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OBJECTIVE—Low cardiorespiratory fitness (CRF) predisposes
one to cardiovascular disease and type 2 diabetes in part
independently of body weight. Given the close relationship
between intrahepatic lipid content (IHL) and insulin sensitivity,
we hypothesized that the direct relationship between fitness and
insulin sensitivity may be explained by IHL.

RESEARCH DESIGN AND METHODS—We included 138
overweight to obese, otherwise healthy subjects (aged 43.6 � 8.9
years, BMI 33.8 � 4 kg/m2). Body composition was estimated by
bioimpedance analyses. Abdominal fat distribution, intramyocel-
lular, and IHL were assessed by magnetic resonance spectros-
copy and tomography. Incremental exercise testing was performed
to estimate an individual’s CRF. Insulin sensitivity was determined
during an oral glucose tolerance test.

RESULTS—For all subjects, CRF was related to insulin sensi-
tivity (r � 0.32, P � 0.05), IHL (r � �0.27, P � 0.05), and visceral
(r � �0.25, P � 0.05) and total fat mass (r � �0.32, P � 0.05),
but not to intramyocellular lipids (r � �0.08, NS). Insulin
sensitivity correlated significantly with all fat depots. In multi-
variate regression analyses, independent predictors of insulin
sensitivity were IHL, visceral fat, and fitness (r2 � �0.43, P �
0.01, r2 � �0.34, and r2 � 0.29, P � 0.05, respectively). However,
the positive correlation between fitness and insulin sensitivity
was abolished after adjustment for IHL (r � 0.16, NS), whereas
it remained significant when adjusted for visceral or total body
fat. Further, when subjects were grouped into high versus low
IHL, insulin sensitivity was higher in those subjects with low IHL,
irrespective of fitness levels.

CONCLUSIONS—Our study suggests that the positive effect of
increased CRF on insulin sensitivity in overweight to obese
subjects may be mediated indirectly through IHL reduction.
Diabetes 59:1640–1647, 2010

L
ow cardiorespiratory fitness (CRF) predisposes
one to metabolic disease and increases cardio-
vascular morbidity and mortality in women and
men (1–3). Insulin resistance, an early event in

the pathogenesis of both type 2 diabetes and cardiovascu-
lar disease, is more pronounced in people with reduced
CRF (4). CRF is also reduced in type 2 diabetic patients
compared with healthy subjects (5). Insulin resistance is
more prevalent in individuals with excess body fat than in
normal-weight people (6,7). Yet, fit individuals have lower
rates of cardiometabolic diseases than their unfit counter-
parts, regardless of total body fat (3,8). Thus, “fitness” and
“fatness” affect metabolic and cardiovascular risk in part
independently. The mechanisms mediating the adiposity-
independent effect of CRF on metabolic disease are not
fully understood. Direct influences on peripheral insulin
sensitivity through improved muscular oxidative metabo-
lism (9) and fat redistribution may be involved. The latter
mechanism may be important because visceral adipose
tissue (VAT) accumulation and increased muscular and
hepatic intracellular fat deposition contribute to insulin
resistance (10–13). However, intrahepatic lipid accumula-
tion (IHL) appears to be particularly important in this
regard (14,15). Furthermore, hepatic fat accumulation
increases circulating triglyceride-rich lipoproteins (16,17).
Hypertriglyceridemia is common in obesity and responds
to physical exercise (18). Although IHL is intimately
related to insulin resistance and dyslipidemia, previous
studies on the interaction between CRF and metabolism
did not assess intrahepatic fat. We applied magnetic
resonance spectroscopy to test the hypothesis that in
obesity the beneficial effect of CRF on metabolism is
related to intrahepatic fat. Given the strong sex effect on
metabolic and cardiovascular regulation (19–21), we ana-
lyzed women and men separately.

RESEARCH DESIGN AND METHODS

We investigated 138 overweight/obese but otherwise healthy volunteers (107
women and 31 men) in our study. All subjects completed a comprehensive
medical evaluation including a dietary record for 7 consecutive days before
study participation. Volunteers reported �2 h of physical activity per week
and were not taking medications that could affect metabolism or liver
function. Subjects consuming �20 g/day of alcohol, with diagnosis of type 2
diabetes, with acute or chronic infections, with any diseases that required
treatment, or with known drug abuse were excluded. Our institutional review
board approved the study, and written informed consent was obtained before
entry. Volunteers were advised to continue their current physical activity level
and lifestyle throughout the study.

Volunteers visited the laboratory on 2 separate days for anthropometric,
metabolic, and cardiovascular evaluations and exercise testing. After a 10- to
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12-h overnight fast, we measured body weight, height, and waist circumfer-
ence in a standardized fashion. After a resting period of at least 5 min in the
seated position, we determined blood pressure and heart rate with an
automated blood pressure cuff (Dinamap; Critikon, Tampa, FL). During an
oral glucose load (75 g glucose/500 ml), we obtained blood samples at baseline
and 15, 30, 45, 60, 90, and 120 min after glucose ingestion to measure glucose
and insulin. We assessed lean body and fat mass by bioimpedance analysis
(BIA 5 series; Denner, Feldmeilen, Switzerland). Glucose, insulin, and blood
lipids were measured by standard laboratory procedures in a certified clinical
chemistry laboratory. During the second visit, we quantified visceral and
subcutaneous abdominal fat mass and IHL and intramyocellular lipid (IMCL)
content by magnetic resonance tomography and spectroscopy. CRF was
determined during an exhaustive incremental exercise test on a cycle ergome-
ter. We assessed nutrition including the kind and amount of alcohol consump-
tion using standardized protocols over a 7-day period. On the basis of these
records, we estimated the average amount of alcohol consumption in grams
per day.
Magnetic resonance imaging and spectroscopy. Abdominal fat imaging
and fat spectroscopy of the lower leg musculature were performed on a
1.5-tesla magnetic resonance scanner (Magnetom Avanto and Sonata; Siemens
Medical Solutions, Erlangen, Germany). An axial T1-weighted and water-
suppressed gradient echo technique (TR 80, TE 6.11, FA 80, FOV 500 � 500
mm, 512 � 512 matrix, slice thickness 10 mm, interslice gap 10 mm) was
applied for abdominal imaging. During repetitive breath-holds, consecutive
datasets were acquired, covering the abdomen from the diaphragm to
symphysis. Images were analyzed for the amount of VAT and subcutaneous
adipose tissue (SAT) by semiautomated image segmentation software that
employs a contour-following algorithm (Vitom, University Duisburg-Essen,
Germany). Total abdominal adipose tissue was calculated as the sum of VAT
and SAT. IHL was assessed by 1H magnetic resonance spectroscopy of a single
voxel located in segment 7 of the liver (TR 7,000, TE 30, voxel size 30 � 30 �
20 mm, number of averages 24, acquisition during repetitive breath-holds). A
fat-to-water ratio was calculated after postprocessing of the spectra including
a standard line-fitting procedure and integration of the hepatic triglycerides
from 0.5 to 2.8 ppm. The unit of measurement is the ratio of the signal from
fat (f) to total signal from fat (f) and water (w) (f/[f � w]%). Furthermore,
IMCL content was quantified by 1H single-voxel spectroscopy of the tibialis
anterior muscle. High-resolution T1 weighted spin-echo images of the calf
allowed identification of an appropriate voxel position in the tibialis anterior,
thereby minimizing spectral contamination from extramyocellular lipids from
adipose tissue attached to the muscular fasciae. A spin-echo single-voxel
spectroscopy sequence (TR 3,000, TE 30, voxel size 11 � 11 � 20 mm, number
of averages 64) with frequency-selective water suppression was applied. After
baseline and constant phase correction, a standard line-fitting procedure using
prior knowledge about the resonance peaks was performed for quantification.
IMCL values were calculated as the area under the curve of the IMCL
methylene line normalized to the creatine–CH3 signal and corrected for
differences in T1 and T2, resulting in a dimensionless value.
Incremental exercise test. Subjects underwent a stepwise incremental
exercise test on a bicycle ergometer (VIAsprint 150P; Ergoline, Bitz, Germany)
until volitional exhaustion. Exercise was performed in a temperature-con-
trolled room (21–22°C) �2 h after subjects had ingested a standardized
breakfast (containing �520 kcal: 24% fat, 68% carbohydrate, and 8% protein).
Alcohol and caffeine were not permitted 48 h before the exercise test. After 3
min in the seated position, resting measurements were recorded. Exercise
was then started at a workload of 25 W. Workload was increased every 2 min
by 25 W until the subjects could not maintain the requested 60 rpm pedal
frequency. We monitored gas exchange continuously during the test to assess
oxygen uptake and power output. Using an open spirometric system (Vmax
Spectra model 229D analyzer; SensorMedics, Yorba Linda, CA), the time
course of oxygen uptake and carbon dioxide production was recorded
breath-by-breath and averaged in 10-s intervals. Heart rate was recorded by an
electrocardiogram (GE Medical Systems, Waukesha, WI) throughout the
exercise test. We assumed that subjects had reached maximal oxygen uptake
(VO2max) when at least two of the following criteria were met: 1) respiratory
exchange ratio � 1.10, 2) VO2 leveling off despite increase in power output,
and 3) heart rate within 10 beats � min�1 of the predicted maximum heart
rate. To consider the individual differences in body weight, oxygen uptake
was expressed as kilograms of body weight (VO2: ml�1 � min�1 � kg�1).
Biochemical measurements and calculations. Glucose (millimoles per
liter), insulin (microunits per milliliter), and alanine aminotransferase (units
per liter) were determined by standard methods in a certified clinical
chemistry laboratory. Insulin resistance was estimated by homeostasis model
assessment index (HOMA) derived from fasting glucose and insulin concen-
trations. HOMA was calculated from fasting insulin and glucose by (insulin
[microunits per milliliter] � glucose [millimoles per liter])/22.5) (22). Areas
under the curve for insulin (AUCINS) and glucose (AUCGLU) were assessed

using the trapezoid method. Insulin sensitivity was calculated by the compos-
ite insulin-sensitivity index (C-ISI) (23): C-ISI � 10,000/	[(FPG � FPI) �
(G � I)], where FPG and FPI are fasting plasma glucose (milligrams per
deciliter) and fasting plasma insulin (microunits per milliliter), respectively,
and G (milligrams per deciliter) and I microunits per milliliter) are the mean
glucose and mean insulin concentration during the 2-h oral glucose tolerance
test, respectively. Serum high sensitivity C-reactive protein (hs-CRP) (in
micrograms per milliliter), total adiponectin as well as low-, middle-, and
high-molecular-weight adiponectin multimers (all in micrograms per millili-
ter), fetuin-A (in nanograms per milliliter), and retinol-binding protein 4
(RBP4) (in micrograms per milliliter) were measured by sandwich enzyme-
linked immunosorbent assay with the following characteristics: hs-CRP
(RH961CRP01HR; BioVendor, Heidelberg, Germany), intra-assay coefficient
of variation 3.8% and interassay coefficient of variation 5.2%; adiponectin
(47-ADPHU-E01; ALPCO Immunoassays, Salem, NH), intra-assay coefficient
of variation between 5.1 and 9.8% for the different multimers and interassay
coefficient of variation between 4.8 and 6.5%; fetuin-A (RD191037100; BioVen-
dor), intra-assay coefficient of variation 4.9% and interassay coefficient of
variation 5.7%; and RBP4 (AG-45A-0011EK-KI01; AdipoGen, Seoul, Korea#),
intraassay coefficient of variation 3.9% and interassay coefficient of variation
8.1%.
Statistical analysis. Data were first tested for normal distribution and
variance homogeneity with Kolmogorov-Smirnov test and the Levene test,
respectively. Pearson correlation coefficients were used to determine the
relationship between CRF and insulin sensitivity. Partial correlations were
used to control for total body fat mass, VAT, SAT, and intrahepatic lipid
content. To specify the effect of CRF on insulin sensitivity, anthropometric
and metabolic risk marker subjects were categorized into CRF tertiles
(VO2max). Then a one-way ANOVA was performed to examine differences in
subject characteristics across fitness levels. When the ANOVA result was
significant, a Tukey post hoc comparison test was used to identify specific
between-group differences. To further analyze influence of fat redistribution,
we subgrouped subjects among CRF tertiles on the basis of sex-specific VAT
levels (�2.9 or �2.9 kg for men and �1.5 or �1.5 kg for women), IHL content
(�7.4 or �7.4% for men and �4.6% or �4.6% for women), and total body fat
mass (�29.8 or �29.8 kg for men and �33.6 or �33.6 kg for women). Finally,
a stepwise multivariate regression analysis was performed to identify predic-
tors of insulin sensitivity. All statistical analyses were performed with SPSS 16
(SPSS, Chicago, IL). Significance was accepted at P � 0.05. Values are given
as means � SD.

RESULTS

Of 213 screened subjects, 172 subjects met the inclusion
criteria of our study. Fourteen women and 2 men smoked
regularly between 5 and 20 cigarettes per day. Nineteen
women and 2 men did not meet the criteria for valid VO2max
estimation. MR studies were unsuccessful in 11 subjects
due to claustrophobia (n � 7), equipment failure (n � 1),
waist circumference exceeding the magnetic resonance
scanner limits table (n � 1), and poor magnetic resonance
image quality (n � 2). Two subjects dropped out for
personal reasons. Anthropometric and metabolic charac-
teristics of the remaining 138 overweight and obese
women and men, classified into CRF tertiles, are given in
Table 1. VO2max was 25.4 � 4.1 ml/min/kg in men and
21.1 � 3.5 ml/min/kg in women (P � 0.05). Furthermore,
VAT mass and IHL content were greater in men (VAT
3.49 � 1.06 vs. 1.63 � 0.79 kg, P � 0.01; IHL 11.63 � 4.7 vs.
7.9 � 3.6%, P � 0.05), whereas insulin sensitivity was
lower than in women (C-ISI 4.8 � 2.7 vs. 6.1 � 2.4, P �
0.05; HOMA 2.1 � 1.1 vs. 1.6 � 1.2, P � 0.69). Alanine
aminotransferase was higher in men (21.7 � 8.1 vs. 36.1 �
11.2 units/l, P � 0.05). Average alcohol consumption was
6.6 � 4.8 g/day in women and 9.5 � 5.2 g/day in men.

Table 2 shows Pearson correlation coefficients between
CRF and selected cardiometabolic risk markers for
women and for men before and after adjustment for either
VAT or IHL. CRF correlated significantly negatively with
BMI, percent body fat, systolic blood pressure, subcutane-
ous fat mass, and total abdominal fat mass. Diastolic blood
pressure correlated significantly negatively to CRF in
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women only. In men, VAT tended to inversely correlate
with CRF. In women, we observed a trend for an inverse
correlation between IHL content and CRF. The inverse
correlation between IHL and CRF in men was mainly
driven by the particularly low IHL content in the highest
fitness tertile (Table 1).

For all subjects, alanine aminotransferase was related to
BMI (r � 0.27, P � 0.01), IHL (r � 0.47, P � 0.001), VAT
(r � 0.36, P � 0.01), fetuin-A (r � 0.20, P � 0.05), and C-ISI

(r � �0.32, P � 0.001) and tended to do so for CRF (r �
�0.17, P � 0.076). Critical serum parameters (fetuin-A,
adiponectin, hs-CRP, and RBP4) and their relation to
adiposity and fat distribution are given in Table 4. Insulin
sensitivity was positively related to total (r � 0.36, P �
0.01) and high-molecular-weight adiponectin (r � 0.37,
P � 0.01) and negatively related to fetuin-A (r � �0.19,
P � 0.05) and hs-CRP (r � �0.20, P � 0.05) but not to
RBP4 (r � 0.04). VO2max showed a correlation to hs-CRP

TABLE 1
Anthropometric and metabolic characteristics of subjects classified into tertiles based on CRF

Women Men
Low tertile Middle tertile High tertile Low tertile Middle tertile High tertile

n 107 31
VO2max (ml/min/kg) 15.6 � 2.5 20.7 � 1.3* 26.3 � 2.9*† 18.8 � 1.5 25.4 � 1.7* 30.8 � 2.7*.†
Age (years) 45.7 � 8.1 42.9 � 9.6 42.1 � 9.1 47.8 � 6.4 43.9 � 10.1 45.1 � 9.2
BMI (kg/m2) 34.7 � 4.1 34.1 � 3.8 31.2 � 3.6*† 38.3 � 4.8 36.1 � 3.6 32.9 � 4.7*
Body fat mass (%) 38.7 � 3.6 37.9 � 5 32.5 � 5.9*† 34.8 � 5.3 27.1 � 9.1 26.9 � 7.1*
Systolic blood pressure (mm/Hg) 127.9 � 11.7 122.2 � 12.1 116.5 � 9.9* 139.2 � 13.8 129.6 � 8.1 132.6 � 8.1
Diastolic blood pressure (mm/Hg) 75.7 � 6.3 71.9 � 6.4 69.4 � 5.3* 79.4 � 10.5 74.1 � 8.3 75.2 � 9.9
Cholesterol (mmol/l)

Total 5.06 � 0.73 4.76 � 0.75 4.52 � 0.41 4.98 � 0.71 5.08 � 0.87 4.38 � 0.63†
HDL 1.39 � 0.31 1.45 � 0.65 1.44 � 0.75 1.06 � 0.31 1.19 � 0.12 1.29 � 0.34
LDL 3.18 � 0.69 2.93 � 0.73 2.83 � 0.78 3.25 � 0.71 3.06 � 0.64 2.61 � 0.61

Triglycerides 1.18 � 0.41 1.11 � 0.55 1.09 � 0.51 1.45 � 0.64 1.51 � 0.77 1.02 � 0.29†
Adipose tissue mass (kg)

Total abdominal 12.6 � 2.7 12.6 � 3.3 10.4 � 2.1*† 15.7 � 3.2 13.6 � 4.6 10.4 � 2.2*
Visceral 1.69 � 0.63 1.64 � 0.78 1.27 � 0.71 3.79 � 0.87 3.52 � 1.41 3.21 � 1.42
Subcutaneous 10.9 � 2.5 11 � 3.1 9.1 � 2.7* 11.9 � 3.4 10.1 � 4.2 7.2 � 1.6*†

IMCL 4.49 � 1.42 5.37 � 2.08 4.89 � 1.86 5.1 � 0.92 4.82 � 1.57 4.16 � 0.74
IHL (f/f � w) (%) 8.6 � 6.4 8.9 � 8.3 6.9 � 5.3 16.9 � 9.1 11.6 � 8.1 7.6 � 7.2*
Indices of insulin sensitivity

AUC glucose (mmol/l � min) 1,048 � 180 1,010 � 176 1,011 � 146 1,151 � 96 1,042 � 154 985 � 160
AUC insulin (
U/ml � min) 6,781 � 2,410 6,541 � 3,260 6,097 � 2,565 12,305 � 6,102 6,386 � 3,221* 6,477 � 4,150*
HOMA (insulin resistance) 1.51 � 0.6 1.49 � 1.14 1.26 � 0.71 4.32 � 2.91 2.03 � 0.53 1.47 � 1.28*
C-ISI 5.79 � 2.1 5.98 � 1.99 6.95 � 3.41 2.45 � 1.16 4.78 � 2.41 6.98 � 2.96*

Data are means � SD. CRF is given as maximum oxygen uptake (VO2max) expressed per kg body wt. (ml � min�1 � kg�1). *Significantly
different from low tertile. †Significantly different from middle tertile.

TABLE 2
Pearson correlation coefficients (r values) between CRF with anthropometric and metabolic variables before and after adjustment
with either VAT and IHL

Variables

Women Men

Unadjusted
Adjusted
for VAT

Adjusted
for IHL Unadjusted

Adjusted
for VAT

Adjusted
for IHL

C-ISI 0.18† 0.09 0.01 0.51* 0.37* 0.19
HOMA �0.17* �0.10 �0.03 �0.54* �0.32* �0.18
BMI (kg/m2) �0.34* �0.17 �0.28 �0.36* �0.34* �0.18
Body fat (%) �0.37* �0.29* �0.35* �0.37* �0.47* �0.52*
Systolic blood pressure (mm/Hg) �0.35** �0.32* �0.39* �0.36* �0.23 �0.11
Diastolic blood pressure (mm/Hg) �0.28* �0.28* �0.36* �0.14 �0.09 �0.10
Cholesterol (mmol/l)

Total �0.11 �0.14 �0.15 �0.21 �0.08 0.04
HDL 0.09 0.05 0.06 0.12 0.05 �0.05
LDL �0.08 �0.07 �0.08 �0.22 �0.06 0.07

Triglycerides �0.11 �0.07 �0.01 �0.20 �0.14 0.08
Adipose tissue mass (kg)

Total abdominal �0.33* �0.15 �0.27 �0.45* �0.47* �0.40*
Visceral �0.22* �0.23* �0.27† �0.06
Subcutaneous �0.29* �0.15 �0.26 �0.51** �0.52** �0.42**

IMCL �0.09 0.02 0.04 �0.19 �0.17 �0.18
IHL (f/f � w) (%) �0.19† �0.13 �0.43* �0.44*

†P � 0.10 and �0.05; *P � 0.05; **P � 0.01.
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(r � �0.23, P � 0.05) but not to fetuin-A, adiponectin
multimers, or RBP4. Alcohol consumption (inclusion cri-
teria �20 g/day) showed no significant relation to IHL
content (r � �0.05) or measures of liver function (alanine
aminotransferase r � 0.12).

In partial correlation analysis for both sexes, we ob-

served that the direct, sex-independent relationship be-
tween CRF and insulin sensitivity (r � 0.32, P � 0.05) was
abolished after controlling for IHL (r � 0.14, NS), shown in
Fig. 1, whereas for the adjustment of percent body fat (r �
0.28, P � 0.01), VAT (r � 0.25, P � 0.05), and SAT (r �
0.29, P � 0.01), the correlation between CRF and insulin

TABLE 3
Multivariate regression analyses with insulin sensitivity as dependent variable

Independent variable

Women Men

�-Coefficient P value Model r2
Model
P value �-Coefficient P value Model r2

Model
P value

Model 1
VAT �0.38 �0.05 0.33 0.04 �0.34 �0.05 0.39 0.02
IHL �0.41 �0.01 �0.48 �0.01
CRF 0.15 0.08 0.45 �0.01

Model 2
% body fat 0.14 0.11 0.36 0.02 �0.23 0.11 0.41 �0.01
VAT �0.34 �0.05 �0.36 �0.05
IHL �0.38 �0.01 �0.43 �0.01
CRF 0.14 0.09 0.44 �0.01

Model 3
% body fat �0.13 0.11 0.38 0.02 �0.22 0.13 0.42 �0.01
VAT �0.31 �0.05 �0.33 �0.05
SAT �0.14 0.26 �0.18 0.19
IHL �0.38 �0.01 �0.43 �0.01
CRF 0.15 0.07 0.42 �0.01

Model 4
BMI �0.09 0.37 0.41 �0.01 0.12 0.65 0.44 �0.01
% body fat �0.17 0.09 �0.23 0.10
VAT � 0.31 �0.05 � 0.33 �0.05
SAT � 0.13 0.24 � 0.15 0.20
IHL � 0.42 �0.01 � 0.46 �0.01
CRF 0.23 �0.05 0.43 �0.01

Model 5
Age �0.04 0.63 0.41 �0.01 0.01 0.73 0.45 �0.01
BMI �0.07 0.38 �0.09 0.64
% body fat � 0.16 0.09 � 0.29 0.12
VAT �0.36 �0.01 � 0.31 �0.05
SAT �0.11 0.27 �0.11 0.37
Triglycerides �0.08 0.38 � 0.12 0.21
IHL �0.41 �0.01 �0.46 �0.01
CRF 0.21 �0.05 0.37 �0.01

CRF is given as maximum oxygen uptake (VO2max) expressed per kg body wt. (ml � min�1 � kg�1).
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FIG. 1. Correlation between C-ISI and VO2MAX
before (A: r � 0.32, P < 0.05) and after adjustment for intrahepatic lipid content (B: r � 0.14, NS);

F, women; E, men. *P < 0.05; †P < 0.1 and >0.05.
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sensitivity was attenuated but remained significant. Ad-
justment for alanine aminotransferase (r � 0.19, NS) and
hs-CRP (r � 0.17, NS) also abolished the direct correlation
between CRF and insulin sensitivity.

Figure 2 presents C-ISI values in women and in men
classified into sex-specific CRF tertiles and then further
subdivided into groups with high versus low VAT mass,
IHL content, and body fat mass based on the sex-specific
median for each measurement. For VAT levels, there was
a significant difference in the lowest and moderate CRF
tertile, with lower insulin sensitivity among subjects with
high levels of VAT. However, in the high CRF tertile, there
was no difference between the high versus low VAT

subgroup. We observed a similar pattern between sub-
groups classified on the basis of total body fat mass.
Whereas in the low and moderate CRF tertiles insulin
sensitivity was lower among men and women in the
subgroup with high body fat, there was no influence of
body fat on the relationship between CRF and insulin
sensitivity in the highest fitness tertile. The influence of
VAT and body fat on insulin sensitivity across fitness levels
was unchanged when we excluded men from the analysis.
However, in subjects with high IHL content, insulin sensi-
tivity was lower compared with that in subjects with low
IHL content, irrespective of fitness level. The relationship
remained significant when men were excluded from the
analysis (P � 0.05).

The correlation of insulin sensitivity with percent body
fat, VAT and SAT mass, and IHL content were similar
between men and women (% body fat: women r � �0.19,
NS, men r � �0.16, NS; VAT: women r � �0.46, P � 0.05,
men r � �0.51, P � 0.05; SAT: women r � �0.21, NS, men
r � �0.25, NS; IHL: women r � �0.44, P � 0.01, men r �
�0.58, P � 0.01), whereas a correlation between C-ISI and
IMCL was observed in women only (r � �0.29, P � 0.05).

To assess determinants of insulin sensitivity in more
detail, we conducted a multivariate regression analysis
with insulin sensitivity as the dependent variable. In
women, the significant direct correlation for insulin sensi-
tivity with visceral fat mass and IHL persisted even after
inclusion of age, BMI, percent body fat, subcutaneous fat
mass, triglycerides, and VO2max as covariables (Table 3).
Also, VO2max (CRF) became a weak but significant predic-
tive variable. The model that included age, BMI, percent
body fat, visceral and subcutaneous fat mass, triglycer-
ides, IHL, and VO2max as independent variables explained
41% of the variation in insulin sensitivity. In men, multi-
variate regression with the same variables included (Table
3) revealed IHL, visceral fat mass, and VO2max as significant
predictors of insulin sensitivity and explained 45% of the
variation in insulin sensitivity. When men and women
were analyzed together, IHL (r2 � �0.43, P � 0.01), VAT
(r2 � �0.34, P � 0.01), and CRF (r2 � 0.29, P � 0.05) were
observed as independent predictors of insulin sensitivity.
IHL, VAT, and CRF explained 33 and 39% of the variation
in insulin sensitivity in women and men, respectively
(Table 3, model 1). When we excluded IHL from the
multivariate regression model 5 (Table 3), the predictive
power of CRF on insulin sensitivity was stronger, both in
women (from r � 0.21, P � 0.05 to r � 0.34, P � 0.01) and
in men (from r � 0.37, P � 0.01 to r � 0.43, P � 0.001).

DISCUSSION

The novel finding of our study is that the positive relation-
ship between CRF and insulin sensitivity in overweight
and obese subjects was no longer present after controlling
for intrahepatic fat content. In contrast, the relationship
between CRF and insulin sensitivity was largely unaf-
fected after adjustment for total body, abdominal subcu-
taneous, abdominal visceral, and intramyocellular fat.
Thus, our study suggests that the positive effect of in-
creased CRF in overweight on insulin sensitivity to obese
subjects may be mediated indirectly through IHL reduc-
tion. Moreover, high CRF is “protective” in patients with
excessive visceral fat but does not negate the metabolic
effect of increased IHL.

We obtained multislice whole-abdomen images provid-
ing an accurate estimate of visceral and subcutaneous fat.
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FIG. 2. C-ISI in men (m) and women (f) classified into tertiles of CRF
with sex-specific subgroups of either low or high body and fat mass (A),
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Data are means � SEM. *P < 0.05; **P < 0.01, significantly different
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In previous studies, abdominal fat area was measured
from a single-slice computed tomography scan at the level
of the fourth or fifth vertebra (8,10,11,24,25) or the umbi-
licus (26). Moreover, we measured both IHL and IMCL in
the same subjects. Thus, we were able to assess the
individual contribution of fat distribution and organ fat on
glucose metabolism in obese subjects.

Increased intrahepatic and intramyocellular lipids are
associated with hyperinsulinemia, impaired glucose toler-
ance, and hepatic insulin resistance in diabetic and non-
diabetic subjects (9,13,14). Recent studies reported that
intrahepatic fat has a stronger impact on insulin sensitivity
than VAT (27–29). Furthermore, the detrimental influence
of intrahepatic lipid accumulation on metabolic function
appears to be independent of VAT mass (27). In stepwise
regression analysis, IHL content was a stronger predictor
of insulin sensitivity than visceral fat mass or IMCL
content, independent of sex, age, or BMI, underscoring the
central role of the liver in the pathogenesis of obesity-
associated metabolic disease. Furthermore, the finding
suggests IHL as a prime candidate for explaining the
relationship between CRF and glucose metabolism.

In our study, individuals with high CRF were more
insulin sensitive than less fit individuals. Similarly, previ-
ous studies identified low CRF as a strong and indepen-
dent predictor of incident metabolic syndrome. Moderate
to high CRF lowered the risk of all-cause and cardiovas-
cular mortality independent of BMI (1,2,30). These studies
focused on VAT accumulation when evaluating the rela-
tionship between CRF levels and metabolic risk markers.
Some investigators observed an influence of VAT on the
association of CRF with metabolic risk (10,25). We and
others failed to show such a relationship (8). Differences
in adiposity and sex distribution among studies could
contribute to the discrepancy. Men in the latter study were
older, and the prevalence of obesity was higher than that
for men in the study by Arsenault et al. (10). Only one
study quantified VAT in overweight and obese women to
assess mechanistic links between CRF and metabolism
(25). Yet, obese women are prone to develop metabolic
disease (20,31). Given the discrepancy among studies, we
suggest that VAT may not be the crucial factor linking CRF
and metabolism.

The positive relationship between CRF and insulin
sensitivity in our study was no longer significant after
controlling for intrahepatic fat content or alanine amino-
transferase, as an indicator of liver function (32). This
finding suggests that the relationship between insulin
sensitivity and CRF in overweight to obese subjects is

mediated by IHL content rather than total body, abdomi-
nal, or intramyocellular fat accumulation. Moreover, in
subjects in the highest CRF tertile, insulin sensitivity was
unaffected by VAT mass or total body fat. In contrast,
insulin sensitivity was consistently impaired in subjects
with increased IHL regardless of physical fitness. There-
fore, the beneficial effect of high CRF on insulin sensitivity
appears to be limited to individuals with low intrahepatic
fat content.

Potential mechanisms linking CRF and IHL include
factors regulating hepatic lipid oxidation (33–36). Sub-
strate oxidation is tightly coupled to mitochondrial oxida-
tive capacity (37,38). Mitochondria occupy �18% of the
liver cell volume (39). Mitochondrial function, a strong
determinant of fitness, (40) could conceivably affect he-
patic lipid oxidation. In fact, variation in the genes encod-
ing peroxisome proliferated–activated receptor (PPAR) �,
PPAR coactivator 1, and PPAR� affects mitochondrial
function, responsiveness to physical training (33), and
liver fat content (41). Very recent experiments in rats
showed that low aerobic fitness causes reduced hepatic
mitochondrial oxidative capacity, which increased suscep-
tibility to hepatic steatosis and liver injury (42). Plasma
biomarker analysis revealed that hs-CRP could also con-
tribute, at least partly, to the observed association be-
tween CRF, insulin sensitivity, and IHL accumulation.
hs-CRP is elevated in liver disease and predicts the inci-
dence of type 2 diabetes in humans (43,44). Our findings
underscore the importance of IHL in obesity-associated
insulin resistance and type 2 diabetes (12,45).

The strength of the relationship between fat distribu-
tion, CRF, and insulin sensitivity differs between men and
women. The sex difference may be explained in part by
relatively low CRF (46) and IHL content in our women.

In conclusion, our study suggests mechanisms through
which CRF improves cardiovascular and metabolic risk
factors independently of body weight. The interaction
between CRF and insulin sensitivity seems to be mediated
by hepatic lipid content rather than the amount of total,
visceral, subcutaneous, or intramyocellular fat. Regular
physical activity improves whole-body and abdominal fat
mass as well as IHL accumulation and insulin sensitivity
(47–49). Physical fitness noticeably improves metabolic
risk and contributes independently to metabolic health
even without body fat reduction (8,47,50). Optimization of
nutritional, exercise, and pharmacological interventions
such that lipid mobilization from the liver is maximized
may be particularly beneficial in terms of metabolic risk

TABLE 4
Biochemical parameters and their sex-independent association (Pearson correlation coefficients) to adiposity and body fat
distribution

Women Men BMI % Body fat VAT SAT IHL

n 107 31
Fetuin-A (ng/ml) 253 � 71 268 � 79 0.26** 0.09 0.22* 0.20* 0.35**
Adiponectin (
g/ml)

Total 6.4 � 2.3 5.1 � 1.5* �0.16† �0.03 �0.25** �0.04 �0.28**
High molecular weight 3.2 � 1.6 2.2 � 1* �0.18* �0.08 �0.25** �0.02 �0.27**
Middle molecular
weight 1.3 � 0.4 0.9 � 0.3* �0.08 0.02 �0.20* 0.02 �0.21*
Low molecular weight 2 � 0.5 1.9 � 0.4 �0.10 �0.01 �0.14† �0.07 �0.22*

hs-CRP (
g/l) 1.6 � 0.1 1.5 � 0.2 0.29** 0.20* 0.15 0.23* 0.24*
RBP4 (
g/ml) 74.8 � 29.7 83.8 � 26.2 0.03 �0.02 0.19* 0.04 0.25*

Data are means � SD. Group comparison by t test for unpaired samples: †P � 0.1; *P � 0.05, **P � 0.01.
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reduction. Our study provides a strong impetus to test this
hypothesis in prospective studies.

ACKNOWLEDGMENTS

This study was part of a joint project between metanomics
(Berlin, Germany) and Charité University Medical School
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Gullo D, Orlando A, Specchiale F, Papotto A, Abruzzo, Basilicata, Calabria,
Campania, Emilia, Romagna, Giulia FV, Lazio, Liguria, Lombardia, Marche,
Molise, Piemonte, Puglia, Sardegna, Sicilia, Toscana, Adige TA, Umbria,
D’Aosta V, Veneto, Massacesi A, Chiantera A, Donati Sarti C, De Aloysio P,
Omodei U, Ognissanti F, Campagnoli C, Penotti M, Gambacciani A,
Graziottin A, Baldi C, Colacurci N, Corrado Tonti G, Parazzini F, Chaten-
oud L. Risk factors for type 2 diabetes in women attending menopause
clinics in Italy: a cross-sectional study. Climacteric 2005;8:287–293

32. Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, Bogardus C,
Tataranni PA. High alanine aminotransferase is associated with decreased
hepatic insulin sensitivity and predicts the development of type 2 diabetes.
Diabetes 2002;51:1889–1895

33. Stefan N, Thamer C, Staiger H, Machicao F, Machann J, Schick F, Venter
C, Niess A, Laakso M, Fritsche A, Häring HU. Genetic variations in PPARD
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