponding to one standard deviation
(SD) of the GRS. To assess the incremental value of
GRSs when added to other known risk factors, the
models were additionally adjusted for the absolute risk
estimates from the NCI Breast Cancer assessment tool
[2, 22], based on age, race (for all participants, it was set
to “White”, because only individuals with European de-
cent were included), age at menarche and age at first live
birth of the participant. Other possible risk factors such
as number of biopsies were set as unknown. Harrell’s c-
statistic to characterize the discriminative ability of each
GRS and their incremental value compared to NCI’s
Breast Cancer assessment tool absolute risk estimates
alone were computed. Hazard ratios for GRS top quin-
tile and top 5% percentile compared to average, median
and low GRS categories were reported. Cumulative inci-
dence estimates were computed with Aalen-Johansen es-
timator to account for competing risk. While comparing
different GRS groups with each other, age was used as
timescale to properly account for left-truncation in the
data. While computing HR for continuous GRSs and
comparing Harrell’s c-statistics alone and together with
NCI estimates, follow-up time was used as timescale, as
age is already included in NCI estimates.
Finally, associations between GRSs and variables

related to female’s reproductive health and BC risk
factors were explored using linear, logistic or Cox regres-
sion models depending on the type of dependent vari-
able in both EstBB and UKBB cohorts (more details in
the Additional file 2).

Results
GRSs association with prevalent breast cancer
Both GRS70 and GRS75 were significantly associated with
prevalent BC status in the case-control subset of the
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EstBB cohort, with corresponding Odds Ratio (OR) es-
timates per one SD of the GRS being 1.27 (95% CI
1.13 to 1.45, p = 1.4*10− 4) and 1.38 (95% CI 1.22 to
1.57, p = 5.3*10− 7), respectively. Of all polygenic GRSs,
the strongest association was observed for GRSONCO

with p-value threshold p < 5* 10− 4 for SNP inclusion
(898 SNPs). This resulted in OR = 1.44 (95% CI 1.27 to
1.64, p = 1*10− 8) per one SD of the GRS. The best ver-
sion of GRSUK included 137 SNPs that satisfied inclu-
sion threshold p < 5*10− 5 and resulted in OR = 1.34
(95% CI 1.18 to 1.52, p = 5.5*10− 6). Similar effect sizes
for all four GRSs were observed in the UKBB cohort
(Additional file 1: Table S2). Detailed results on GRS-
outcome associations in EstBB with different p-value
thresholds for SNP inclusion can be seen in Additional
file 2: Figure S1.

Association of incident breast cancer and GRSs
Out of four studied GRSs, GRSUK had the weakest and
GRS75 the strongest association with incident BC (Table 1)

in the EstBB, both in terms of the p-value as well as the
Harrell’s c-statistic. All metaGRSs had stronger association
with incident BC than original scores alone. However,
when GRSONCO and GRS75 are already combined into
metaGRS2, no additional gain was seen from adding
GRSUK and/or GRS70 to the score. Therefore, we chose
metaGRS2 for further assessment of its properties. While
a predictive model capturing the effect of the NCI risk
estimates resulted in the Harrell’s c-statistic of 0.677, it
was increased to 0.715 (by 3.8%) when also metaGRS2 was
added to the model.

The score metaGRS2 and its potential for personalized
breast cancer risk prediction
Women in the highest quartile of metaGRS2 distribution
had 3.40 (95% CI 2.36 to 4.89) times higher hazard of
developing BC than women in the lowest quartile. When
the top quartile is further split into smaller percentiles
(as seen on Fig. 2), a strong risk gradient was seen also
within this quartile. Namely, women in the top 5% of

Fig. 1 Workflow describing both derivation and validation of GRSs
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the metaGRS2 distribution had a Hazard Ratio (HR) of
4.79 (95% CI 3.02 to 7.58) for incident BC compared to
women in the lowest quartile, whereas HR = 4.20 (95%
CI 2.84 to 6.23) for women in the top 5% compared to
all women with metaGRS2 below the median. When the
highest 5% percentile was compared with the rest of the
cohort (women below the 95th percentile of metaGRS2),
about three times higher hazard (HR = 2.73, 95% CI 1.92
to 3.90) was found. Compared to the women with
metaGRS2 close to the median (belonging to the 40th to
60th percentile), the hazard of women in the top 5% of
metaGRS2 was 2.7 (95% CI 1.77 to 4.18) times higher

and the hazard of those with metaGRS2 below 40th per-
centile was almost 2 times lower (HR = 0.54, 95% CI
0.37 to 0.79) to develop BC.
As seen from Fig. 2, the cumulative BC incidence by

the age of 70 was estimated to be 12% (95% CI 7.7 to
16.3%) for women in the top 5% percentile of metaGRS2,
8.3% (95% CI 5.6 to 11.0%) for those between 85 and
95% percentiles and 7.4% (95% CI 4.85 to 10.0%) for the
women in 75–85% percentiles. Cumulative BC incidence
in the third, second and first quartile of the metaGRS2
distribution was estimated to be 5.8% (95% CI 4.4 to
7.3%), 3.6% (95% CI 2.4 to 4.8%) and 2.4% (95% CI 1.4

Table 1 Analysis results for incident breast cancer in EstBB using different GRSs and metaGRSs

Score NCI GRS70 GRS75 GRSUK GRSONCO metaGRS4 metaGRS3 metaGRS2

HRa per 1 SD with 95% CI 1.7
1.52–1.9

1.44
1.29–1.61

1.59
1.42–1.78

1.23
1.1–1.38

1.52
1.35–1.7

1.61
1.43–1.80

1.65
1.47–1.85

1.65
1.48–1.86

p-value 1.4*10−
20

3.2*10− 10 1.1*10− 15 4*10− 4 1.7*10− 12 4.4*10− 16 1.43*10− 17 7.6*10−18

Harrell’ s c –statistic 0.677 0.603 0.627 0.561 0.615 0.634 0.637 0.636

Harrell’ s c –statistic NCI +
GRS

NA 0.701 (Δ =
0.024)

0.708 (Δ =
0.031)

0.684 (Δ =
0.007)

0.705 (Δ =
0.028)

0.715 (Δ =
0.038)

0.716 (Δ =
0.039)

0.715 (Δ =
0.038)

Legend: Harrell’s c-statistics for all versions of genetic risk scores and National Cancer Institute Breast Cancer Assessment Tool risk estimates (based on age, race,
age at menarche and age at first live birth) were calculated. Δ-GRS added improvement in c-statistics compared to NCI alone. * Hazard ratio for developing breast
cancer is given per 1 SD increase. CI = confidence intervals; GRS = genetic risk score; HR = Hazard ratio; NCI – National Cancer Institute Breast Cancer assessment
tool estimates calculated with R package BCRA
No evidence of the interactions between any GRSs and NCI estimates were found (p-values > 0.16)

Fig. 2 Cumulative incidence of BC in metaGRS2 categories among women within age 30–75 years. Legend: Cumulative incidence accounting for
competing risks. Hazard ratios (HR) correspond to the comparison of several categories with the lowest quartile of metaGRS2
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to 3.3%), respectively. No significant difference in BC
hazard was seen between the two lowest quartiles (p =
0.26), with both of them having considerably lower inci-
dence level than the cohort average (overall cumulative
BC incidence estimated as 5.1% by the age of 70, 95% CI
4.5 to 5.8%).

Correlation of GRSs
The correlations between seven scores varied between
0.3 to 1 (see Additional file 2: Figure S2). After divid-
ing individuals into 2 categories (“non-high” – GRS <
95th percent and “high” – GRS in top 5%) based on
three GRSs (GRSUK, GRSONCO or GRS75), 87.7%
(28547) of women were assigned to non-high category
with all three scores. However, 12.4% (4010) of
women belonged to high category with at least one
GRS. 0.33% (109) of women belonged to top 5% with
all three scores compared to ~ 10% (3240) of the
women, who belonged into high category only with
one score (Fig. 3).

Associations of GRSs and other genetic and non-genetic
predictors of breast cancer
Both family history as well as GRSs were strongly associ-
ated with BC status in UKBB, while the effects of GRSs
were attenuated by less than 1% while adjusting for fam-
ily history (Additional file 1: Table S2). The effect of
family history was attenuated by 2.9–8.4%, depending on
which GRS the model was adjusted for. For instance, the
OR corresponding to the family history changed from
1.87 to 1.82 (corresponding to 2.9% change) while
adjusting for the GRSUK and to 1.71 (corresponding to
8.4% change) while adjusting for the metaGRS2. Known
BC risk factors were only weakly associated with GRSs
in both UKBB and EstBB cohorts (Additional file 1:
Table S3-S4). BMI and waist circumference were nega-
tively associated with GRSUK in both EstBB and UKBB,
the association in EstBB was stronger for women under
50 years of age. Smoking status was positively associated
with all GRSs except GRSUK only in EstBB data. Age at
menopause was associated with some GRSs in both
cohorts but the effects were in opposite direction. No

Fig. 3 Division of Estonian Biobank women according to their genetic risk category. Legend: Women, who belong to top 5% at least with one
out of the three genetic risk scores (GRSs: GRSONCO, GRSUK, or GRS75), are represented on this graph. Number of women, who belong to top 5%
only with one score, two scores or all three scores are given. Percentages are given per entire cohort
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GRS showed association with any other type of cancer
or overall mortality.

Discussion
We demonstrated that a metaGRS that combines a multi-
genic and a polygenic GRS for breast cancer - metaGRS2 -
performed better than using either one of the previously
published multigenic GRSs and also better than the best
polygenic GRS alone. While in average about 5% of women
in the EstBB cohort (as well as in the Estonian population)
have been diagnosed with BC by the age of 70, women in
the highest five percentiles of the metaGRS2 distribution
reach the same cumulative risk level (5, 95% CI 2.1 to
7.8%) by the age of 49, thus more than 20 years earlier. It is
also notable that women with metaGRS2 level below me-
dian reach such risk level (4.6, 95% CI 3.6 to 5.6%) only by
age of 79, thus almost 10 years later. These findings suggest
that the polygenic risk estimate based on metaGRS2 could
be an efficient tool for risk stratification in clinical practice,
for targeted screening and prevention purposes.
Given that the potential benefits of non-selective BC

screening within certain age categories (compared to
potential harm from over diagnosis) have been under
serious discussion in the medical community [23], per-
sonalized approaches based on individual risk levels
deserve further assessment. Ideally, those should inte-
grate available information from clinical risk factors and
also genetic information. The latter could include both
moderate- and high-penetrance germline mutation test-
ing, as well as polygenic risk scores. That approach is
also supported by our findings, where considerable in-
crease in c-statistics were observed while combining
polygenic risk scores and NCI estimates together.
However, while incorporating a GRS in clinical BC

prediction, one should keep in mind that a GRS repre-
sents a mixture of different pathways, but is still not
likely to capture the heritable component completely. As
our findings indicated that a GRS and family history
have independent predictive effects on BC risk, account-
ing for individual’s genetic information and family his-
tory (indicating either the mother has suffered from
breast cancer or not or the status is unknown) simultan-
eously seemed to result in the better risk estimation than
using only one of these predictors alone. However, more
research is needed to assess the usefulness of combining
our proposed metaGRS2 with full pedigree-based family
history data.
As depending on a GWAS that is used as a basis, dif-

ferent (and not necessarily highly correlated) GRSs can
be produced, it can be expected that those GRSs might
emphasize the effects of different biological pathways.
This hypothesis seems plausible in the light of several
associations found between different GRSs and BC risk
factors. Expectedly, GRSs including only a small number

of significant SNPs (like GRS75 and GRS70) were highly
correlated and if we could have included all original 86
SNPs instead of 70, correlation between GRS86 and
GRS75 would have likely remained similar or decreased a
little, as excluded SNPs from the original 86 SNPs were
rather rare.
The fact that a metaGRS performed better than alter-

natives, suggests that even though the multigenic GRS75
including only genome-wide significant SNPs was
already a good predictor for BC, other SNPs included in
the polygenic GRSONCO - but not in the GRS75 - have
some additional predictive power. Most likely, not all
SNPs included in the GRSONCO are truly associated with
BC, however, as they have some predictive power, pos-
sibly also through being associated with some of the risk
factors of BC, one should not completely ignore them
while building an optimal GRS.
It remains an open question whether it is always the

best practice to use metaGRS instead of several different
genetic risk scores – if one can pinpoint biological
mechanisms behind different scores, more optimal pre-
ventive strategies could be chosen. Still, until we are
unable to convincingly link different GRSs with specific
preventive measures, targeted prevention should be
based on a GRS with the best possible overall predictive
ability, such as the metaGRS2 proposed here.
One should also keep in mind that besides GRS there

are genetic mutations such as BRCA1/2 known to be
associated with very high familiar BC risk. Therefore, in
practice, any genomic risk stratification procedure
should also include search for high- and moderate-risk
genetic variants, if possible. In the high-risk mutation
carriers, the clinical management could be based on the
specific genetic (mendelian) variants, or if deemed useful
in the future, a combination of mendelian variants and
GRS levels, but it definitely needs further studies.

Conclusions
In summary, our results showed that an efficient poly-
genic risk estimate enables to identify strata with more
than four-fold differences in BC incidence. This defin-
itely calls for the development of personalized screening
and prevention strategies that incorporate the GRS
information, having the potential to considerably in-
crease the benefits of nation-wide screening programs
and reduce the existing controversies on their efficacy.
However, one should be aware of the fact that a GRS is
still a proxy of a true genetic risk and it is not uniquely
defined – as more research accumulates, more efficient
polygenic predictors could be developed that may re-
categorize some previously stratified individuals into
high or low risk groups. In addition, a GRS should
ideally be combined with information on other genetic
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and non-genetic risk factors for best possible accuracy in
risk assessment.
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