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Coherent control of radiation 
patterns of nonlinear multiphoton 
processes in nanoparticles
Francesco Papoff, Duncan McArthur & Ben Hourahine

We propose a scheme for the coherent control of light waves and currents in metallic nanospheres 
which applies independently of the nonlinear multiphoton processes at the origin of waves and 
currents. We derive conditions on the external control field which enable us to change the radiation 
pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a 
perfect scatterer or as a perfect absorber. The control introduces narrow features in the response 
of the particles that result in high sensitivity to small variations in the local environment, including 
subwavelength spatial shifts.

Our ability to enhance light-matter interaction processes in nanophotonics depends on controlling the 
near and far field optical response of nanostructures. Recently several groups have investigated non-
linear1 and linear control based on pulse shaping2,3, combination of adaptive feedbacks and learning 
algorithms4, as well as optimization of coupling through coherent absorption5 and time reversal6. In 
quantum optics, interference between fields was proposed as a way to suppress losses in beam splitters7 
and has been recently applied to show control of light with light in metamaterials8,9 and in graphene 
films10. Coherent control of second-harmonic generation using a second pump beam has been recently 
demonstrated numerically in particles with cylindrical symmetry11. For spheres, it was shown in12 that 
the directionality of the emission obtained combining two pump beams results from selection rules that 
depend on the order of specific process and on the size of the particles.

In this paper, instead, we propose a scheme for the coherent control of scattering and absorption pat-
terns in nanospheres which applies independently of the multiphoton processes at the origin of scattering 
and absorption, as long as the pump beam is not depleted. The control is extremely sensitive to phase 
variations and produces a reduction of the absorption and variations in the scattered energy of several 
orders of magnitude. These features enable applications such as: detection of changes in the position of 
the particle far smaller than the particle itself, suppression of radiative losses, sensing of variations in 
the electric permittivity, ε, and magnetic permeability, μ, and optical switching. With appropriate con-
trol beams and pump, one can control the directionality of nonlinearly generated electromagnetic waves 
not only in a single sphere, but also in a regular array of spheres, for which both the radiation patterns 
and the spatial positions could be determined. This can be very useful for applications such as optical 
antennae and for surface enhanced spectroscopy, providing a reference of regularly spaced optical nano 
beacons for the localization of molecules.

We derive analytically the principles of operation and show that they do not depend on the origin of 
the response of the particles and are based only on experimentally measurable quantities. The basic idea 
is to use a control beam coherent with the radiation produced by the nonlinear process: a simple way to 
realize this is by driving two nonlinear processes of the same order with the same pump, using the output 
of one of them to control the other, as shown schematically in Fig. 1. As we will see in the following, the 
identity of the two processes makes the scheme independent of the order of the processes. Furthermore, 
this approach has the advantage of allowing to control separately internal losses and scattering, enabling 
the particle to interact with light as a perfect scatterer or as a perfect absorber. For spherical particles 
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this can be done using combinations of electromagnetic waves generated inside and outside the particle, 
but is impossible using combinations of waves generated only outside the sphere13.

We now show how surface and bulk nonlinearity appear in the electromagnetic boundary conditions 
and use these to find external fields able to control multipolar radiation independently of the specific 
nonlinear process. We analyze nonlinear processes in which combinations of appropriate order of the 
pump field and the polarization at frequency ωp cause bulk and/or surface polarization at frequency ω 
without depleting the pump. In other words, because the nonlinearity is very small, its effect on fields 
and induced polarization at the frequency of the pump ωp is negligible and the response at this frequency 
remains linear. Physically, the nonlinear polarization at frequency ω acts as a source of electromagnetic 
waves at the same frequency which, in turn, excite internal and scattering modes of the particle at fre-
quency ω in order to satisfy the boundary conditions. The distribution of the nonlinear polarization 
within the particle depends only on the pump field at frequency ωp and it is independent of fields at 
frequency ω that it generates. In this work, the nonlinear polarization plays the same role of the current 
generated by the power supply in antenna theory (note that for monochromatic fields polarization and 
current are proportional). For sake of clarity, we stress that there is a difference between induced and 
nonlinear polarizations. The induced polarization is related to the internal field by the susceptibility and 
can be eliminated from the Maxwell’s equations that describe the response of the system. On the con-
trary, the nonlinear polarization is the inhomogeneous term of the Maxwell’s equation that causes the 
response of the system and cannot be eliminated. This is the same difference that there is between the 
driving or “external” current and the induced current.

To demonstrate the generality of the control scheme, we consider both particles with linear local 
responses dominated by divergence free waves (called transversal in the following) and currents con-
fined to the surface, and particles with linear non-local responses14–19 that include also irrotational (lon-
gitudinal) waves, with internal currents not limited to the surface. In the hydrodynamical model14–19, 
transverse and longitudinal waves are a consequence of representing the free charges in the metal as a 
fluid with a pressure term of quantum origin that is proportional to the Fermi velocity. In this model 
the linear interaction of the particle with light is given by the Maxwell equations for the electric and 
magnetic fields, E and H, combined with the linearized Navier-Stokes equation for the polarization due 
to the free current density. It is possible to eliminate polarization and its boundary condition and use 
only the fields and a boundary condition on the normal component of the displacement, εE, which is 
continuous when there are no charges or polarization layers on the surface16,18,19.

The nonlinear polarization has also been modelled using the hydrodynamical model17 or by intro-
ducing bulk and surface tensors20,21. The particular solution of the Maxwell’s equations in the internal 
medium corresponding to a nonlinear bulk polarization, PB, is EB(x) =  ∫VGE(ω; x, x′ ) ⋅  PB(x′ )dx′ , where 
GE is the electric dyadic Green’s function at frequency ω for the internal medium that, for the hydrody-
namical model, includes also longitudinal terms22. For the particles most commonly used in experiments, 
however, nonlocality is important only at the surface23 and we can approximate EB(x) using the Green’s 

Figure 1. Schematic set-up. Set up (not to scale) for the implementation of the control scheme proposed in 
the main text. The pump beam at frequency ωp is divided by a beam splitter (BS) into two beams that drive 
the same nonlinear process. Light at frequency ω is collected from the control generator (C) and directed 
to the nanosphere (S) along a direction where the controlled multipole has a maximum. The process is 
monitored by a detector (D) that collects light from a solid angle centered on a direction of maximal 
multipolar emission with no direct illumination from the control beam. The three parameters to be changed 
to control the output from the sphere are direction of incidence, power and relative phase of the control 
beam.
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function without longitudinal terms. We use this Green’s function also when PB is modelled by the 
products of tensors with the electric field and its derivatives and the linear response is local24. Surface 
nonlinearities, PS, are instead confined to very thin layers at the surface of the particle and in both 
models are represented by infinitesimal polarization sheets outside the bulk when the external medium 
allows interface charge, as in vacuum or air. The surface25,26 and volume nonlinearities then appear in 
the boundary conditions at frequency ω as

ε ε ε ε− = − + − ∇ ⋅ , ( )⊥ ⊥ ⊥ ⊥E E E E P 1in i ex s in B ex c S

ε− = − + − ( ) ∇ , ( )
−

⊥E E E E P 2i s B c ex S1

ω− = − + + ( × ), ( )ˆH H H H i n P 3i s B c S

where i, s, c stand for internal, scattered and external control fields, ex, in for external and internal, and 
= ( ⋅ )⊥ ˆ ˆE n n E , = − × ( × )ˆ ˆE n n E  and analogously for the other fields. Ei and Es are the combination 

of particles modes (solutions of the homogeneous equations without nonlinear polarizations) that fulfill 
the boundary conditions. The modes’ amplitudes depend upon the left-hand sides of Eqs (1–3) which, 
for any EB, HB and PS, enable us to find the form of Ec, Hc necessary to control the interaction of light 
with the particle through the amplitudes of the internal and scattering modes, regardless of the nature 
of the underlining nonlinear processes.

To describe effects that are most easily observed experimentally, we concentrate here on the control 
of two modes and outline later how the theory generalizes to an arbitrary number of modes. As a conse-
quence of the rotational invariance, the only modes that are spatially correlated at the surface of a sphere 
are internal and scattering electric or magnetic multipoles with the same value of l (total angular momen-
tum) and m (angular momentum along the direction of propagation of the pump). Electric (magnetic) 
multipoles have magnetic (electric) fields with null radial component27. We note that there are another 
two types of multipolar waves for the external medium that are relevant to this work: incoming, which 
propagate inward and have a divergence at the center, and regular, which are used to expand waves with 
amplitudes bounded everywhere, as the plane waves. All types of electric or magnetic multipoles with 
the same indexes l and m have the same angular dependence in spherical coordinates27, but different 
radial dependence. In our notation

( )ε= , , , ( )⊥f E E H 4
c ex c c c

( )ε ε ω= − + ∇ ⋅ , + ( ) ∇ , − × , ( )⊥
−
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are the surface vector functions of the control field (fc) and of the nonlinear (NL) sources that appear in 
the boundary conditions, Eqs (1–3), for a pump of amplitude ap =  1 in arbitrary units. The real amplitude 
and phase of fc are encoded in the complex amplitude ac. For any pair of internal and scattering modes, 
ilm, slm, for which we adopt the same notation as for fc, the amplitudes ,a alm

i
lm
s  are given by
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where the scalar product indicates the sum of the overlap integrals (i.e. the spatial correlations) of all the 
components with aNL =  (ap)N the amplitude of fNL and N the order of the nonlinear process. Note that slm, 
ilm, are either transverse electric or transverse magnetic, but for ease of notation we do not specify which 
type they are. The biorthogonal mode28 ′s lm ( ′ )i lm  is orthogonal to all modes other than slm (ilm). For 
spheres (and for any finite set of modes) the biorthogonal modes can be found analytically and depend 
on all internal and scattering modes with the same l and m, correlated at the surface of the sphere, 
according to the formula provided in the Methods section.

To clarify the meaning of Eq. (6), we note that for fNL =  0, i.e. in the absence of nonlinear processes, 
and fc ≠ 0, Eq. (6) is a mathematically compact and efficient formulation of the Mie theory, in which the 
source of internal and scattering modes is the incident field at the surface of the sphere, fc. The amplitudes 
of the modes are determined by the boundary conditions and the material properties at frequency ω are 
fully included in the structure of the modes. When fc =  0 and fNL ≠ 0, the nonlinear polarizations PB and 
PS act as external sources and excite internal and scattering modes: Eq. (6) gives us the amplitudes of 
these modes from the boundary conditions at frequency ω, generalizing an approach pioneered in29 for 
Raman and fluorescence processes due to molecules embedded in dielectric particles. When fc and fNL are 
both non null and coherent, Eq. (6) gives the amplitudes of the modes, which in this case are originated 
by the interference of fc and fNL at the surface of the particle.
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We can find any value for the ratio of the mode amplitudes, /a alm
i

lm
s  — i.e. we can vary the response 

of the particle on the controlled modes from that of a perfect scatterer with =a 0lm
i , ≠a 0lm

s  to that of 
a perfect absorber with ≠a 0lm

i , =a 0lm
s  — by changing the amplitudes of control and pump fields as 

long as the matrix in Eq. (6) is invertible, i.e. as long as the condition ′ ⋅ / ′ ⋅ ≠ ′ ⋅ / ′ ⋅s f s f i f i flm
c

lm
NL

lm
c
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NL 

is fulfilled. For any pair of modes, slm and ilm, this condition is satisfied only if f lm
c  and flm

NL, which are 
the terms with the same angular dependence of slm and ilm in the expansions of fc and fNL, are different. 
This is the case for any nonlinear process and a regular control beam generated outside the particle by a 
laser, because f lm

c  is a regular multipole containing radial functions of argument ker, while flm
NL is a com-

bination of an outgoing multipole with radial functions of argument kir (the bulk term) and a product 
of N — the order of the nonlinear process — regular multipoles with radial functions of argument k rp

i  
(the surface term), where ke (ki) is the wavenumber of the external (internal) medium at frequency ω and 
k p

i  is the wavenumber of the internal medium at frequency ωp. Note that it is not possible to replace fNL 
with a beam generated outside the particle by another laser because such external beams can always be 
expanded in terms of the same regular multipolar spherical waves13 as fc, which means that the matrix 
in Eq. (6) is not invertible.

We remark that while the sphere can behave as a perfect scatterer or a perfect absorber, the mech-
anism described here is significantly different from coherent perfect absorption5. This is a resonant 
process which can be understood as the time reversal of lasing and happens for particular values of 
the dissipation, when there are interference patterns inside the system able to trap a specific incoming 
mode indefinitely. We show instead that any spherical multipolar wave can be either trapped inside or 
expelled from the particle by the interference pattern formed by the appropriate combination of an inci-
dent wave with the surface polarization and the internal wave induced by the nonlinear process. This 
happens for any value of the dissipation, but for particular values of the amplitude of the control wave. 
To understand this effect from a physical point of view, let us recall that the Huygens-Fresnel principle, 
formally proved in the Stratton-Chu theorem30, states that the secondary waves emitted from any closed 
surface by a scattered field propagating outward from any point inside the surface vanish anywhere 
inside the surface and add constructively outside to reconstruct the scattered field. Note that the tangent 
components of the field at the surface of the particle are the source of the secondary waves, acting as 
free surface currents. If we use an internal field instead of a scattering field, the secondary waves cancel 
outside the surface and add constructively inside. We can then understand perfect scattering or perfect 
absorption in terms of the formation of equivalent surface currents, which are combination of physical 
surface currents proportional to surface polarizations and tangent incident field components, which can 
radiate only either outside or inside the surface. Here the equivalent surface currents are those used in 
the boundary conditions of Eqs (2,3): the terms proportional to the nonlinear surface polarization and 
the tangent components at the surface of the sphere of the control field Ec, Hc, incident to the surface 
from the outside, and of the field EB, HB, incident to the surface from the inside. Another advantage of 
this form of coherent control is that narrow resonant features can be observed in the response of the 
controlled particle when the material parameters or the frequency are changed while the control ampli-
tudes are kept constant, as a result of the dependence of the modes on the parameters that are changed. 
The values of frequency or material parameters at which these narrow features reach minima or maxima 
can be changed by changing the control amplitudes. This allows us to engineer particle responses with 
high sensitivity to change in external parameters, as we show in the following.

Ideally, the control beam should leave the amplitudes of all the other modes unchanged, which means 
that the control beam should have the same angular dependence on the surface of the sphere as the 
controlled multipole. For this reason, multipolar waves are the ideal control beams for single sphere 
applications: in principle these waves could be produced by using an appropriate distribution of electric 
and magnetic dipoles over a closed surface surrounding the sphere. In practice this is impossible and it is 
very difficult to realize good approximations of multipolar spherical waves centered on the particle to be 
controlled. Here we consider mainly control beams consisting of plane waves, which can be more easily 
and precisely implemented over small volumes, and use polarization and angle of incidence to optimize 
the coupling with the multipoles. This procedure can be performed algorithmically using the expansion 
of plane waves in regular multipoles27, whose coefficients depend on the polarization and the angle of 
incidence. Dipolar terms with l =  1 are dominant in the plane wave expansions at the surface of the 
sphere; however, it is possible to control a multipole with l >  1 without affecting dipole terms simply by 
combining two plane waves non-collinear with the pump to form a control field that is invariant under 
a rotation of π around the direction of propagation of the pump. This procedure can be generalized to 
remove from the control field multipole terms of order lower than a given value using similar symmetry 
arguments. Therefore plane waves can be used very effectively to control the radiation patterns by fixing 
the amplitudes of the dominant modes. Furthermore, using pump and control beams that are approxi-
mately plane waves allows one to have the same control condition at regularly spaced locations, which 
can be applied to the control of arrays of spheres placed at the intersection of the equiphase planes of the 
pump and the control beams, as long as the spheres are sufficiently far apart that their mutual interaction 
is negligible. In this case, the angles of incidence are discrete and the number of control beams affects 
both the number of modes controlled and the geometry of the array.
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We point out that the theory we described explains the principles of the coherent control that we 
propose, but no a priori theoretical knowledge is necessary to implement such control. From an opera-
tional point of view, it is only necessary to determine experimentally the multipolar fields excited by the 
nonlinear sources; once these are known, the control field Ec, Hc is chosen considering the multipolar 
terms one wants to control and the desired mode amplitudes are found by adjusting the amplitude and 
phase of the control field. Schematics of the proposed set-up are shown in Fig.  1. The control wave is 
sent along one of the directions in which the multipolar wave to be controlled is maximal, and a detec-
tor collects light coming from a solid angle centered on another direction of maximal field, without 
receiving light directly from the control beam. The optimal values of amplitude and phase of the control 
beam are determined by modulating the phase periodically and adjusting the amplitude so that the 
detected signal shows the largest variation. This procedure is fully self-consistent and requires only infor-
mation provided by the experiment itself. To demonstrate numerically the properties discussed above, 
we apply this control technique to a gold nanosphere of 50 nm radius using plane waves for the pump 
and the control beam: we keep the pump constant, vary amplitude and phase of the control and compare 
local and nonlocal responses for second harmonic generation. For particles of this size, bulk nonlinear-
ities are negligible20,24 and the nonlinear polarization sheet is dominated by the radial component which 
excites an electric dipole with l =  1, m =  0 and electric quadrupoles with l =  2, m =  0 and l =  2, m =  ± 2. 
Both hydrodynamical and surface tensor models for nonlinear polarizations have been tested and give 
qualitatively similar results but with some quantitative differences. We have verified our control theory 
on all models. For the following calculations we assume a local response with nonlinear polarization 

ε χ=⊥ ⊥⊥⊥
( )

⊥ ⊥P E ES i i
0

2 , where the second-order susceptibility tensor component χ = .⊥⊥⊥
( ) 47 62  in units of 

3.27 ×  10−17 m/V20. The amplitudes of the multipoles generated by the nonlinear polarization and of the 
control beams are of the same order and scale linearly with χ⊥⊥⊥

( )2 . In Fig. 2 we control the internal and 
scattering modes i10 and s10 of the electric dipole. In Fig. 2a the amplitude of the control beam is chosen 
so that the amplitude of s10, a s

10, can vanish at the appropriate phase; we show the intensity of the field 
scattered in a direction orthogonal to both pump and control: other multipoles do not emit in this direc-
tion so the intensity has the same dependence of a s

10 and show an extremely sharp variation. The light 
scattered in a solid angle centered on this direction can be monitored in an experiment to optimize the 
control beam; note that the phase sensitivity shown in Fig.  2a allows us to map the position of the 

Figure 2. Control of the dominant dipole mode. We use gold spheres of radius 50 nm and a Lorentz-
Drude model to calculate the dielectric function of gold32. Scattered field intensity along a direction 
orthogonal to both pump and control beams and mode amplitudes against relative phase of control beam. In 
this figure and in the following ones, we used a pump amplitude ap =  1 in arbitrary units with 
ωp =  281.76 THz. In all plots, arrows in the key indicate when values should be read from the secondary axis. 
(a) Control at π/2 with respect to the pump, on l =  1, m =  0 internal and scattering modes, at frequency 
ω =  563.52 THz with control beam amplitude |ac| =  1.47 ×  10−12 in arbitrary units to find perfect absorption 
on the controlled modes. The point where =a 0s

10 , within the numerical resolution, has been removed to 
avoid compressing the plot of the coefficients’ ratio for all other values of the phase. (b) Total absorbed and 
scattered time-averaged powers versus the relative phase of the control beam. |ac| =  1.28 ×  10−12 to find 
perfect scattering on the controlled mode. The total absorption, which includes also non controlled modes, 
has a minimum exactly where the dominant internal mode is suppressed (perfect scattering on the 
controlled mode). For a phase of the control beam close to the value corresponding to suppression of the 
internal mode there is a minimization of the amplitude of the l =  1, m =  0 scattering mode which is clearly 
observable in the total scattered power. As in (a) the point of perfect scattering has been removed.
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particle with a resolution Δ λ/λ = Δ Φ /2π, where λ and Φ  are the wavelength and relative phase of the 
control beam respectively. This provides a deeply sub-wavelength spatial resolution when no other multi-
pole radiate in the solid angle of detection and the sensitivity of the detector allows one to monitor the 
logarithm of the signal. The optimal solid angle can be found by considering the known radiation pat-
terns of the multipoles27. The ratio of the amplitudes a s

10 and a i
10 shows that we find the condition for a 

perfect scatterer in Fig. 2a and for a perfect absorber in Fig. 2b, while the amplitudes of the other modes 
(not shown) are not affected by the control beam. By removing the dominant internal mode, we can 
minimize the total absorption, which is very useful to reduce heating and, as a consequence, increase 
stability in experiments. Figure 3 shows the radiation patterns with and without control in the equatorial 
plane θ =  90° of the sphere. In Fig. 4a, we control the intensity of the field scattered in a direction at π/2 
with respect to the control beam and at π/4 with respect to the pump by changing the amplitudes of the 
modes of the electric quadrupole with l =  2, m =  ± 2, as shown in Fig.  4b. Even in this case we can 
observe a subwavelength variation of the intensity. In Fig. 5a we use an incoming multipolar wave with 
l =  2, m =  2 to control the scattering for the same sphere and in the same direction as in Fig. 4a. Note 
that in this case the variation of the intensity is smaller than in Fig. 4a because the multipolar control 
wave affects only the l =  2, m =  2 mode, as can be seen from Fig.  5b. We need two control beams to 
control independently the modes l =  2, m =  2 and l =  2, m =  − 2 in order to improve on the result shown 
in Fig. 4a, but Fig. 5a shows that using incoming multipolar waves is not necessarily more effective than 
using plane waves. Finally, in Fig.  6 we show how the sensitivity to phase variation can be applied to 
monitor small variations in the dielectric permittivity of the host medium; similar results could be 
achieved with variations of the magnetic permeability. With the intensity and phase of the pump and 
control beams optimised to suppress the s10 mode for a particular environment, εex, (corresponding to 
Δ εex =  0 in Fig. 6) we observe a strong sensitivity to small changes in εex in the scattered intensity. As 
the modes of the system depend upon the local environment, the relative phase and amplitude of the 
control beam required to maintain suppression of the modes change with it. When we vary the optimised 
amplitude of the control field by ± 20% we observe in Fig.  6a that the curve of the scattered intensity 
drifts, so that the minima no longer occurs at Δ εex =  0, and the sensitivity decreases slightly. In Fig. 6b 
we observe that the sharpness of the feature in the scattering intensity reduces significantly when the 
relative phase of the control beam, Φ c, is changed from the optimised value, but the position of the 
minima in this case does not drift. Generalizing this approach to include any number of modes and 
external incident waves is straightforward and explained in the Methods section.

In conclusions, we have presented a scheme for the coherent control of light and currents in nano-
spheres, identifying extreme sensitivity to variations of the relative phase of two coherent incident waves 
that can lead to novel applications. The theory we have presented can be easily generalized to particles 
with other shapes: in most cases the Mie approach based on separation of variables does not apply, but 

Figure 3. Radiation patterns with and without control. Radiation pattern along the plane θ =  90° for the 
same particle, frequency, and control as Fig. 2a. Inset shows an enlargement of the s22 quadrupole, the arrow 
indicates the direction of the control beam.
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the principal mode theory can be used31. The control of a larger number N of modes is in principle 
straightforward and requires to adjust the amplitudes of the pump and of N −  1 control beams. From a 
practical point of view, spatial light modulators and configurable array mirrors could provide an effec-
tive way to implement control schemes for several modes, providing an efficient and adaptable coupling 
to a high number of modes with a low number of beams, each with a complex profile made up by the 
superposition of several plane waves. Finally, we have been concerned here with the control of radiation 
patterns resulting from multiphoton processes, but the theory we developed can also be used to control 
absorption and scattering of external fields through appropriate distributions of surface polarization.

Methods
The biorthogonal modes are given by the formula

Figure 4. Control of quadrupolar modes with a plane wave. Same particle and frequency as Fig. 2, with 
point of perfect absorption removed from plots. (a) Control at π/4 with respect to the pump, on l =  2, 
m =  ± 2 internal and scattering modes, |ac| =  1.32 ×  10−11 to find perfect absorption on the l =  2, m =  2 
modes. (b) Amplitudes on the modes excited, showing that the control beam affects only the modes l =  2, 
m =  ± 2.

Figure 5. Control of quadrupolar modes with an incoming spherical wave. Same particle and frequency 
as Fig. 2, with point of perfect absorption removed from plots. (a) Same scattering direction as in Fig. 4a, 
but using as the control beam an incoming multipole with l =  2, m =  2 that affects only the amplitude of the 
modes with l =  2, m =  2, as shown in (b) The smaller variation in the scattered intensity is due to the fact 
that this control beam has no effect on the mode l =  2, m =  − 2.
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′ = , ( )
−u u G 7j i ij

1

where u1 =  slm, u2 =  ilm, G−1 is the inverse of the (Gram) matrix with elements Gij =  (ui ⋅  uj) and we sum 
over repeated indexes. When longitudinal modes are present15, we can include them simply by defining 
u3 as the longitudinal mode spatially correlated to slm and ilm.

Generalizing Eq. (6) to include any number of modes and external incident waves is straightforward, 
as the amplitude of each mode requires only the scalar product of its biorthogonal mode with the sum 
of all the fields incident on the surface and the surface polarization. For any set of incident electromag-
netic waves, { }f j

ex , the first column of the matrix in Eq. (6) is replaced by two matrices: the matrix S with 
elements = − ′ ⋅S s fij i j

ex and the matrix I for the internal modes with elements = ′ ⋅I i fij i j
ex, where 

i =  (l, m). When fNL =  0, the amplitudes of the modes are given by the product of these two matrices with 
the amplitudes of the incident waves. When fNL ≠ 0, the amplitudes of the modes are given by the product 
of the augmented matrices S and I, with S ( )I  obtained by adding to S (I) the column − ′ ⋅s fi

NL ( ′ ⋅ )i fi
NL , 

with a column vector containing the amplitudes of the incident waves and of fNL. Control of the ampli-
tudes of N modes can be achieved with N −  1 control beams when fNL ≠ 0 and the matrix , I S[ ]

T  is invert-
ible.
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