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Abstract

seRNA is a noncoding RNA (ncRNA) transcribed from active super-enhancer (SE), through which SE exerts biological
functions and participates in various physiological and pathological processes. seRNA recruits cofactor, RNA polymerase
I and mediator to constitute and stabilize chromatin loop SE and promoter region, which regulates target genes
transcription. In tumorigenesis, DNA insertion, deletion, translocation, focal amplification and carcinogen factor mediate
oncogenic SE generation, meanwhile, oncogenic SE transcribes into tumor-related seRNA, termed as oncogenic seRNA.
Oncogenic seRNA participates in tumorigenesis through activating various signal-pathways. The recent reports showed
that oncogenic seRNA implicates in a widespread range of cytopathological processes in cancer progression including
cell proliferation, apoptosis, autophagy, epithelial-mesenchymal transition, extracellular matrix stiffness and
angiogenesis. In this article, we comprehensively summarized seRNA's characteristics and functions, and emphatically
introduced inducible formation of oncogenic seRNA and its functional mechanisms. Lastly, some research strategies on
oncogenic seRNA were introduced, and the perspectives on cancer therapy that targets oncogenic seRNA were also

discussed.
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Background

Typical enhancer is a class of regulatory DNA sequences,
its specific functional states are distinguished by a series of
histone modifications characteristics [1, 2]. Super enhancer
(SE) is enriched with large clusters of enhancers. SE was
primarily isolated via the Rank Ordering of SE (ROSE) algo-
rithm in murine embryonic stem cells (ESCs) in 2013 [3, 4].
It is strongly occupied with aberrant high levels of master
transcription factors (TFs) (Oct4, Sox2 and Nanog), active
histone marks [histone H3 lysine 4 monomethylation
(H3K4mel), histone H3 lysine 27 acetylation (H3K27ac)],
and transcription regulator factors (cyclin-dependent ki-
nases (CDK)7, Mediator (MED)1, bromodomain-
containing protein 4 (BRD4), polymerase II (Pol II) and
p300) [5, 6]. Currently, SE identification is mainly
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dependent on chromatin immunoprecipitation followed by
sequence analysis (CHIP-seq) [7, 8].

Classic enhancer not only regulates the transcription of
target genes but also actively transcribes into enhancer
RNA (eRNA). Consistently, SE also transcribes into ncRNA
termed as super enhancer RNA (seRNA) [9], comprising
circular RNA (circRNA), long noncoding RNA (IncRNA)
and microRNA (miRNA), which play a significant role in
gene expression, splicing, translation, and epigenetic regula-
tion [10-12]. Of note, seRNA is characterized by histone
modifications (H3K27ac, H3K4mel and H3K4me2) and
chromatin factors [cohesin, p300, CREB-binding protein
(CBP) and RNA Pol II] [13, 14]. DNA translocations, small
insertions and deletions (indels), focal amplification, single-
nucleotide polymorphisms (SNPs), TFs implication and
viral infections mediate aberrant SE generation, and the SE
further transcribes into seRNA [15—17]. The recent studies
have discovered two types of seRNA, cis-acting and trans-
acting seRNA [18]. Meanwhile, according to different
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transcriptional directions, seRNA is defined as 1d- and 2d-
seRNA [19]. Even though, there are some overlapping re-
gions between seRNA and ncRNA, genome-wide sequen-
cing at transcription start site (TSS) loci can distinguish
seRNA from ncRNA [20, 21]. Generally, novel technologies
to identify seRNA include CHIP-seq [22], CAGE-seq [23],
DNase-seq [24], GRO-seq [25], PRO-seq [26], NET-seq
[27], mammalian NET-seq (mNET-seq) [28], BruUV-seq
[29], and XR-seq [30].

Generally, the distance between seRNA target gene and
SE is within 50 kilobase (kb). Nevertheless, there are con-
troversies about target gene position. For one thing, SE
may cover TSS of protein-coding gene, for another thing,
the regulated genes might be within a segment 50 kb up-
stream or downstream of the SE [8]. Although actual
functional specialization and evolutionary origins of
seRNA still remain to be explored, accumulating observa-
tions demonstrate that seRNA expression is closely associ-
ated with target genes expression via controlling SE
activity and facilitating chromatin loop [31, 32]. seRNA
plays an essential role in a wide range of physiological and
pathological activities. For instance, human SE-IncRNA
CARMEN (Cardiac mesoderm enhancer-associated non-
coding RNA) participates in cardiac specification, differen-
tiation and homeostasis [33]. In addition, seRNA functions
an indispensable role in tumorigenesis through mediating
activation of oncogenic signaling pathways, which partici-
pates in cell proliferation, autophagy, apoptosis, EMT,
ECM remodeling, and angiogenesis. It has been confirmed
that seRNA from urothelial cancer associated 1 (UCA1)
promotes ovarian cancer development through interacting
with angiomotin (AMOT) to activate yes-associated pro-
tein (YAP) signaling [34]. To comprehensively clarify the
functional mechanisms of seRNA in promoting cancer
progression, we systematically introduced seRNA gener-
ation and its characteristics, inducible factors of seRNA
and their molecular mechanisms in cancer progress. And
we also introduced some mysteries to be solved in seRNA
research and declared perspectives in cancer therapy tar-
geting oncogenic seRNA.

seRNA’s characteristics and its functions

Typically, both enhancer and promoter are classified as
noncoding elements, yet recent studies indicated that ac-
tive SE is a novel noncoding element and directionally
transcribes into seRNA, respectively [22]. Appreciated
with keynote findings, SE is defined based on the high in-
tensity of BRD4, Medl, RNA Pol II, H3K4mel and
H3K27ac [35]. SE transcribes into a group of functional
seRNA with different transcriptional modalities, structures
and functions, where RNA Pol II mediates the formation
of R-loop structure between seRNA and promoter [5].
Notably, some reports demonstrated that production rates
of cell type-specific seRNAs mainly depend on enrichment
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degrees of RNA Pol II [36]. Further, integrator, a multi-
subunit complex with a core catalytic RNA endonuclease
activity, also plays an indispensable role in biogenesis of ma-
ture seRNA and stabilization of SE-promoter chromatin
loop via stably combining with C-terminal domain (CTD)
of RNA Pol II. GRO-Seq and RNA Pol II profiling showed
an accumulated RNA Pol II-seRNA complex and a reduced
mature seRNA levels following integrator depletion [37, 38].

Similar to eRNA, seRNA belongs to a class of ncRNA.
Nevertheless, there are some similarities and differences be-
tween seRNA and ncRNA. Firstly, seRNA is produced by
transcription of SE region, displaying a positive correlation
of seRNA transcription with histone labeling, especially
with H3K27ac modification [39]. Secondly, seRNA and
ncRNA have similar transcriptional characteristics at TSS,
but seRNA is more unstable and has shorter half-life partly
due to RNA exosome activation [40]. Thirdly, ncRNA is
predominately spliced and transcribed in one direction.
However, seRNA generation is based on unidirectional and
bidirectional transcriptions, producing polyadenylated and
non-polyadenylated seRNA, respectively [9, 38]. Lastly, SE
in transcriptional state enriches transcription initiation
complexes and 5-phosphate serine RNA Pol II, which has
the characteristics of protein-coding genes promoter [41].
Distinctly, SE-enriched 2-phosphate serine RNA Pol II is
less than the whole protein-coding genes. Most import-
antly, seRNA is labeled with high tissue and cell specificity,
it has become one of the most interesting candidates in
regulating functional interactions of SE with promoter [42].

seRNAs mainly contain polyadenylation and non-
polyadenylation seRNA (Fig. la, b), namely polyA™ and
polyA™ seRNA according to the directions of transcription.
PolyA™ seRNA is longer than polyA™ seRNA, and carries
with lower signal ratio of H3K4mel/me3. PolyA" seRNA is
unidirectionally transcribed from SE region, also namely
1d-seRNA. While, polyA™ seRNA is termed as 2d-seRNA
due to bidirectional transcription, it consists of sense and
anti-sense seRNA. PolyA™ seRNA dose not undergo full
maturation and lacks splicing, but it could be modified with
5" cap [19]. Strikingly, 1d- and 2d-seRNA can simultan-
eously exist in some diseases, like the existence of p53-
regulated 1d- and 2d-seRNA in cancer progress [20].

In addition, seRNAs can be divided into cis-acting and
trans-acting seRNA according to distinct function ap-
proaches (Fig. 2a, b) [18]. Cis-acting seRNA recruits pro-
tein complexes from its synthetic site to activate adjacent
genes, where the whole length or TSS of cis-acting seRNA
is covered by SE [10]. In embryonic stem cells, non-
polyadenylated seRNA produced at SE upstream of Nanog
(- 45 enhancer) regulates nearest neighbor Dppa3 (devel-
opmental pluripotency associated 3 gene) via stabilizing
the looping of the distal SE at Dppa3 promoter. Depletion
of seRNA reduces Dppa3 expression [43]. Moreover, a
profound study has shown that seRNA could directly
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Fig. 1 1d-seRNA and 2d-seRNA transcribed from SE regulate gene expression. Active SE enriched with clusters of enhancers absorbs abundant
transcription complexes including TFs, CoFs, RNA Pol II, H3K4me1 and H3K27ac modifications. a, SE unidirectionally transcribes into 1d-seRNA. b,

SE induces 2d-seRNA (Anti-sense seRNA and Sense seRNA) transcription
. J

A Cis-acting seRNA
T H3K27ac

S
I H3K4mel

W-ul-4n-a

3z

3k

Gene
Fig. 2 cis-acting and trans-acting seRNAs transcribed from SE regulate gene expression. Active SE enriches TFs, CoFs, RNA Pol Il, H3K4me1 and

H3K27ac modifications to regulate gene expression through cis-acting and trans-acting seRNAs. a, cis-acting seRNA transcribed from SE regulates
adjacent target genes expression. b, trans-acting seRNA interacts with SE originated from other chromosomes to regulate target genes expression
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interact with CBP in cis. The locus-specific binding of CBP
with seRNA contributes to the elevated histone acetyl-
ation, and directly increases target gene transcription via
modulating local chromatin environment [39]. The trans-
acting seRNA transcribed from local genomic coordinates
interacts with SE originated from other chromosomes,
which significantly expands functional range of SE [44].
Remarkably, SE-derived polyadenylated alncRNA-EC7/
Bloodlinc (seRNA Bloodlinc) amasses at SE to hold trans
functions, subsequently boosting red blood cell production
through binding with heterogeneous nuclear ribonucleo-
protein U (HNRNPU) [42]. HNRNP is a nuclear matrix
protein that specifically stabilizes seRNA-chromatin asso-
ciations [42]. Similarly, MYOD Upstream Non-coding
RNA (MUNC) is an eRNA transcribed from the upstream
of MYOD enhancer. It is observed to induce the expres-
sion of specific myogenic genes, like MYOG, and (myosin
heavy chain 3) MYH3 that are located on different chro-
mosomes, indicating MUNC acting in trans [45]. Accord-
ing to polyadenylated seRNA Bloodlic acting in trans and
non-polyadenylated seRNA acting in cis, there may be a
close and complicated correlation between transcriptional
directions and function methods of seRNA. Taken to-
gether, cis-acting seRNA might also exert trans functions
due to 3D nuclear architecture.

seRNA had previously been thought be transcriptional
noise that exerts no function due to spurious transcription
from open chromatin regions [46]. Currently, it is widely
accepted that seRNA exerts a powerful function in forming
and stabilizing the chromatin loop, which is confirmed by
chromatin conformation capture methods comprising 3C,
4C, 5C and high-throughput chromosome conformation
capture (Hi-C) (Fig. 3) [47, 48]. Knockdown of seRNA
would disrupt the chromatin loop [5]. Mechanically, SE
produces seRNA to bind to promoter, and enhances prox-
imal or distal genes transcription by mediating spatial
interaction of SE with promoter in cooperation with RNA
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Pol I, cofactors (CoFs) and Med [5]. Additionally, accumu-
lating studies have approved that cohesin complex can
poise SE, and further maintain seRNA-induced loop [49].
Cohesion knockout would disturb chromosomal loop and
target gene activation [50]. Amazingly, seRNA can drive
out transcription inhibitory factor negative elongation fac-
tor (NELF), and transiently release it from target genes
promoter [51]. Clearly, seRNA intimately augments SE
function, and appears to be excellent markers of SE activ-
ity. In theory, seRNA generation is sensitive to the perturb-
ation of SE, further affecting target genes expression [43].

Oncogenic seRNA formation
The aberrant seRNA generated from tumorigenesis,
termed as oncogenic seRNA, modulates cancer develop-
ment via maintaining chromatin loops, assembling TFs
and promoting RNA Pol II activation (Fig. 4). Oncogenic
seRNA, in one way, is generated from genetic
alterations-induced SE, such as SNP, indels, DNA trans-
location, focal amplification, in other wayj, it is originated
from somatic mutations-generated SE triggered by viral
oncogenes and TFs overexpression. SNP is frequently
identified within or near SE. SNP rs2168101 resides in
SE of the first intron of LIM domain only 1 (LMO1),
and SNP rs539846 locates in the intron 3 of B cell
lymphoma 2 (BCL2)-modifying factor (BMF) SE, both of
them influence neuroblastoma and chronic lymphocytic
leukemia (CLL) susceptibility, respectively [52, 53]. Add-
itionally, a single-nucleotide mutation in chromosome
4q32 (4q32A > C) is extremely rare, but this mutation at-
tenuates SE activity and prohibits binding of POU2F1
and Yin-Yang 1 (YY1), which downregulates seRNA and
enhances the predisposition of thyroid carcinoma (ATC)
[54]. Obviously, SNP-activated SE could transcribe into
seRNA to implicate in cancer progression.

In cancers, chromosomal translocations activate SEs to
mediate dysregulated-expression of oncogenes. For
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Fig. 3 seRNA mediates chromatin loop of SE and promoter. seRNA recruits RNA Pol Il, CoFs and MED, forming and stabilizing chromatin loop of
SE and promoter. Cohesin complex poises SE and further maintains seRNA-induced loop. seRNA drives out NELF and transiently releases NELF
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instance, chromosomal translocation t(3;8)(q27;q24) in dif-
fuse large B cell lymphoma (DLBCL) recruits SE via MYC-
BCL6 fusion gene [55], chromosomal translocation t(8;14)
in myeloma transfers immunoglobulin H (IgH) SE to
breakpoint at 8q24 near MYC loci [56], DNA translocation
t(6;8)(p21;q24) in blastic plasmacytoid dendritic cell neo-
plasm (BPDCN) produces plasmacytoid dendritic cells
(pDCs)-specific RUNX2 SE [57]. All of these chromosomal
changes upregulate MYC proto-oncogene. Another analysis
discovered that SE-induced MYC over-expression is associ-
ated with MYC seRNA-mediated R-loop maintenance [5].
In addition, putative SE and seRNA might be obtained
from Indels mutations. A novel report demonstrated that
the deletions linked with MYC actively generate SE to fur-
ther augment MYC expression in multiple myeloma (MM)
[58], and the existence of MYC seRNA had been approved
[5]. In T cell acute lymphoblastic leukemia (T-ALL), short
insertion mutations in noncoding intergenic region of
TALI1-specific SE produce a de novo myeloblastosis onco-
gene (MYB) TF binding motif, followed by the recruitment
of MYB and H3K27ac-binding CBP, which is important for
SE initiation, seRNA transcription, and TAL1 oncogene ex-
pression [16]. Notably, focal amplification of enhancer ele-
ments frequently occurs in various cancers, which actually
accelerates noncoding genes transcription [59]. The two
different focal amplifications of SE 3" to MYC in lung
adenocarcinoma and endometrial carcinoma activate and
boosts MYC promoter, which depends on lineage-specific
chromatin loops and seRNA generation [7]. Additionally,
recurrent focal amplification at chromosome 8q24 forms a
NOTCH-bound MYC SE and drives MYC transcription,
which might involve with MYC seRNA generation [60].
Thereby, focal amplification might participate in cancer de-
velopment via promoting seRNA-mediated oncogene
expression.

Currently, viral infection is identified to be a chief bio-
logical pathogenic factor to facilitate oncogenic SE and
seRNA generation. Integration of human papillomavirus
(HPV) genomes into cellular chromatin is frequent in
HPV-associated cancers [61]. Tandemly integrated
HPV16 could result in viral-cellular SE element forma-
tion [62], which mediates seRNA HOTAIR transcription
and enhances E6 and E7 expression, causing cervical
cancer pathogenesis [63]. Epstein-Barr virus (EBV) infec-
tion promotes EBV-induced SE (ESE) looping, leading to
continuous proliferation of lymphoblastoid cell lines
(LCLs) [64]. Gro-seq data of LCLs showed that affluent
seRNA transcribed at MYC ESE promotes MYC onco-
gene expression [5]. Interestingly, EBV infection also in-
duces nasopharyngeal carcinoma (NPC)-specific SE
generation in ETV6 introns and coding regions, which
increases ETV6 expression correlated with poor progno-
sis [65]. It has well been established that human im-
munodeficiency virus type 1 (HIV-1) recurrently
activates target genes via integrating into proximity of
SE in CD4 + T cells [66]. Actually, interferon-regulatory
factor 1 (IRF1)/nuclear factor kappa-B (NF-xB) complex
at the SE sites is necessary for full HIV-1 SE site-
mediated seRNA transcription [67]. Additionally, human
lymphotropic virus type I (HTLV-I) is frequently incur-
able in adult T cell leukemia/lymphoma (ATLL). HBZ
and HTLV-I-encoded TFs integrate into ATLL-specific
BATE3 SE, further enhancing MYC expression by link-
ing with BATF3/IRF4. Overexpressed MYC exacerbates
disease through MYC seRNA transcription [68]. Inter-
estingly, the nuclear matrix protein SAFA (also known
as HNRNPU) displays an antiviral function by promot-
ing immunity and stimulating productions of SE and
seRNA of antiviral genes, including type I IFNs [69]. Of
crucial note, integrating of overexpressed TFs in SE is
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commonly found in cancer. Particularly, in the patients
with B-cell ALL, high ratios of active STAT5 to NF-xB
or IKROS in SE also tend to strengthen seRNA expres-
sion, and show more aggressive disease phenotypes [70].
NE-«B is a critical TF for driving gene expression, which
is involved with SE and seRNA formation [71].

Functions and mechanisms of oncogenic seRNA in
cancer progress

Although the biological function of seRNA still remains
poorly characterized, some interesting observations have
evidently indicated that seRNA promotes target gene
transcription not only to participate in physiological ac-
tivity, but also to involve in tumorigenic action, includ-
ing oncogene expression, cancer cell proliferation, EMT,
ECM remodeling, angiogenesis, immune response, apop-
tosis and autophagy (Fig. 5, Table 1).

seRNA promotes oncogene expression

Oncogenic seRNA functions as a significant regulatory
factor for targeting oncogene transcription (Fig. 5). It
has been verified that oncogenic EBV infection controls
B cells growth and drives lymphoma and carcinoma de-
velopment via inducing seRNA production and onco-
genic MYC expression [64]. Gro-seq data of LCLs
revealed that abundant seRNAs transcribed at MYC ESE
promote transcriptional activation of MYC oncogene.
While knockdown of MYC seRNA significantly attenu-
ates MYC expression via inhibiting MYC ESE looping to
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MYC TSS [5]. In general, seRNA can recruit TFs to
maintain chromatin loops. For instance, colorectal can-
cer (CRC)-specific seRNA CCATI1-L is classified as a
nuclear-retained IncRNA, and 3C analysis showed that
CCATI1-L locates at 335kb upstream of MYC promoter
(MYC-335). There is a strongest chromatin interaction
between MYC-335 and the MYC promoter, while the
interaction between MYC-515 and MYC-355 ranks in
the second. Interestingly, CCAT1-L cis overexpression
remarkably upregulates MYC and accelerates CRC
tumorigenesis [32]. Further investigation revealed that
CCCTC-binding factor (CTCF) is enriched at the loops
of MYC promoter and the MYC-335 and MYC-515 seg-
ments, and there is a specific interaction between CTCF
and CCATI1-L. CTCF knockdown significantly decreases
the transcription of MYC and CCAT1-L. Moreover, de-
pletion of CCAT1-L markedly decreases CTCF occupa-
tion of loop regions at MYC. It could be speculated that
CCAT1-L may regulate MYC expression by interacting
with CTCEF, which stabilizes long-range chromatin inter-
actions of MYC promoter with MYC-335 or interaction
of MYC-335 with MYC-515 [32]. Additionally, T-ALL-
related TAL1 [16], Ewing sarcoma-related MEIS1 [100],
hepatocellular carcinoma (HCC)-correlated sphingosine
kinase 1 (SPHK1) [101], HPV-induced E6 and E7 [61],
oral squamous cell carcinoma (OSCC)-associated PAK4,
RUNXI1, DNAJB1, SREBF2 and YAP1 [102] are corres-
pondingly regulated by oncogenic SE, and promote can-
cer development.
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Fig. 5 Oncogenic seRNA participates in carcinogenic processes through activating various signal-pathway. Oncogenic seRNA mediates chromatin
loops formation to regulate oncogene expression, inducing cancer development. seRNA in Treg cells mediates immunosuppression. seRNAs
existing in CD4+ T, B cells and macrophages mediate anticancer immunity through upregulating IFN-y. seRNA-mediated MYC upregulates CD47
and PD-L1 to inhibit immunity. seRNA from TP53 SE strengthens TP53 transcription to induce cell-cycle arrest, consequently suppressing cell
proliferation. seRNA CCAT1/TP63/SOX2 complex enhances EGFR transcription and activates RAF/ERK and PI3K/AKT signal pathway, which
enhances cancer cells proliferation. seRNA LINCO1503/EBP activates PI3K/AKT signaling, seRNA LINCO1503/ERK2 and seRNA/EHZ2 activate p38
MAPK signaling, these pathways accelerate autophagy. seRNA-mediated Hippo/YAP induces autophagy inhibition, and regulates apoptosis via Bax
and Bcl-2. seRNA-conducted Hippo/YAP also induces angiogenesis via enhancing Ang2, VE-cadherin and a-SMA expression. seRNA
downregulates VASH1 to facilitate angiogenesis. SE-mediated GSK-3(3 drives angiogenesis by triggering ANG, AM, 3-catenin pathways and
upregulating VEGF. seRNA accelerates EMT by upregulating Snail, Slug, ZEB1 and Twist1 or enhancing Wnt/-catenin signaling. seRNA-induced
YAP/TAZ upregulates CTGF and Cyr61 to promote a-SMA overexpression and ECM protein deposition, accelerating ECM remodeling. seRNA
drives CAFs activation to mediate ECM remodeling via MMP-2,9 and TGF-3/Snail/RhoA activation. There is a positive feedback loop between a
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Table 1 The molecule mechanisms of seRNA regulating cancer process

Biological functions seRNA’s Locations Effects on cancer Mechanisms Ref
name development
EMT HCCL5 HCC Exacerbate Up-regulating Snail, Slug, ZEB1 and Twist1 expression. [72]
CCAT1-L  Bladder, cervical Exacerbate Promoting invasion and metastasis. [73-75]
and ovarian cancer
circRNA HCC Exacerbate YY1/p65/p300 complex promotes circRNA transcription. [76]
Apoptosis UCA1 NB and GC Alleviate Enhancing AMOTp130-YAP and Hippo-YAP activity. [77,78]
Autophagy UCA1 Breast carcinoma  Exacerbate UCAT-induced Hippo-YAP activity suppresses autophagy. [79, 80]
LINC01503 SCC Exacerbate Accelerating autophagy via activating PI3K/AKT and ERK/p38  [80, 81]
MAPK signaling.
Angiogenesis circNfix ATC and RCC Exacerbate Activating GSK3(3-mediated B-catenin, ANG and AM signaling  [76, 82,
and up-regulating VEGF. 83]
UCA1 PDAC Exacerbate Enhancing Hippo-YAP activity and YAP-TEAD interaction. [84]
Immune response  seRNA CD4+ Tand Treg  Alleviate Regulating the T and Treg cells differentiation, maturation. [85, 86]
cells
seRNA B cells Alleviate Enhancing B cells activation and humoral immunity. [87-89]
seRNA Macrophages Alleviate Driving immunity and enhancing the release of IFN-y. [90]
seRNA IFN-y Alleviate Enhancing function of CD4+ T and NK cells. [91]
CCAT1 PD-L1 Exacerbate Up-regulating PD-L1 by activating PI3K/AKT and RAF/MEK/ERK  [92]
signaling.
CCAT1 PD-L1, CD47 Exacerbate Up-regulating PD-L1 and CD47 by inducing MYC. [93]
ECM UCA1 GC, CRC, lung and  Exacerbate Up-regulating a-SMA and ECM proteins. [94, 95]
breast cancer
seRNA Brest cancers Exacerbate Driving CAFs proliferation and myofibroblast differentiation. [96-98]
Oncogene MYC- LCLs Exacerbate Promoting transcriptional activation of MYC oncogene. [5]
expression seRNA
CCAT1-L  CRC Exacerbate Assembling CTCF and up-regulating MYC. [32]
Cancer cells CCAT1 SCC Exacerbate Forming CCAT1/TP63/SOX2 complex to activate [24]
proliferation EGFR-induced RAF/MEK/ERK and PI3K/AKT signaling.
TP53- Various cancers Alleviate Increasing TP53 transcription and inducing cell-cycle arrest. [99]
seRNA

HCC hepatocellular carcinoma, AMOT angiomotin, UCAT urothelial cancer associated 1, NB neuroblastoma, GC gastric cancer, SCC squamous cell carcinoma, ATC
anaplastic thyroid carcinoma RCC, renal cell carcinoma, PDAC pancreatic ductal adenocarcinoma, Treg foxp3+ regulatory T, a-SMA a-smooth muscle actin, LCLs
lymphoblastoid cell lines, EMT epithelial-mesenchymal transition, ECM extracellular matrix, YAP yes-associated protein, TAZ transcriptional coactivator with PDZ-
binding domain, EGFR epidermal growth factor receptor, CAFs cancer associated fibroblasts, PI3K phospholipids inositol triphosphate kinase, AKT protein kinase B,
MAPK mitogen-activated protein kinase, ERK extracellular signal regulated kinase, MEK mitogen-activated extracellular signal-regulated kinase, CTCF CCCTC-binding

factor, VEGF vascular endothelial growth factor

seRNA participates in cancer cell proliferation

Oncogenic seRNA promotes cancer cells proliferation
through regulating signal molecules expression and acti-
vating signal-pathways (Fig. 5). CCAT1 seRNA is proved
to be a significant biomarker in CRC, abundant studies
have proved that it is also upregulated in different can-
cers, such as bladder cancer [73], esophageal cancer [74],
cervical cancer [74], prostate cancer [103], and ovarian
cancer [75]. In particular, squamous cell carcinoma
(SCC) specific SE regions are cooperatively occupied
with TP63 and SOX2 to boost CCAT1 seRNA transcrip-
tion, CCAT1/TP63/SOX2 complex is bound to SE re-
gions of epidermal growth factor receptor (EGFR) to
promote EGFR transcription. The overexpressed EGFR
contributes to the activation of RAF/mitogen-activated

extracellular signal-regulated kinase (MEK)/ERK1/2 and
PI3K/AKT signaling pathways, and boosts SCC cell pro-
liferation both in vitro and in vivo [24]. Experimentally,
CCAT1 knockdown significantly decreases cell prolifera-
tion and colony growth, and reduces volume and mass
of the xenografted tumors in vivo, CCAT1 highlights a
strong oncogenic potential in SCC cells.

Interestingly, SE regions of several cancer-correlated
genes can directly produce seRNA. TIAM2 was identi-
fied as an uncharacterized gene in ATL, its overexpres-
sion promoted cell proliferation via inducing SE and
seRNA activation [104]. CDK inhibitor, THZ1, efficiently
downregulates the expression of SE-associated TIAM?2
and inhibits cell growth. On the contrary, TP53, a tumor
suppressor, might produce seRNA from SE regions at
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p53-dependent manner. The seRNA produced from
TP53 SE regions strengthens efficient TP53 transcription
and induces p53-dependent cell-cycle arrest, showing
the potent function of TP53 SE-transcribed seRNA in
suppressing cancer cells proliferation [99]. Collectively,
seRNAs transcribed from SE may play a dual role in
cancer cells proliferation, but this needs more direct
evidence.

seRNA exerts dual-functions of apoptosis and
antiapoptosis

seRNA exerts a apoptosis regulator through modulating
several apoptosis mediators such as Bax and Bcl-2 (Fig.
5). seRNA UCA1 highly expresses in various cancers in-
cluding gastric and ovarian cancer. The direct binding of
seRNA UCA1l to AMOT pl130 enhances AMOTp130-
YAP interaction, which prominently activates Hippo-
YAP signaling via promoting YAP dephosphorylation
and nuclear translocation [34, 94]. YAP activation sig-
nificantly upregulates proapoptotic protein Bax expres-
sion, downregulates antiapoptotic protein = Bcl-2
expression (Fig. 5). The increased Bax/Bcl-2 ratio exerts
proapoptosis function in neuroblastoma (NB) and gastric
cancer (GC) [77, 78]. Interestingly, activation of
mitogen-activated protein kinase (MAPK) signaling in-
hibits YAP phosphorylation and promotes YAP nuclear
translocation via upregulating c-Jun N-terminal kinase
(JNK) and extracellular signal regulated kinase (ERK).
Hence, the crosstalk between Hippo-YAP and MAPK
signaling pathway cooperatively takes part in the regula-
tion of apoptosis behavior in cancer progress [59].

Upon apoptosis stimuli, Bak and Bax form complex,
and the accumulation of Bak protein on mitochondrial
outer membrane further boosts apoptosis by stimulating
the release of proapoptotic proteins from mitochondria
into cytosol [105]. To our surprise, SE inhibitors, JQ1
and THZ1, have a potent capability to trigger cancer
cells apoptosis accompanied with increased Bax [106],
suggesting that SE might block cancer cells apoptosis via
upregulating seRNA and proapoptotic protein expres-
sion. Thereby, the exact contribution of seRNA to apop-
tosis might be a “double-edged sword”, and this remains
to be explored (Fig. 5).

seRNA participates in autophagy regulation

Recent studies have found that seRNA expression is
tightly associated with autophagy. seRNA UCA1-activated
Hippo-YAP is associated with not only apoptosis, but also
autophagy. Increased Hippo-YAP activation has been
found to control autophagy, which involves in mammalian
target of rapamycin (mTOR) pathway that is a notable
regulator of autophagy [107]. A study on breast carcinoma
MCE-7 cells confirmed that scutellarin treatment upregu-
lates p-YAP and downregulates YAP levels, which

Page 8 of 15

represses cancer development via inducing autophagy
[79]. Oppositely, UCAl-induced Hippo-YAP activation
could suppress autophagy and exacerbate cancer process
[80]. SCC-specific seRNA LINCO01503 is activated when
TF TP63 is bound to SE at seRNA locus, further enhan-
cing malignant phenotype of SCC. Mechanically, overex-
pressed LINC01503 interacts with ERK2, which leads to
activation of ERK/p38 MAPK signaling through inhibiting
the binding of ERK2 with dual specificity phosphatase 6
(DUSP6) and reducing ERK2 dephosphorylation (Fig. 5).
Similarly, the interaction of LINCO01503 with enhancer
binding protein (EBP)1 disrupts the binding of EBP1 to
p85 subunit of PI3K and promotes PI3K ubiquitination,
subsequently activating PI3K/AKT signaling. The two sig-
naling pathways synergistically accelerate autophagy and
strengthen oncogenic activity of SCC [80, 81]. In addition,
the enhancer of zeste homolog 2 (EZH2) mediates p38
MAPK activation via directly binding with seRNA, and
the activated EZH2 induces autophagy through promoting
p38 MAPK phosphorylation, following the upregulated
autophagy genes including Agt5 and LC-3II [108, 109]
(Fig. 5). Disturbance of autophagy-lysosome flux leads to
endoplasmic reticulum (ER) stress and an unfolded pro-
tein response (UPR), which finally leads to apoptotic cell
death in the tumor tissue [110]. In particular, genome
stress with temozolomide (TMZ) synergistically induces
apoptosis in collaboration with accumulated ER stress
with chloroquine treatment [111].

seRNA mediates EMT of cancer cell
EMT is a reversible trans-differentiation of polarized epi-
thelial cells to mesenchymal cells, which is involved with
embryogenesis, wound healing, oncogenes and tumor-
suppressor genes expression [112]. Increasing reports in-
dicated that dysregulated seRNA impacts epithelial plas-
ticity by affecting various EMT markers expression (Fig.
5). CRC-specific seRNA CCAT1-L has been proved to
be overexpressed in various cancers including bladder,
cervical and ovarian cancer, it promotes EMT activation,
invasion and metastasis [73—-75]. seRNA HCCLS5 is con-
sidered as an SE-driven cytoplasmic IncRNA in HCC,
and it accelerates EMT phenotype, invasion and metas-
tasis in HCC cells by up-regulating Snail, Slug, ZEB1
and Twistl expression [72]. Interestingly, SE-induced
circRNA participates in regulating EMT process. A pro-
found study has discovered that nuclear TF YY1 is
bound to SE to build YY1/p65/p300 complex, which fa-
cilitates SE-associated circRNA generation to promote
the malignancy of HCC [76].

Beyond all doubt, seRNA-correlated oncogenes also exert
a positive part in EMT process. CTNNDI1 (delta-catenin)
functions as a novel oncogene in HCC. Notably, knock-
down of CTNNDI1 prominently leads to mesenchymal-
epithelial transition (MET), whereas its overexpression
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enhances EMT and metastatic and invasive properties of
HCC via indirectly modulating Wnt/p-catenin signaling,
accompanied with increased cyclin D1 and matrix metallo-
proteinase (MMP)-7 [113, 114]. Previous study has found
that canonical Wnt/[B-catenin signaling enhances metastasis
of cancer cells by up-regulating ZEB1 in vitro [115]. Thus,
seRNA may induce CTNNDI further to stimulate Wnt/p3-
catenin signaling and promote EMT formation through ac-
tivating ZEBI.

seRNA regulates cancer angiogenesis

Angiogenesis accelerates cancer progress via providing
nutrient and energy supply, thus, it frequently serves as
a therapeutic target for cancer [116]. Oncogenic seRNA
regulates cancer angiogenesis through activating several
signaling pathways (Fig. 5). SE-associated Nfix circRNA
(circNfix), namely seRNA Nfix, activates glycogen syn-
thase kinase-3p (GSK-3p) pathway to promote angiogen-
esis [12, 76]. seRNA-activated PI3K/AKT signaling can
not only promote autophagy, but also accelerate angio-
genesis in anaplastic ATC and renal cell carcinoma
(RCC) through triggering GSK3B/ANG and GSK33/AM
pathway activation [82, 83]. Additionally, GSK3[/B-ca-
tenin signaling pathway also enhances angiogenesis
through mediating vascular endothelial growth factor
(VEGF) expression [117].

In addition, there are other signal pathways that are
involved in angiogenesis. seRNA UCA1-activated Hippo-
YAP signaling has been proved to induce angiogenesis
in pancreatic ductal adenocarcinoma (PDAC) via enhan-
cing Ang2, VE-cadherin and a-smooth muscle actin (a—
SMA) expression [84]. seRNA directly binds with EZH2,
and the seRNA/EZH2 complex recruits methyl groups
to the promoter region of angiogenesis inhibitor gene
vasohibin-1 (VASH1), then the reduced VASHI expres-
sion facilitates angiogenesis [118].

seRNA participates in immune response

Cell specific seRNAs implicate in proliferation, differenti-
ation, maturation and activation of immune cells and se-
cretion of cytokines (Fig. 5). seRNA existed in CD4+ T
and foxp3+ regulatory T (Treg) cells plays an important
role in T and Treg cells differentiation, maturation and
function, respectively [85, 86]. It has been proved that IgH
3’ regulatory region (3'RR) acts as a major B-cells SE [87],
the target genes closer to seRNA are more highly
expressed in human humoral immune B cells [88]. Fusion
gene ETV6-RUNX1-generated SE induces seRNA gener-
ation that is considered as a pivotal marker for CD19"/
CD20" cells at later stage of B cells differentiation, which
is linked with B cells maturation [89]. In macrophages,
lipopolysaccharide (LPS)-activated toll-like receptor 4
(TLR4) signaling can facilitate nearly all SE to express
seRNA (93.3%) in intergenic regions via recruiting TFs
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binding, together with overexpression of key genes that
drive the releases of innate immunity and inflammatory
factor, like IFN-y [90]. Importantly, IFN-y seRNA main-
tains the interaction of NF-kB with IFN-y locus, which
boosts innate and adaptive immune responses against can-
cer progression [119]. Preclinical data showed that BET
inhibitor JQ1 prominently abrogates BRD4-associated
IFN-y seRNA and IFN-y production via suppressing RNA
Pol II binding to the IFN-y locus, which results in dys-
function of CD4+ T and NK cells, following by the weak
immune response [91].

In addition, seRNA manipulates the expression of im-
mune checkpoints, including stimulatory and inhibitory
checkpoints [120]. For example, seRNA CCATI1-L-
induced MYC upregulates the expression of innate im-
mune checkpoint CD47 (cluster of differentiation 47)
and adaptive immune checkpoint PD-L1 (programmed
death-ligand 1) by directly interacting with promoters of
these two genes in cis [93]. Moreover, the CCAT1/
TP63/SOX2 complex binds to SE sites of EGFR to en-
hance EGFR transcription in trans [24], further increas-
ing PD-L1 expression by activating PI3K/AKT and RAF/
MEK/ERK signaling. Taken together, seRNA CCAT1
could heighten PD-L1 transcription by forming an
seRNA-TF complex to promote target genes expression
and stimulate downstream signaling pathways [92].
seRNA-associated IFN-y signaling primarily induces PD-
L1 expression in melanoma cells through activating
Janus kinase (JAK)-signal transducer and activator of
transcription (STAT)-IRF1 axis [121].

It has been demonstrated that BRD is an extremely
important constitute of SE, treatment with BRD inhibi-
tor or BRD4 knockdown suppresses PD-L1 expression in
ovarian cancer [122]. As being described previously,
BRD4 promotes seRNA transcription, and there is a
chromatin loop between distal SE and PD-L1 TSS.
Therefore, seRNA might be involved in BRD4-mediated
PD-L1 up-regulation by maintaining the chromatin loop
[123]. Collectively, seRNA suppression mediated by
BRD4 inhibitors might promote anticancer immunity by
suppressing PD-L1 expression or block anticancer im-
munity through inactivating immune cells.

seRNA involves in ECM remodeling

ECM is a crucial component of tumor microenvironment
(TME) and an important barrier for invasion and metasta-
sis [124]. seRNA can directly or indirectly influences ECM
remodeling via regulating ECM proteins transcription (Fig.
5). Nowadays, several IncRNAs enriched at SE regions have
been identified in hepatic stellate cells (HSCs), which are
unidirectional seRNAs that encode key genes to regulate
ECM stiffness [125]. Currently, a novel study focused on
the function of seRNA UCA1l-activated YAP, and discov-
ered that aberrant activation of YAP/TAZ (transcriptional
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coactivator with PDZ-binding domain) axis exists in the
microenvironment of various cancers including GC, CRC,
lung cancer and breast cancer [94]. YAP/TAZ activation
remarkably increases contractile activity and upregulates
connective tissue growth factor (CTGF) and Cyr61, which
promotes a—SMA overexpression and ECM proteins de-
position including laminin, collagen type I and fibronectin
[126]. Of critical note, SE-boosted seRNA might drive
cancer-associated fibroblasts (CAFs) proliferation and
myofibroblast differentiation [96]. This process also ac-
companies with degradation and remodeling of ECM via
secreting MMP-2 and 9 and boosting TGEF-/Snail/RhoA
signaling, which accelerates the invasion and metastasis of
breast cancer [97, 98]. Amazingly, there is a positive feed-
back loop between stiff ECM and CAFs activation [95].

As mentioned previously, the pathological role of CAFs
in TME was used to consider as a therapeutic strategy for
preventing cancer development and progression [127].
Typically, CAFs produce excessive amounts of fibrous col-
lagen, which can be cross-linked by lysyl oxidase (LOX),
then increasing focal adhesions and ECM stiffness [128,
129]. In turn, the increased ECM stiffness was identified
to profoundly facilitate cancer progression through trig-
gering oncogenic signal pathways including activated focal
adhesion kinase (FAK), B-catenin, and PI3K/AKT [129,
130]. Functionally, targeting ECM stiffness via inhibiting
LOX enzymatic activity and repressing CAFs proliferation
and subsequent CAFs-neoplastic cells interaction, have
been demonstrated to decrease metastatic dissemination
of breast and colorectal tumor cells in vivo [102, 129].

Of note, PLX4720 (BRAF inhibitor) also leads to activa-
tion of CAFs and enhancement of matrix remodeling via

Table 2 Combinational therapies with SE inhibitors in clinical trials
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negatively affecting BRAF expression. The remodeled
matrix enables melanoma cells to tolerate PLX4720 via
stimulating integrin p1/FAK-dependent ERK/MAPK sig-
naling [131]. More importantly, the patient-derived tumor
xenografts (PDXs) model revealed that co-inhibition of
BRAF and FAK abolishes ERK reactivation in tumor
stroma [132].

Challenge and prospective

Recently, seRNA emerges in lots of hot fields due to its
wide and strong functions in universal conditions. 3D nu-
clear architecture studies suggested that seRNA may not
only play a role in linear nearby genes expression, but also
affect the linear distant genes expression. CRISPR/Cas9
genome-editing technology by disrupting SE functional
fragments provides new insights for the exploration of
seRNA [133]. In the study on seRNA, several challenges
still lie ahead. For instance, transcripts from seRNA are
unstable and frequently aborted, which brings immense
challenges to find more significant seRNA and validate
the corresponding functions [29]. Thereby, future study
should focus on postponing seRNA decay, which might
involve in RNA metabolism and RNA regulatory pathways
[134]. Moreover, it still needs to be verified whether the
stability of SE-promoter interaction impacts seRNA stabil-
ity via regulating the efficiency of recruiting RNA Pol II
and other important TFs.

Numerous models have proposed abroad and powerful
biological function of seRNA, but the detailed molecular
mechanisms of seRNA actually remain to be explored. It
is well established that seRNA forms and maintains R-
loop to promote adjacent or distant target gene

Drug name Target ~ Combination Disease Status Phase NCT number
FT-1101 BET Azacitidine AML, MDS or non-hodgkin lymphoma Completed 1 02543879
(NHL)

CPI-0610 BET Ruxolitinib Myelofibrosis Recruiting 2 02158858

BMS-986158 BET Nivolumab Advanced tumors Recruiting 2 102419417

RO6870810 BET Daratumumab Relapsed/refractory multiple myeloma Active, not 1 03068351

Recruiting

SY-1365 CDK7 Carboplatin or Advanced solid tumors, ovarian cancer, Recruiting 1 03134638
Fulvestrant breast cancer

CT7001 CDK7 Fulvestrant Advanced solid malignancies Recruiting 2 03363893

BCD-115 CDK8/  Endocrine therapy Breast cancer Completed 1 03065010

19

PD-0332991/ CDK4/6  Binimetinib Lung cancer Recruiting 1 03170206

Palbociclib

LEEO11/Ribociclib CDK4/6  Ceritinib Non-small cell lung cancer Completed 1 02292550

PD-0332991/ CDK4/6  Nab-Paclitaxel Metastatic pancreatic ductal Completed 1 02501902

Palbociclib adenocarcinoma

Trilaciclib /G1728 CDK4/6  Etoposide and Small cell lung cancer Completed 1b/2a 02499770
Carboplatin

BET bromodomain and extra-terminal, CDK cyclin-dependent kinases. The data originated from: https://clinicaltrials.gov
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expression. Notably, the maintained presence of chroma-
tin loop between SE and TSS could facilitate transcrip-
tion initiation. However, it is put forward that seRNA
might negatively regulate target genes expression. Since
seRNA extensively exerts functions, its transcription
might lead to some unknown alterations of physiological
activities, this is difficult to be investigated. seRNA is
mainly composed of 1d and 2d-seRNA, or cis-acting and
trans-acting seRNA, moreover, abundant polyA®™ 1d-
seRNA accumulated at SE would hold trans functions
[42]. Maybe, there is profound association between tran-
scriptional direction and functional methods of seRNA.
Therefore, distinguished functional mechanisms of
seRNA are really worthy of a profound exploration.

In tumorigenesis, DNA damage response (DDR), gene
mutations, and genome instability are associated with
seRNA formation and alteration [134], which might lead
to abnormal genes expression and drive malignant pro-
gress of cancer. Theoretically, seRNA has potential to be-
come a better biomarker for diagnosing cancer than
frequently used biomarkers such as mRNA, DNA or pro-
tein, and it also presents a novel therapy target for cancer
due to the high cell specificity [135]. A wide range of pre-
clinical studies suggest that SE inhibitors, such as BRD4
inhibitor JQ1 [136], CDK7 inhibitor THZ1 [137],
mediator-associated CDKS8 inhibitor cortistatin A [138],
CDK12 inhibitor THZ531 [139] and CDK4/6 inhibitor
LEEO11 [140], have shown dramatic potential for sup-
pressing seRNA transcription and inhibiting cancer
growth. As shown in Table 2, combination therapies with
SE inhibitors have entered into clinical trials, which pro-
vide a deep insight for anticancer therapy. In addition,
considering the structural characteristics of SE, future re-
search should pay attention to elucidate the functions of
individual components of SE [135].

Conclusion

Collectively, seRNA derived from active SE has a powerful
transcriptional regulation function, and its production rate
is based on the recruitment of RNA Pol II. Significantly,
seRNA regulates near gene transcription and mediates
distant gene expression via forming and maintaining the
chromatin loop of SE and promoter. During tumorigen-
esis, DNA insertion, deletion, translocation, focal amplifi-
cation and carcinogen factor mediate oncogenic SE
generation, and oncogenic SE transcribes into oncogenic
seRNA. Oncogenic seRNA activates multiple signaling
pathways that are associated with cell proliferation, EMT,
apoptosis, autophagy, ECM remodeling, angiogenesis, and
immune response, promoting carcinogenesis. SE inhibi-
tors are capable of blocking seRNA generation via disrupt-
ing SE to suppress oncogenic signaling pathways,
therefore, targeting seRNA might represent new strategies
for cancer therapy.
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