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ABSTRACT Lactobacillus crispatus frequently colonizes the vagina and bladder of healthy
women. Although its association with vaginal health is relatively well understood, little is
known about its role in urinary tract infection (UTI). Here, we report the complete
genome sequences of three urinary L. crispatus strains isolated from women with different
UTI histories.

Lactobacilli are the most abundant members of the urinary microbiomes of heathy
women; however, their role in maintaining bladder health is poorly understood (1–

5). In the vagina, lactobacilli provide colonization resistance by maintaining an acidic
pH and secreting antimicrobial compounds (5, 6). Urinary lactobacilli may act similarly
to resist uropathogen colonization during urinary tract infection (UTI) (1, 7).

Although Lactobacillus crispatus is frequently found in the urinary microbiome, before
this work only 11 complete genome sequences were available in the NCBI database.
Furthermore, no complete genome sequences of L. crispatus isolated from urine were avail-
able. Complete urinary L. crispatus genome sequences will enable analyses of the genetic
factors mediating adaptation to the bladder, especially mobile genetic elements. Here, we
report the complete genome sequences of three L. crispatus strains isolated from the urine
of three postmenopausal women who either had no clinical history of UTI or had a history
of recurrent UTI (rUTI) but were not experiencing UTI at the time (Table 1), as part of an institu-
tional review board-approved study (STU 032016-006 and MR 17-120).

Clean-catch midstream urine was obtained, plated onto De Man, Rogosa, and Sharpe
(MRS) agar, and incubated for 3 days at 35°C in a microaerophilic atmosphere using the
GasPak EZ Campy pouch system (BD). Species identification was performed by Sanger
sequencing of the 16S rRNA gene and MegaBLAST (BLAST v2.10.0) (8). Well-isolated colonies
were cultured in MRS broth for 3 days in a microaerophilic atmosphere at 35°C. Genomic
DNA was extracted using the DNeasy blood and tissue kit (Qiagen) and purity analyzed
using the 260/280 nm absorbance ratio and agarose gel electrophoresis (8).

The Nextera DNA Flex library prep kit was used for Illumina library preparation, and the
NextSeq 500 was used to generate 2� 150 bp paired-end reads. CLC Genomics Workbench
v12.0.3 was used for Illumina read quality assessment and trimming, preserving reads with a
Phred score below 20 and a minimum length of 15 bp.

Oxford Nanopore libraries were constructed using the ligation sequencing kit (SQK-
LSK109) and barcode expansion kit 1-12 (EXP-NBD104) and sequenced on the MinION
platform using R9 FLO-MIN106 flow cells. ONT MinKNOW software was used for live fast
base calling, demultiplexing, and barcode trimming. NanoStats v1.2.0 and NanoFilt v2.6.0
were used for quality assessment and trimming, respectively, retaining reads of.200 bp with
a Phred score of.7 (9).

Unicycler v0.4.8 (SPAdes v3.13.0, Racon v1.4.10, and Pilon v1.23) was used for hybrid
assembly of the Illumina and ONT reads (10–14). Unicycler’s default mode generated closed
assemblies for Lc1226_C128 and Lc1700_C167, whereas bold mode was required for
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Lc116_C48. The genomes were rotated to the start of the dnaA or repA gene, if found.
QUAST v5.0.2 was used to assess the assembly quality (15). Bandage v0.8.1 and BUSCO v1
were used to determine the genome completeness using the bacteria ortholog set on the
gVolante v1.2 server (16–18). The genomes were annotated using the NCBI Prokaryotic
Genome Annotation Pipeline v4.11 (19, 20), while the GC content and coding sequence
number were calculated using Geneious Prime v2020.0.5. All analysis parameters were
default unless otherwise specified.

Data availability. The genome sequences are available in GenBank under BioProject
accession number PRJNA761982. Table 1 displays the BioSample and SRA accession numbers
for each isolate.
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