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a b s t r a c t 

Despite available vaccinations COVID-19 case numbers around the world are still growing, and effective medi- 

cations against severe cases are lacking. In this work, we developed a machine learning model which predicts 

mortality for COVID-19 patients using data from the multi-center ‘Lean European Open Survey on SARS-CoV- 

2-infected patients’ (LEOSS) observational study ( > 100 active sites in Europe, primarily in Germany), resulting 

into an AUC of almost 80%. We showed that molecular mechanisms related to dementia, one of the relevant 

predictors in our model, intersect with those associated to COVID-19. Most notably, among these molecules was 

tyrosine kinase 2 (TYK2), a protein that has been patented as drug target in Alzheimer’s Disease but also genet- 

ically associated with severe COVID-19 outcomes. We experimentally verified that anti-cancer drugs Sorafenib 

and Regorafenib showed a clear anti-cytopathic effect in Caco2 and VERO-E6 cells and can thus be regarded as 

potential treatments against COVID-19. Altogether, our work demonstrates that interpretation of machine learn- 

ing based risk models can point towards drug targets and new treatment options, which are strongly needed for 

COVID-19. 
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. Introduction 

As of October 2021, the ongoing SARS-CoV-2 pandemic led

o almost 5 million reported deaths worldwide according to data
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Table 1 

Overview of patient demographics in LEOSS . 

Age 

18 - 25 years 181 

26 - 35 years 472 

36 - 45 years 540 

46 - 55 years 907 

56 - 65 years 1125 

66 - 75 years 981 

76 - 85 years 1231 

missing 242 

Gender 

Male 3229 

Female 2218 

missing 232 

Ethnicity 

Caucasian 4225 

missing 1195 

Asian & Pacific Islander 155 

African & African American 98 

Hispanic or Latino 6 

Country 

Germany 5411 

Turkey 65 

Belgium 40 

Czechia 33 

Latvia 27 

Other 26 

GBR 23 

Italy 19 

Spain 15 

France 11 

Austria 9 

Fig. 1. Kaplan-Meier plot of COVID-19 patients in LEOSS. The plot shows the es- 

timated survival function according to the well-known product limit estimator, 

see section “Methods ” [32] . The gray area depicts the 95% confidence interval. 
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onsiderable number of infected people worldwide. Moreover, effective

edications for treating severe cases are still scarce. Remdesivir, a drug

riginally developed against the Ebola virus, is currently the only ap-

roved COVID-19 drug in the European Union, and evidence suggests

hat it has little effect on the overall survival of COVID-19 patients [5] .

Several studies have revealed general risk factors for a poor dis-

ase outcome, such as age, male gender, and low platelet count

 20 , 42 , 46 , 65 ]. In addition, machine learning (ML) models have been

ublished to predict mortality risk for individual patients, primarily

ased on data from Intensive Care Units and electronic health records

rom the US and UK [ 3 , 6 , 19 , 31 , 48 , 53 , 57 ] as well as a few other coun-

ries [ 33 , 39 ]. Notably the 4C mortality score developed by Ali et al.,

ased on data from the UK has recently been validated within an in-

endent study in Canada [31] . None of these models have resulted in a

hange of clinical routine or the identification of new treatment options

o far. 

In this work, we specifically investigated data from nearly 5700 PCR

r rapid test confirmed SARS-CoV-2 patients recruited in more than 100

uropean active sites, primarily all over Germany. For these patients,

isease symptoms, vital parameters, biomarkers from urine and blood,

nd diagnosed comorbidities were available. Using these data and ML,

e first developed a model that can predict mortality with an area under

eceiver operator characteristic curve (AUC) of almost 80% up to 60

ays in advance. One of the relevant predictors in our model was a

rior diagnosis of dementia, which increases the mortality risk by about

5%. Based on this finding, we explored the overlap between COVID-

9, Alzheimer’s (AD), and Parkinson’s Disease (PD) molecular disease

echanisms, which pointed us to tyrosine kinase 2 (TYK2) as a potential

ew drug target. Finally, our experimental data with Caco2 and VERO-

6 cells suggests that Sorafenib and Regorafenib, two approved anti-

ancer drugs, could be repositioned for treating severe COVID-19 cases.

. Results 

.1. Overview about LEOSS data 

The Lean European Open Survey on SARS-CoV ‑2 infected patients

LEOSS - https://leoss.net/ ) is an observational, multi-center study fo-

using on PCR or rapid test confirmed patients. Study centers are pri-

arily University Medical Centers, but also include other hospitals, in-

titutes, and medical practices. Active sites cover several European coun-

ries but have a primary focus on Germany. They are thought to generate

epresentative data of (primarily hospitalized) COVID-19 cases, at least

or Germany. In order to ensure anonymity in all steps of the analy-

is process, an individual LEOSS Scientific Use File (SUF) was created,

hich is based on the LEOSS Public Use File (PUF) principles described

n [29] . The baseline data from more than 100 active sites, collected at

ime of a positive test or diagnosis, comprises patient demographics, dis-

ase symptoms, vital parameters, biomarkers from urine and blood, and

omorbidities. Follow-up information, including survival, was available

or patients between 18 and 85 years. These data were further filtered

o only include patients with less than 50% of missing data at baseline,

esulting into n = 5679 patients ( Table 1 ). Out of those 5679 patients,

225 (92%) were inpatient, and 569 (10.0%) were reported death cases

ithin a follow-up period of up to 78 days. Among them, 430 (76% of

69) patients were reported death cases within the first 20 days ( Fig. 1 ).

.2. Machine learning can predict mortality with high accuracy 

We implemented and compared a broad panel of time-to-event ma-

hine learning models to predict patient survival using only LEOSS base-

ine data: 

• Elastic net penalized Cox proportional hazards regression [ 10 , 66 , 71 ]

• Elastic net penalized Weibull accelerated failure time regression

[ 35 , 62 , 71 ] 
2 
• DeepSurv – a neural network approach using a loss function derived

from a Cox proportional hazard model [34] 

• Random Survival Forests [28] 

• XGBoost Survival Embeddings – a popular stochastic gradient boost-

ing algorithm using a loss function derived from a Weibull regression

[58] 

Notably, all these models account for the right censoring of the data,

ee details in section “Methods ”. We evaluated models via a five-fold

ross-validation (CV). In other words, we split the entire dataset into five

https://leoss.net/
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Fig. 2. (a) Model prediction performance measured via Uno’s C-index on held out test sets (COX = elastic net penalized Cox proportional hazards regression; 

WEI = elastic net penalized Weibull accelerated failure time regression; XGBSE = XGBoost Survival Embeddings; RSF = Random Survival Forest; DEEPSURV = Deep- 

Surv); (b) model calibration error measured via Integrated Brier Score (IBS) on held out test sets; (c) model prediction performance as function of time on held out 

test sets with 95% confidence interval, with integrated AUC (iAUC) denoting the mean (standard error) AUC over time. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Feature importance using absolute SHAP values: (a) top 10 predictors; (b) cumulative influence per feature modality. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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uter folds, and we subsequently left out one of these folds for testing the

odel, while the rest of the data was used for model training and tuning.

otably, splitting of the data was performed in a stratified manner, such

hat the number of events was equally maintained across all folds. We

uned the hyper-parameters within the CV loop using an extra level of

nner five-fold CV (see Section 4.2 for details). We employed Uno’s C-

ndex as a metric to assess prediction performance [56] . A C-index of

0% indicates chance level, whereas a C-index of 100% would reflect a

erfect concordance of model predictions and observed death cases in

he test data (see Section 4.3 for details). 

Overall, elastic net penalized Weibull regression achieved the best

iscrimination performance with ∼77% C-index ( Fig. 2 a) and low cali-

ration error (Integrated Brier Score – IBS) of 0.12 ( Fig. 2 b, Supplemen-

ary Table 1 ). Furthermore, a stable prediction performance of ∼80%

UC was found up to ∼60 days after disease diagnosis ( Fig. 2 c). There-

ore, elastic net penalized Weibull regression was used to subsequently

rain a final model on the entire dataset while using the previously de-

cribed approach for hyper-parameter tuning. 

.3. Diagnosis of dementia as a relevant predictor 

The final model was further explored with respect to the impact of

ost relevant predictors using Shapley Additive Explanations - SHAP

38] . Briefly, SHAP is an approach from cooperative game-theory to de-

ompose the overall prediction of the model into a sum of individual

eature contributions (see details in 4.4). In total, the final model com-

rised 160 features. A complete list can be found in Supplementary

ile 1 . 
3 
Fig. 3 a shows the most influential features according to SHAP, while

ig. 3 b summarizes the influence of entire feature modalities, indicating

hat lab measures were the most relevant type of features (23.5% cumu-

ative importance). Disease symptoms ranked second (20.5%) and co-

orbidities third (13.2% cumulative importance). Age, gender, platelet

ount as well as elevated troponin and ferritin concentrations were

mong the top predictors in the model, which are all known risk fac-

ors [ 20 , 42 , 46 , 65 ]. The prognostic significance of hemoglobin level and

utoimmune hemolytic anemia for an unfavorable disease outcome has

een discussed in [2] . The C-reactive protein (CRP) is a well-known in-

ection and inflammation marker, which has been used as an indicator

nd prognostic marker of severity of COVID-19 infection [54] . Muscle

ain is an often observed symptom of the infection [63] , and its extent

as been associated to the likelihood of a more unfavorable prognosis of

ospitalized COVID-19 patients [12] . Comorbidity associated predictors

ncluded hypertension, an acute kidney injury, diabetes and dementia

 Supplementary Table 2, Supplementary File 2 ). Again, this is con-

ordant with the current literature [ 8 , 16 , 43 ]. 

Fig. 4 displays partial dependency plots for the previously discussed

redictors, describing the quantitative relationship between individual

eature attributes and their impact on estimated hazard ratios. Accord-

ngly, an asymptomatic Covid-19 infection ( Fig. 4 b) resulted into an

35% lower mortality risk compared to more severe disease symptoms,

nd for patients with low hemoglobin level ( Fig. 4 c) or low oxygen satu-

ation ( Fig. 4 d) mortality risk was even increased by 50%. Prior diagno-

is of dementia ( Fig. 4 d) results into an ∼15% increased mortality risk

fter SARS-CoV-2-19 infection (hazard ratio dementia vs. non-dementia:

1.15; 95% CI: [1.08, 1.24]). Notably, there are different possible ex-



T. Linden, F. Hanses, D. Domingo-Fernández et al. Artificial Intelligence in the Life Sciences 1 (2021) 100020 

Fig. 4. Partial dependence plots for most influential predictors. Boxplots show the distribution of patient specific hazard ratios per variable category. The red 

horizontal line defines the reference. The hazard ratio describes by which factor the median lifetime is expected to change compared to reference. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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lanations for this finding: (a) dementia might be a proxy for age; (b)

ementia might, independently of age, trigger biological, physiological

nd psychological mechanisms that contribute to an unfavorable disease

utcome. 

.4. Commonly affected molecular mechanisms between neurodegenerative 

isorders and COVID-19 

We aimed for a more in-depth exploration of potential overlaps of

eurodegeneration and COVID-19 disease mechanisms. Notably, there

as been increasing evidence that SARS-CoV-2 can enter the central ner-

ous system [ 7 , 36 , 41 ], raising the question of potential interactions with

ementia disease pathologies. In this context, [70] recently reported an

verlap of transcriptionally dysregulated biological pathways in a very

imited number of patients with Alzheimer’s Disease (AD) and COVID-

9. 

Here, we focused more broadly on shared molecular mechanisms

inking COVID-19 with AD as well as Parkinson’s Disease (PD), another

ajor neurodegenerative disorder, which has previously been associ-

ted with an increased risk for an unfavorable outcome of a SARS-CoV-
4 
 infection [ 50 , 59 ]. By looking at the intersection between AD and PD

ause-and-effect models (referred as knowledge graphs - KGs) and the

orresponding COVID-19 KG, in this work we found a series of mech-

nisms that were shared between all three disease etiologies (Supple-

entary Table 3) . 

Firstly, one of the mechanisms identified by our approach is related

o three proteins involved in the innate immune system (i.e., DDX58,

AVS, and IFIH1), and more specifically in the detection and response

o viruses. These proteins are involved in both indications. For example,

AVS interacts with the RNA helicase RIG-I/MDA-5 after the dsRNA of

he virus is recognized, leading to the initiation of the antiviral signaling

ascade [69] . Related with this process is the second shared mechanism,

hich corresponds to the activation of the inflammasome and the subse-

uent triggering of caspase activation through cytokine secretion. This

echanism has been strongly linked with both AD [21] and PD [61] as

ell as COVID-19 [44] . In the context of neurodegeneration, the ac-

ivation of the inflammasome leads to the secretion of inflammatory

ytokines and cell death through pyroptosis, to which both AD and PD

re associated via tangle and plaque formation and death of dopamine

eurons, respectively [4] . Similarly, in the context of COVID-19, the in-
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ammasome is activated by the proteins of the SARS-CoV-2 virus, which

n turn leads to the production of inflammatory molecules, and in some

ases leads to hyperinflammation [44] . Finally, TYK2 is also present in

ll three KGs. It is known to be implicated in the regulation of apoptosis

n the amyloid cascade of AD [60] as well 𝛼-synuclein-induced neuroin-

ammation and dopaminergic neurodegeneration [47] . 

Lastly, IL-6 and IL-10 are among two of the interleukins secreted

fter inflammasome activation, one of the shared mechanisms between

hese pathologies, and their increased expression has been shown to

e predictive of COVID-19 severity [14] . Furthermore, the interaction

etween two other proteins (i.e., DDIT3 and BCL2L11) involved in the

egulation of apoptosis is also suggested as a common mechanism across

hese indications [ 18 , 26 ]. 

.5. Sorafenib and regorafenib as potential treatments against COVID-19 

In the following, we specifically focused on TYK2, which is a

rotein involved into the amyloid cascade. TYK2 inhibition results

nto effective regulation of IFN 𝛼, IL-10, IL-12, and IL-23 [23] , which

as specifically been reported in neurodegenerative disorders [45] .

YK2 has been patented as drug target in AD (CN102112879B,

hina, [27] ). In addition, genetic variants in TYK2 have recently been

ssociated to COVID-19 disease severity [9] . Moreover, we found

everal kinase inhibitors active against SARS-CoV-2 in a cellular

creen for anti-cytopathic effect (anti-CPE) in two different cellular

nvironments: Caco2 [17] and VERO-E6 [67] . The relative results of

hose screening have been made public on ChEMBL ( https://www.

bi.ac.uk/chembl/document_report_card/CHEMBL4303101/ , https://

ww.ebi.ac.uk/chembl/document_report_card/CHEMBL4495565/ ), 

espectively. 

We challenged VERO-E6 cells with SARS-CoV-2 pretreated with com-

ounds from the Fraunhofer Repurposing Library (5632 compounds -

ttps://www.itmp.fraunhofer.de/en/innovation-areas/drug_screening_ 
ig. 5. Regorafenib (panels A and C) and Sorafenib (panels B and D) activities measu

s percentage inhibition of viral cytopathic effect normalized to Remdesivir as positiv

ere administered after 48 or 96 h after infection. Subsequently, cells were stained, w

tarted to surface at higher drug concentrations and this might be the reason for the h

hown in panel D is caused by plate control differences within plates. 

5 
epurposing.html ), the EUOS Bioactives library ( ∼2500 compounds

 https://ecbd.eu/compound/#lib{value = ’2 ′ }lib{value = ’2 ′ }), and a

roprietary “Safe in Man ” library of compounds having passed phase

 clinical trial ( ∼600 compounds). Regarding the phenotypic assay

ith Caco2 cells to determine compound antiviral activity, we adapted

 previously published protocol [37] . Compounds were added to

onfluent layers of Caco–2 cells in MEM supplemented with 1% FBS in

6-well plates. For the primary screen final compound concentration

as 10 μM (0.1% DMSO final) in singlicates. Dose response profiling

f selected priority compounds was performed with a range of eight

ifferent concentrations in three independent replicates (maximum

0 μM, minimum 20 nM, half log dilution factor, 0.1% DMSO final).

ollowing the addition of compounds, cells were immediately infected

ith SARS-CoV-2 at MOI 0.01. Control wells ( + virus and - virus) also

ontained DMSO at 0.1% DMSO final. After 48 h, cells were fixed using

% PFA in PBS, and the plates sealed and disinfected to inactivate

ARS-CoV-2. Quantification of viral inhibition (based upon Caco-2

ell viability relative to controls) was performed using high content

maging (PerkinElmer, Operetta CLS). For what concerns the assay on

ERO-E6 cells, we used basically the same protocol, but the time we

aited for readout was longer than 48 h (96 h) due to the different

nfection kinetic on these cells. 

In VERO-E6 cells, only Regorafenib showed a clear antiviral CPE po-

ency with an IC50 of around 3 – 5 μM. In Caco2 cells, Sorafenib and Re-

orafenib demonstrated a similar antiviral CPE potency with an IC50 of

round 1μM for both molecules ( Fig. 5 ). Both compounds are reported

o be non-selective JAK/TYK2 inhibitors [25] . While the involvement

f the JAK kinase family in inflammatory cytokine modulation is well-

nown, the extent of which TYK2 (a JAK family member) could be re-

ponsible of the observed CPE effect remains to be determined with more

elective drug candidates. Such TYK2 selective preclinical compounds

re currently not part of our screened libraries, because we focused on

epurposing marketed kinase inhibitors. 
red in different cell lines (Vero-E6 cells upper panels; Caco2 cells lower panels) 

e control (100%). Cells in wells were treated with SARS CoV-2 virus, and drugs 

ashed and counted if alive. Some signs of toxicity on Caco2 cells (lower panels) 

igher observed variance of triplicates. The slightly negative relative inhibition 

https://www.ebi.ac.uk/chembl/document_report_card/CHEMBL4303101/
https://www.ebi.ac.uk/chembl/document_report_card/CHEMBL4495565/
https://www.itmp.fraunhofer.de/en/innovation-areas/drug_screening_repurposing.html
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a  
. Conclusion 

As of October 2021, the rates of completely vaccinated individuals

n many Western countries are stagnating between 60 – 70%, while the

raction of vaccinated individuals is globally only around 36% [40] . Cor-

espondingly, case numbers in many countries around the world are still

ncreasing. Hence, there is an unmet need for effective and cost-efficient

edications against severe cases. 

In this work, we first developed a highly predictive ML model for

redicting COVID-19 mortality on an individual patient basis using deep

bservational data from LEOSS, primarily covering the inpatient situa-

ion in Germany (95% of patients). To our knowledge, this is the first ML

ased mortality model based on such (notionally) representative Ger-

an data. Notably, ML models predicting alternative endpoints using

EOSS have been published recently [ 30 , 64 ]. 

Our ML model demonstrates similar prediction performance to the

ell-known 4C mortality score, which has been developed based on rep-

esentative data from the UK [3] . However, a direct comparison between

oth models is not possible, because the 4C model is formulated as a

lassifier predicting all-cause in-hospital mortality, whereas our model

s formulated as a time-to-event model predicting all-cause time depen-

ent mortality risk after COVID-19 diagnosis. Our model, thus, considers

ensoring of survival times after patients have left hospital or other med-

cal facilities. Our mortality model was built on a set of patients, which

s thought to be primarily representative for German hospitals. Whether

here are unknown selection biases, remains an open question and they

ere not under our control. Moreover, it is unclear whether our model

ould be predictive for patients in other countries. 

We showed that dementia, as one of the relevant predictors in our

odel, intersects on a molecular mechanism level with COVID-19. To-

ether with evidence from recent GWAS studies, this pointed us to TYK2

s a potential drug target for COVID-19. Using a cellular screening as-

ay for anti-cytopathic effect, we identified the anti-cancer drugs Re-

orafenib and Sorafenib as potential drug candidates against COVID-

9. Notably, the known association of JAK family inhibitors like Rego-

afenib and Sorafenib with cellular inflammatory cytokines can be fur-

her characterized by investigating transcription dynamics within the

rst 12 h after SARS-CoV-2 viral infection compared to mock control

55] . Based on such data, Stukalov et al. [55], tested both compounds in

he A549-ACE2 cell line and reported increased virus growth after treat-

ent. Other authors recently reported Sorafenib to be a potent STING

nhibitor effectively stopping virus growth in THP1 cells and thus sug-

ested to pay more attention to COVID-19 treatment strategies that ad-

ress the dysregulation of cytokines [13] . Since the used cell lines in

oth cases were different from ours, results are not directly comparable.

ence, we see a need for further tests with Regorafenib and Sorafenib

n other cell systems. 

In addition to further experimental validation of Regorafenib and

orafenib, it could be interesting to explore in large scale clinical real-

orld data whether SARS-CoV-2 infected patients treated with Rego-

afenib or Sorafenib demonstrate a lower mortality than other SARS-

oV-2 patients. 

Overall, our work demonstrates that interpretation of an ML based

isk model trained on rich data can point towards drug targets and new

reatment options, which are strongly needed for COVID-19. 

. Methods 

.1. Kaplan-Meier estimator 

The Kaplan-Meier product limit estimator is classical non-parametric

tatistic to estimate a survival function 𝑆( 𝑡 ) [32] : Let 𝑡 𝑖 denote a time

oint, where at least one event / death happened. The number of events

deaths) at 𝑡 𝑖 is denoted as 𝑑 𝑖 , and the number of individuals known to

ave survived up to 𝑡 𝑖 is 𝑛 𝑖 . Then the Kaplan-Meier estimator 𝑆̂ ( 𝑡 ) of the

urvival function (representing the probability that life is longer than 𝑡 )
6 
s given by: 

̂
 ( 𝑡 ) = 

∏
𝑖 ∶ 𝑡 𝑖 ≤ 𝑡 

( 

1 − 

𝑑 𝑖 

𝑛 𝑖 

) 

nd 𝑆̂ (0) = 1 . 𝑆̂ ( 𝑡 ) is a right-continuous step function with jumps at event

imes 𝑡 𝑖 . Censoring at certain time points affect the estimate only by

educing the number of individuals that are at risk for a subsequent

vent. 

.2. Machine learning models for predicting COVID-19 mortality 

We compared five different machine learning algorithms, as outlined

n Section 2.2 . Here, we only elaborate on the best performing one,

amely the elastic net penalized Weibull regression: The elastic net is a

egularization and variable selection method, to shrink coefficients us-

ng a linear combination of 𝐿 1 and 𝐿 2 penalties. The Weibull regression

s an accelerated failure time (AFT) model, which means that covari-

tes act multiplicatively on (survival) time. It is used if the proportional

azards assumption of the Cox model is not satisfied. AFT models allow

o directly estimate (the effect of covariates on) expected failure times,

here the time until failure is the duration of survival. 

Let 𝑖 ∈ { 1 , … , 𝑛 } denote the 𝑖 -th patient with covariate vector 𝑥 𝑖 ∈
 

𝑝 and observed follow-up time 𝑇 𝑖 . Furthermore, let 𝛿𝑖 ∈ { 0 , 1 } be an

vent indicator (0 = right censored, 1 = uncensored) at 𝑇 𝑖 . The true

nd potentially unobserved survival time is 𝑍 𝑖 , and the censoring time

s 𝐶 𝑖 . That means 𝑇 𝑖 = min ( 𝑍 𝑖 , 𝐶 𝑖 ) and 𝛿𝑖 = 1{ 𝑇 𝑖 = 𝑍 𝑖 } . The censoring is

upposed to be non-informative about the true survival time [49] . In

 Weibull AFT model, we assume 𝑍 𝑖 |𝑥 𝑖 ∼ 𝑊 𝑒𝑖𝑏𝑢𝑙 𝑙 ( 𝛾, 𝜁) , i.e. the hazard

unction has the form 

 ( 𝑍 𝑖 |𝑥 𝑖 ) = exp 
(
𝛽𝑇 𝑥 𝑖 

)
𝜁𝛾𝑍 

𝛾−1 
𝑖 

Parameters of a standard Weibull AFT model can be estimated by

aximizing the likelihood [68] : 

 ( 𝛽, 𝛾, 𝜁) = 

𝑛 ∏
𝑖 =1 

ℎ ( 𝑇 𝑖 |𝑥 𝑖 ) 𝛿𝑖 𝑆( 𝑇 𝑖 |𝑥 𝑖 ) 
here 𝑆( ⋅) denotes the survival function 𝑆( 𝑇 𝑖 |𝑥 𝑖 ) = exp { − 

𝑇 𝑖 

∫
0 
ℎ ( 𝑠 |𝑥 𝑖 ) 𝑑𝑠 } . 

To account for overfitting, our case coefficients 𝛽 were additionally

enalized via the elastic net penalty: 

( 𝛽) = 𝛼𝜆||𝛽||1 + ( 1 − 𝛼) 𝜆||𝛽||2 
Hyperparameters (i.e. 𝛼, 𝜆) were tuned with Bayesian hyperparame-

er optimization using the Optuna package [1] within the inner-loop of

he nested cross-validation. Early stopping was used if applicable (Deep-

urv, GBM, XGBSE), and the best candidate model was subsequently

elected. We chose the 5-fold cross-validated Harrell’s C-index [22] as

bjective for the hyperparameter tuning. We ran the optimization for

wenty initial epochs, adopted the search space if reasonable, and then

an it for another twenty rounds. Thus, forty hyperparameter sets were

valuated and the resulting best combination was selected based on the

ighest objective function value. Using this hyperparameter set, we sub-

equently trained a model on the entire training data and evaluated it

n the held-out test set. 

.3. Uno’s concordance-index 

The prediction performance of time-to-event models can be eval-

ated with respect to discriminating between subjects with different

vent times via Uno’s C-index [56] : The C-index (Concordance index) is

 generalization of the area under receiver operator characteristic curve

AUC) for time-to-event models [ 24 , 51 ]. A value of 100% means perfect

iscriminative performance, and 50% is comparable to random predic-

ions. 

In essence, Uno’s C is a rank correlation between the risk predictions

nd the observed event times. The C-index measures the concordance



T. Linden, F. Hanses, D. Domingo-Fernández et al. Artificial Intelligence in the Life Sciences 1 (2021) 100020 

a  

i  

U  

t  

t  

u

𝐶

 

v  

(  

t  

𝑖  

f

4

 

f  

i  

t  

e  

a  

f  

t

𝑓

w  

fi  

m  

𝑖  

v  

a  

e

𝜙

 

c  

d  

f  

w  

f

4

 

v  

t  

W  

d

4

a

 

A  

T  

(  

w  

u  

t  

f  

g  

a

A

 

p  

d  

A

F

 

s  

C

 

R

E

 

S

6  

W  

m

C

 

a

D

 

i  

t

A

 

L  

t  

H  

v  

l  

H  

(  

s  

J  

C  

W  

s  

H  

H  

t  

(  

(  

U  

n  

E  

s  
cross all pairs of patients ( 𝑖, 𝑗 ) , 𝑖 ≠ 𝑗. A pair is classified concordant

f the predicted risk is higher for the patient with lower survival time.

no’s C-index was developed as an alternative to Harrell’s C-index in set-

ings with high censoring rates and leads to consistent concordance es-

imates under the general random censoring assumption. Uno’s C-index

ses an inverse probability censoring weighting (IPCW) approach [56] : 

̂
 𝑈𝑛𝑜 = 

∑𝑛 

𝑖 ≠𝑗 
δ𝑖 𝐺̂ 

(
𝑡 𝑖 
)−2 

𝐼( 𝑡 𝑖 < 𝑡 𝑗 |𝑡 𝑖 < 𝜏) 𝐼( ̂ℎ 𝑖 > ℎ̂ 𝑗 ) ∑𝑛 

𝑖 ≠𝑗 
δ𝑖 𝐺̂ 

(
𝑡 𝑖 
)−2 

𝐼( 𝑡 𝑖 < 𝑡 𝑗 |𝑡 𝑖 < 𝜏) 

The numerator counts the concordant pairs and the denominator the

alid pairs, respectively. For patients 𝑖 ∈ { 1 , … , 𝑛 } , 𝛿𝑖 is 1 if an event

death) was observed and otherwise 0, 𝐺̂ ( ⋅) is the Kaplan-Meier estima-

or for the censoring distribution for IPCW, ℎ̂ 𝑖 is the risk prediction of the

 -th patient, 𝑡 𝑖 is the observed time and 𝜏 is a stability parameter, for

urther details see [56] . 

.4. Feature importance using SHAP 

Shapley Additive Explanations [38] are a model-agnostic approach

rom coalitional game theory. The assumption of this framework is, that

ndividuals (feature attributes) are cooperating as a team (patient fea-

ure vector) for a joint outcome (model prediction). SHAP’s goal is to

stimate those individual contributions to the outcome. Key properties

re a) the solution is unique; b) local exactness, which means the sum of

eature contributions matches the output; c) if a feature has no impact,

hen it’s SHAP-value is zero. 

Mathematically, additivity and property b) can be described as: 

 ( 𝑥 ) = 𝑔 
(
𝑥 ′
)
= 𝜙0 + 

𝑀 ∑
𝑖 =1 

𝜙𝑖 𝑥 
′
𝑖 

𝑥 = ℎ 𝑥 
(
𝑥 ′
)

ith 𝑓 ( 𝑥 ) being the original model and 𝑔( 𝑥 ′) the explanation model de-

ned on simplified inputs 𝑥 ′ ∈ { 0 , 1 } 𝑀 . Moreover, ℎ 𝑥 ( ⋅) is a function

apping 𝑥 to the simplified input 𝑥 ′. 𝜙𝑖 ∈ ℝ is the SHAP value of the

 -th feature for the model input vector 𝑥 and 𝜙0 denotes the expectation

alue of 𝑓 ( 𝑥 ) . In other words: The SHAP values 𝜙𝑖 quantifies how much

 particular feature pushes the prediction away from the population av-

rage 𝜙0 . SHAP values 𝜙𝑖 are computed as follows: 

𝑖 ( 𝑓, 𝑥 ) = 

∑
𝑆⊆𝐹∖ { 𝑖 } 

( |𝐹 ||𝑆 |
) −1 [

𝑓 𝑆∪{ 𝑖 } 
(
𝑥 𝑆∪{ 𝑖 } 

)
− 𝑓 𝑆 

(
𝑥 𝑆 

)]
In other words, SHAP values are defined as a weighted (binomial

oefficient) sum of the differences between (in square brackets) “pre-

iction including the feature ” minus “prediction excluding the feature ”,

or any subset 𝑆 in the power set 𝐹 . 𝑓 𝑆∪{ 𝑖 } denotes the model trained

ith feature 𝑖 included and 𝑓 𝑆 without it. Similarly, 𝑥 𝑆∪{ 𝑖 } denotes the

eature subset with feature 𝑖 included and 𝑥 𝑆 without it. 

.5. Confidence intervals for hazard ratios 

To construct a confidence interval for the hazard ratio of “dementia

s. non-dementia ” we performed a bootstrap: We resampled 100,000

imes with replacement a pair of a demented and non-demented patient.

e then calculated the ratio of the SHAP values for the feature “prior

ementia diagnosis ” for both patients. 

.6. Identification of common molecular mechanisms between COVID-19 

nd neurodegenerative diseases 

To identify the shared molecular mechanisms between COVID-19,

D, and PD, we leveraged several resources listed in Supplementary

able 3. These were combined into two independent Knowledge Graphs

KGs) following the harmonization procedure described in our previous
7 
ork [52] and [15] . By doing so, we combined disease specific molec-

lar interactions pertaining to COVID-19 and two neurological indica-

ions (i.e., AD and PD) into graph structures: one for COVID-19 and one

or AD and PD. Subsequently, we calculated the intersection of these

raphs. Supplementary File 2 contains the corresponding shared mech-

nisms as an Excel table. 
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