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Recurrent Laryngeal Neuropathy (RLN) is a highly prevalent and predominantly left-sided, degener-

ative disorder of the recurrent laryngeal nerves (RLn) of tall horses, that causes inspiratory stridor

at exercise because of intrinsic laryngeal muscle paresis. The associated laryngeal dysfunction and

exercise intolerance in athletic horses commonly leads to surgical intervention, retirement or

euthanasia with associated financial and welfare implications. Despite speculation, there is a lack

of consensus and conflicting evidence supporting the primary classification of RLN, as either a dis-

tal (“dying back”) axonopathy or as a primary myelinopathy and as either a (bilateral)

mononeuropathy or a polyneuropathy; this uncertainty hinders etiological and pathophysiological

research. In this review, we discuss the neuropathological changes and electrophysiological deficits

reported in the RLn of affected horses, and the evidence for correct classification of the disorder.

In so doing, we summarize and reveal the limitations of much historical research on RLN and pro-

pose future directions that might best help identify the etiology and pathophysiology of this

enigmatic disorder.
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1 | INTRODUCTION

Recurrent laryngeal neuropathy (RLN), is an equine degenerative disor-

der of the recurrent laryngeal nerves (RLn) of (particularly) tall breeds

such as Thoroughbreds and Drafts.1,2 The disease is characterized by

preferential degeneration of the left RLn over the right RLn3,4 that

causes paresis or, in severe cases, paralysis of the left intrinsic laryngeal

muscles preventing arytenoid movement, which is vital for enabling

unimpeded inspiratory airflow. Recurrent laryngeal neuropathy (RLN) is

performance limiting in horses performing at their greatest exertion, in

particular, in racehorses.5 Many studies have identified RLN-associated

neuropathological changes in both RLns (left more so than right) in clin-

ically unaffected horses, leading authors to postulate whether the

majority of unaffected horses are in fact subclinical cases.3,4,6,7 The

mechanisms that lead to the varying severity (from subclinical to

severe) in horses are largely unknown, however, the identification of

many subclinical cases means that case selection for “unaffected” con-

trols for research is challenging. Amongst the apparent risk factors,

horse height is reported as a significant contributor to RLN-status, with

taller horses being at greater risk1,2; it is unclear whether height itself is

the principal risk factor or simply a covariate for nerve length. Males

are more commonly affected than females.2,8 Genetic risk factors are

plausible given that the heritability of RLN ranges from 8 to 40%

depending on the breed affected9,10; however, as of yet no specific risk

alleles have been reported despite many published studies.1,11,12

Indeed, very little is known about the cause of RLN13: the array of eti-

ologies proposed includes mechanical stress14 or ischemic nerve
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damage,4 pressure damage,4 an infectious etiology,13 vitamin deficien-

cies,15 and toxic insults.16–19

RLN is consistently described as a peripheral neuropathy but with-

out a more detailed classification describing the primary defect.20,21

Conflicting data is available supporting RLN as affecting just the RLn (ie,

a mononeuropathy) or whether it affects other peripheral nerves (a

polyneuropathy).3,4,7,20,22–24 Also unanswered is whether the degenera-

tion begins within the axon or the myelin sheath. Providing answers to

these key questions would likely expedite the search for the etiology,

and potential therapies by helping focus research. For instance, molecu-

lar therapies are in development for similar human peripheral neuropa-

thies, such as the group of peripheral neuropathies known as the

Charcot-Marie-Tooth (CMT) diseases25 but a key element to developing

these therapies is the understanding of where the degeneration begins

(ie, in the nerve cell body, axon, synapse, myelin sheath or glia), to ena-

ble focused treatment. Potential issues that have hindered research in

these areas for RLN include the selection of adequate control groups

(as outlined previously), the trend for studies to evaluate subjective his-

topathological features in unblinded, uncontrolled fashion and that

many RLN-studies are typically statistically unpowered.

This review article discusses the current literature (veterinary and

human) pertaining to the pathophysiology underlying RLN, addressing

the issues relating to characterizing RLN as an axon- versus myelinop-

athy and a mononeuropathy or polyneuropathy.

2 | EQUINE RLn

The RLn contains the longest motor axons in the horse, measuring up

to 2.5 m in length in Draft and Thoroughbred horses, with the left

nerve being �30 cm longer than the right in tall breeds6 (Figure 1).

Their cell bodies are situated within the nucleus ambiguus in the brain-

stem and they project their axons caudally within the vagus nerves

before RLn fibers exit and, on the left, traverse medially around the

aorta and on the right, medially around the right subclavian artery.26

The nerves then follow an identical bilateral course, moving rostrally,

adjacent to, and on either side of the trachea and carotid arteries. Their

long axonal course is established during embryonic development: in the

growing embryo, the RLn branch from the vagus nerve at the level of

the sixth aortic arch, whereby they innervate the developing intrinsic

laryngeal muscles. As the neck of the embryo elongates, the larynx

migrates rostrally (relative to the aortic arches) resulting in elongation

of the RLn axons as they are held distally by the aortic arches.27 At the

level of the aorta, the equine RLn is �1.5 mm in diameter and the epi-

neurium contains between 6 and 29 perineuronal bundles (fascicles),

(generally between 11 and 15; Figure 2).28 Several authors have
FIGURE 1 Anatomical representation of the dorsal view of the
course taken by the RLn (yellow) in the horse, including both
vagosympathetic trunks, vagus nerves, and important vasculature.
Both RLn originate in the medulla oblongata where their cell
bodies are located within the nucleus ambiguus. The left RLn
courses around the aortic arch before innervating the muscles of
the larynx and the right RLn courses around the right subclavian
artery before it courses rostrally

FIGURE 2 Schematic representative of a peripheral nerve. The
main connective tissue structures include the epineurium
(surrounding the entire nerve), the perineurium (surrounding each
fascicle within the nerve) and the endoneurium (located around an
individual axon). The perineurium also contains blood vessels and
lymphatics
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reported structural variations at the hairpin turn of the left RLn, as it

courses around the aorta (eg, Haslam’s Anomaly and Renaut bodies)

although these appear with the same frequency in horses with and

without RLN.4,28–30

The RLn provide general somatic efferent innervation to the laryn-

geal and cranial esophageal muscles26,31 and are comprised of wide

diameter, alpha, myelinated nerve fibers of 12–20 mm diameter.28

Interspersed between the large myelinated fibers are less numerous,

narrower myelinated fibers (that are speculated to be beta and gamma

fibers) and small unmyelinated fibers.26 A study of 9 mixed-breed

horses under 2 years old with no evidence of laryngeal disease,

revealed that the total number of myelinated fibers, mean fiber diame-

ter and percentage of fibers over 9.5 lm in diameter were significantly

lower in the left RLn compared with the right (p<0.05).32 In other spe-

cies where greater numbers of myelinated nerve fibers have been

reported in the right RLn compared with the left (humans, dog, and

cats) typically the myelinated nerve fiber diameter is larger in the left

RLn, which is believed to compensate for the greater length of the left

RLn, thus maintaining comparable conduction properties since wider

axons have faster conduction speeds.33–37 Unequal fiber numbers are

not found in all species: indeed equal (or near equal) fiber numbers

have also been reported in humans, rats, and giraffes.37,38 The greater

numbers of myelinated fibers in the right RLn might reflect the pres-

ence of afferent (sensory) fibers, however the presence of sensory

axons within equine RLn has not been investigated. In humans, these

sensory axons receive input from the mucosa in the region of the vocal

folds, and in cats, the pharyngeal swallow reflex occurs in part, from

esophageal pressure increases transmitted through the RLn.39 How-

ever, staining for afferent branches in the rat RLn did not show any

sensory branches40 suggesting that there are species differences in

RLn-associated sensory pathways.

2.1 | The importance of the classification of

neuropathies

Historically, human peripheral neuropathies were classified according

to the site of the primary pathology—as a myelinopathy or axonopathy

—caused by degeneration of the myelin sheath or axon respectively,

and by the type of neuron affected: sensory or motor.41 In addition,

the involvement of a single nerve or many different nerves in the dis-

ease process is described as a mononeuropathy or polyneuropathy,

respectively.41 These classifications were critical for accurate diagno-

ses, and they underpinned all investigations into the diseases’ etiopa-

thogenesis. However, with advanced genomics, many inherited

neuropathies are now classified by their causative genetic mutations.

The genetic era has highlighted that a single disease phenotype can

result from mutations in different genes, and further, that subtle differ-

ences in a disease phenotype can be explained by different mutations

within the same gene.

The characterization of a peripheral neuropathy as either an axon-

opathy or a myelinopathy is achieved by amalgamating data from nerve

conduction velocity (NCV) testing, pathological observations (from

nerve biopsy specimen or postmortem examination) and genetic

studies.42–44 Nerve conduction velocities (NCVs) are markedly slowed

when there is extensive demyelination, and normal to partially slowed,

with reduced compound muscle or sensory action potentials, in an

axonopathy.42 In the diagnosis of human CMT disorders, genetic test-

ing has largely superseded nerve biopsy43: when a causative genetic

mutation is found, differentiating an axonopathy from a myelinopathy

is simplified by the mutated protein’s normal localized expression.

However, mutation of an axonally localized protein can lead to a dis-

ease phenotype typically attributed to a myelinopathy and vice versa

(see below). As a genetic cause of RLN has not yet been identified, the

disease’s classification as an axonopathy or myelinopathy can only be

based on pathological and electrophysiological studies.

2.2 | Charcot Marie tooth disease complex

The CMT diseases are inherited human peripheral polyneuropathies

that affect either sensory or motor axons, or both, and are arranged

into categories depending upon their primary site of pathology.43

Where possible, a definitive diagnosis of a specific form of CMT is

made after genetic testing, however where a mutation is not found,

pathological classifications provide the framework for the diagnosis

and importantly, prognostic information.43

Demyelinating forms of CMT are classified as CMT type 1 (median

motor NCV <38 m/s), with subgroups labeled according to the under-

lying genotype; CMT1a is a common form of CMT1 caused by a dupli-

cation in peripheral myelin protein 22 gene (PMP22).43 Human PMP22

duplications were discovered after observation that a mouse model

(Trembler) with similar neuropathological changes to those found in

CMT1a (peripheral hypomyelination) had a point mutation within

PMP22,45–47 highlighting the importance of accurate and detailed

histopathological disease descriptions. The axonal forms of CMT are

classified as type 2 (median motor NCV>38 m/s), with dominant

mutations in the mitofusin 2 (MFN2) gene being the most common

(CMT2a).48

An intermediate form of CMT disease (CMTX1) that produces axo-

nal and myelin-related pathological changes, as it results from muta-

tions within Connexin-32 (Cx-32).49 Cx-32 protein is expressed by

Schwann cells in the peripheral nervous system and is involved in tight

junction formation between the myelin lamella at the paranode and

Schmidt-Lantermann incisions.50,51 CMTX1 accounts for �10% of all

human CMT cases, and as a result of the paranodal abnormalities,

NCVs are usually slower than CMT type 2 (axonal), ranging from 18 to

60 m/s, but not as slow as the hypomyelinated forms of CMT (eg,

CMT type 1).42

3 | CLASSIFICATION OF RLN

3.1 | Neuropathology of RLN

The majority of pathological studies investigating RLN have been con-

ducted by a handful of groups.3,4,6,7,20,23,24,29,30,52–56 Their research

has demonstrated loss of large, alpha myelinated nerve fibers in the left

distal RLn (Figure 3), and in some severely affected horses, within the
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damage,4 pressure damage,4 an infectious etiology,13 vitamin deficien-

cies,15 and toxic insults.16–19

RLN is consistently described as a peripheral neuropathy but with-

out a more detailed classification describing the primary defect.20,21

Conflicting data is available supporting RLN as affecting just the RLn (ie,

a mononeuropathy) or whether it affects other peripheral nerves (a

polyneuropathy).3,4,7,20,22–24 Also unanswered is whether the degenera-

tion begins within the axon or the myelin sheath. Providing answers to

these key questions would likely expedite the search for the etiology,

and potential therapies by helping focus research. For instance, molecu-

lar therapies are in development for similar human peripheral neuropa-

thies, such as the group of peripheral neuropathies known as the

Charcot-Marie-Tooth (CMT) diseases25 but a key element to developing

these therapies is the understanding of where the degeneration begins

(ie, in the nerve cell body, axon, synapse, myelin sheath or glia), to ena-

ble focused treatment. Potential issues that have hindered research in

these areas for RLN include the selection of adequate control groups

(as outlined previously), the trend for studies to evaluate subjective his-

topathological features in unblinded, uncontrolled fashion and that

many RLN-studies are typically statistically unpowered.

This review article discusses the current literature (veterinary and

human) pertaining to the pathophysiology underlying RLN, addressing

the issues relating to characterizing RLN as an axon- versus myelinop-

athy and a mononeuropathy or polyneuropathy.

2 | EQUINE RLn

The RLn contains the longest motor axons in the horse, measuring up

to 2.5 m in length in Draft and Thoroughbred horses, with the left

nerve being �30 cm longer than the right in tall breeds6 (Figure 1).

Their cell bodies are situated within the nucleus ambiguus in the brain-

stem and they project their axons caudally within the vagus nerves

before RLn fibers exit and, on the left, traverse medially around the

aorta and on the right, medially around the right subclavian artery.26

The nerves then follow an identical bilateral course, moving rostrally,

adjacent to, and on either side of the trachea and carotid arteries. Their

long axonal course is established during embryonic development: in the

growing embryo, the RLn branch from the vagus nerve at the level of

the sixth aortic arch, whereby they innervate the developing intrinsic

laryngeal muscles. As the neck of the embryo elongates, the larynx

migrates rostrally (relative to the aortic arches) resulting in elongation

of the RLn axons as they are held distally by the aortic arches.27 At the

level of the aorta, the equine RLn is �1.5 mm in diameter and the epi-

neurium contains between 6 and 29 perineuronal bundles (fascicles),

(generally between 11 and 15; Figure 2).28 Several authors have
FIGURE 1 Anatomical representation of the dorsal view of the
course taken by the RLn (yellow) in the horse, including both
vagosympathetic trunks, vagus nerves, and important vasculature.
Both RLn originate in the medulla oblongata where their cell
bodies are located within the nucleus ambiguus. The left RLn
courses around the aortic arch before innervating the muscles of
the larynx and the right RLn courses around the right subclavian
artery before it courses rostrally

FIGURE 2 Schematic representative of a peripheral nerve. The
main connective tissue structures include the epineurium
(surrounding the entire nerve), the perineurium (surrounding each
fascicle within the nerve) and the endoneurium (located around an
individual axon). The perineurium also contains blood vessels and
lymphatics
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proximal left RLn, and the distal right RLn.3,4,7,20,23 Consequently, RLN

has been classified as a distal axonopathy by some authors.3,4,20 How-

ever, preferential loss of large myelinated nerve fibers in a distal to

proximal manner does not per se indicate either an axonopathy or mye-

linopathy. For example, distal to proximal axonal degeneration is typi-

cally seen with toxic or metabolic “dying-back” or “central-peripheral”

distal axonopathies (ascending destruction of the distal axon of both

central and peripheral nerves).57 Likewise, humans with end-stage

CMT type 1 (with primary demyelination), present primarily with

length-dependent axonal degeneration, with the distal appendages dis-

playing muscle atrophy and the foot deformity, pes cavus.58–60

Clues as to the primary definition of RLN’s status as an axonopathy

or myelinopathy might then be possible from other pathological fea-

tures. Common additional pathological changes affecting the distal left

RLn in severely affected cases (Havemeyer grade III/IV or IV/IV61)

include high numbers of B€ungner bands and clusters of regenerating

fibers.3,4 These changes are also found in the proximal left RLn and

(less commonly) in the distal right RLn in severely affected horses.3,4

B€ungner bands are formed from Schwann cell aggregates within the

original basal lamina of the Schwann cell-axon unit, and result from

proliferation of that Schwann cell after axonal injury41; they are

believed to serve as scaffolding to allow for axonal regeneration.62

Regenerating clusters are composed of axonal sprouts that form within

the basal lamina as a result of axonal degeneration.41,62 The presence

of both B€ungner Bands and regenerating clusters are suggestive of pri-

mary axonal degeneration.62

Other common pathological features seen in RLN are onion bulb

formation and segmental demyelination/remyelination. The develop-

ment of these structures cannot immediately be attributed to that of a

primary axonopathy or demyelinating disorder. Onion bulbs are classi-

cally seen with repeated cycles of demyelination/remyelination: they

are composed of concentric layers of remyelinating Schwann cells (that

macrophages have failed to clear) before a successive demyelination

episode.41 Repeated demyelination/remyelination is most commonly

reported in primary myelinopathies41 but does occur in primary axono-

pathies, (whence they are termed pseudo-onion bulbs).63,64 Segmental

demyelination/remyelination manifests as inconsistent internodal

lengths and myelin thicknesses, typically within the same fiber, and is a

common feature of CMT type 1 (demyelinating form).41,58,60 However,

segmental myelin loss also occurs secondarily in primary axonopathies

when there is loss of communication with the axon terminal65,66; this is

a key feature of RLN.20

As both onion bulbs and segmental demyelination/remyelination

can occur with either primary myelinopathies or axonopathies, clues as

to the primary site of degeneration might be evident from other associ-

ated localized pathological changes. In subclinical RLN cases, onion

bulbs and regions of demyelination/remyelination occur most com-

monly at prominent sites of axonal histopathological change.3,53 This is

consistent with secondary demyelination that occurs as a direct result

of axonal degeneration.41 These axonal histopathological changes

included paranodal axoplasmic outpouchings (see below),53 organelle

accumulations within swollen axons and active axonal degeneration at

sites of onion bulb formation.3,7 Specifically, Cahill and Goulden3

remarked that swollen fibers with dense axoplasm and attenuated mye-

lin sheaths were observed in the RLn; often these swollen fibers were

at the center of onion bulb formations. Duncan and Hammang53 stated

at [paranodal] areas there was evidence of paranodal demyelination

and remyelination, and as in all the other similarly swollen axons stud-

ied, that there was notable evidence of concentric Schwann cell prolif-

eration leading to typical onion bulb formation. They concluded that

the myelin attenuation occurring around axonal spheroids (axonal

degeneration) resulted from mechanical slippage of the paranodal mye-

lin.53 The paranode is the main anchorage point of the myelin lamellae

to the axon, and mechanical myelin slippage is a well-recognized conse-

quence of paranodal pathology.67–69

When sural nerve biopsy specimen from human patients with a

demyelinating polyneuropathy were compared to those with a primary

axonal polyneuropathy (diagnosed on electrophysiological tests), there

FIGURE 3 Distal Left RLn individual fascicle sections from a horse with Havemeyer grade I/IV (unaffected) RLN (left) and a horse with
Havemeyer grade IV/IV (severely affected) RLN (right). There is obvious loss of large myelinated nerve fibers (dotted arrow) in the affected
horse (right) compared with the unaffected horse (left), and also note the increased subperineurial space and endoneurial connective tissue
present in the section from the affected horse. A Renaut Body is highlighted by a solid black arrow in the normal horse. Black bar: 50 lm
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was no difference in the number of onion bulbs between the two con-

ditions.64 The authors explained the lack of difference in onion bulb

numbers resulted from the fact that onion bulbs identified in patients

with the primary axonopathy had been misclassified: they were instead,

pseudo-onion bulbs resulting from axonal degeneration/regeneration.66

The differentiation of pseudo-onions bulbs from onions bulbs can be

difficult, and is typically made by an experienced pathologist who will

assimilate the clinical history, results from other diagnostic tests and

the type and distribution of the pathology present in a nerve biopsy

specimen (sometimes with electron microscopy [EM] and immunohisto-

chemistry); where the concentric Schwann cell processes mainly con-

tain axons or axonal sprouts, this is more indicative of axonal

degeneration and regeneration, and these Schwann cell processes are

therefore termed pseudo-onion bulbs.70 As Bosboom et al64 shows,

correctly classifying these Schwann Cell proliferations as onion bulbs or

as pseudo-onions relies on knowing the underlying pathological pro-

cess at work, so it is entirely feasible that the demyelination/remyelina-

tion reported in RLN results from axonal pathology and not primary

demyelination.

Defining the primary site of disease pathology is likely harder in

end-stage disease tissue; study of tissue from individuals early in the

disease course to identify active pathological processes might be more

informative. In the RLn from subclinical cases (equivalent to grade II-

IIa61) organelle accumulations were seen in the paranodes (Figure 4)

and along some internodal regions3,4,7,53 in the most distal 40 cm of

the left RLn and became more numerous in the most distal regions;

they were only found in the distal 10 cm of the right RLn. The majority

of the paranodal swellings were located proximal to the nearest Node

of Ranvier. These swellings were further identified as axoplasmic evagi-

nations that protruded into the myelin sheath, containing mitochondria

(normal and degenerate) and dense lamellar bodies (lysosomes).53 Distal

to the swellings, the neurofilaments aggregated at the axon center,

causing the mitochondria to be displaced peripherally. Duncan and

Hammang53 hypothesized that deficits in axonal transport were most

likely the cause of the paranodal evaginations, as they occurred at the

bracelet of Nageotte, the site of myelin attachment at the paranode

which is a point of axolemmal weakness; they speculated that if axonal

transportation is perturbed, cargo will accumulate and cause bulging of

the axolemma at its weakest point.71 Axonal transportation deficits are

typically seen in primary axonopathies; in particular, certain forms of

CMT type 2 (2a, 2e, 2f) all exhibit transportation deficits whereas dif-

ferent forms of CMT type 1 (myelinopathies) do not (reviewed by

Millecamps and Julien72).

Further evidence that these paranodal evaginations result from

pathology arising in the axon can be found when looking for their replica-

tion in other diseases. Duncan and Hammang53 commented that the par-

anodal evaginations appear to be a hallmark of RLN; however, they are

almost identically replicated in certain toxic polyneuropathies (acrylamide

and 2,5-hexane-diol) and were also identified in a rat neuroma study.73–76

Acrylamide- and hexane-associated polyneuropathies share many other

similarities to RLN. They both cause a “dying-back” central-peripheral

neuropathy, preferentially affecting long motor neurons.77,78 Pathological

studies of these toxic neuropathies identified mitochondria (and neurofi-

laments) located within the paranodal evaginations, typically located prox-

imal to the node.79 In addition the evaginations precede classical signs of

axonal degeneration in acute models of intoxication.71,74,76,80 The exact

etiopathogenesis of these toxins has not yet been fully accepted,81,82 but

both bind to microtubule-associated proteins and neurofilaments,81 dis-

rupting their maintenance and function, leading to long term deficits in

the cytoskeleton and axonal transportation. Both anterograde and retro-

grade axonal transportation deficits have been recorded in acute acrylam-

ide and hexane neurotoxicity.79,83–86 Another important observation

FIGURE 4 Electron microscopic image from longitudinal sections of the left RLn from a subclinically RLN-affected horse. The node of
Ranvier, with both surrounding paranodes containing large organelle accumulations (mitochondria and lysosomes) within splits to the myelin
sheath can be easily appreciated. The image in the upper left corner is an etched section (1 lm) showing positive staining for anti-cathepsin
D in the region of the paranodal evaginations. Cathepsin D is found ubiquitously distributed in lysosomes, confirming their presence within
the organelle accumulations. Both black bars correspond to 10 lm. Reprinted by permission from RightsLink: Springer Link, Journal of Neu-
rocytology, Duncan and Hammang53 Copyright 1987
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ever, preferential loss of large myelinated nerve fibers in a distal to

proximal manner does not per se indicate either an axonopathy or mye-

linopathy. For example, distal to proximal axonal degeneration is typi-

cally seen with toxic or metabolic “dying-back” or “central-peripheral”

distal axonopathies (ascending destruction of the distal axon of both
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CMT type 1 (with primary demyelination), present primarily with

length-dependent axonal degeneration, with the distal appendages dis-

playing muscle atrophy and the foot deformity, pes cavus.58–60

Clues as to the primary definition of RLN’s status as an axonopathy

or myelinopathy might then be possible from other pathological fea-

tures. Common additional pathological changes affecting the distal left
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proliferation of that Schwann cell after axonal injury41; they are

believed to serve as scaffolding to allow for axonal regeneration.62

Regenerating clusters are composed of axonal sprouts that form within

the basal lamina as a result of axonal degeneration.41,62 The presence

of both B€ungner Bands and regenerating clusters are suggestive of pri-

mary axonal degeneration.62

Other common pathological features seen in RLN are onion bulb
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ment of these structures cannot immediately be attributed to that of a

primary axonopathy or demyelinating disorder. Onion bulbs are classi-

cally seen with repeated cycles of demyelination/remyelination: they

are composed of concentric layers of remyelinating Schwann cells (that

macrophages have failed to clear) before a successive demyelination

episode.41 Repeated demyelination/remyelination is most commonly

reported in primary myelinopathies41 but does occur in primary axono-

pathies, (whence they are termed pseudo-onion bulbs).63,64 Segmental

demyelination/remyelination manifests as inconsistent internodal

lengths and myelin thicknesses, typically within the same fiber, and is a

common feature of CMT type 1 (demyelinating form).41,58,60 However,

segmental myelin loss also occurs secondarily in primary axonopathies

when there is loss of communication with the axon terminal65,66; this is

a key feature of RLN.20

As both onion bulbs and segmental demyelination/remyelination

can occur with either primary myelinopathies or axonopathies, clues as

to the primary site of degeneration might be evident from other associ-

ated localized pathological changes. In subclinical RLN cases, onion

bulbs and regions of demyelination/remyelination occur most com-

monly at prominent sites of axonal histopathological change.3,53 This is

consistent with secondary demyelination that occurs as a direct result

of axonal degeneration.41 These axonal histopathological changes

included paranodal axoplasmic outpouchings (see below),53 organelle

accumulations within swollen axons and active axonal degeneration at

sites of onion bulb formation.3,7 Specifically, Cahill and Goulden3

remarked that swollen fibers with dense axoplasm and attenuated mye-

lin sheaths were observed in the RLn; often these swollen fibers were

at the center of onion bulb formations. Duncan and Hammang53 stated

at [paranodal] areas there was evidence of paranodal demyelination

and remyelination, and as in all the other similarly swollen axons stud-

ied, that there was notable evidence of concentric Schwann cell prolif-

eration leading to typical onion bulb formation. They concluded that

the myelin attenuation occurring around axonal spheroids (axonal

degeneration) resulted from mechanical slippage of the paranodal mye-

lin.53 The paranode is the main anchorage point of the myelin lamellae

to the axon, and mechanical myelin slippage is a well-recognized conse-

quence of paranodal pathology.67–69

When sural nerve biopsy specimen from human patients with a

demyelinating polyneuropathy were compared to those with a primary

axonal polyneuropathy (diagnosed on electrophysiological tests), there

FIGURE 3 Distal Left RLn individual fascicle sections from a horse with Havemeyer grade I/IV (unaffected) RLN (left) and a horse with
Havemeyer grade IV/IV (severely affected) RLN (right). There is obvious loss of large myelinated nerve fibers (dotted arrow) in the affected
horse (right) compared with the unaffected horse (left), and also note the increased subperineurial space and endoneurial connective tissue
present in the section from the affected horse. A Renaut Body is highlighted by a solid black arrow in the normal horse. Black bar: 50 lm
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made from models of acrylamide and hexane neurotoxicity is that these

paranodel evaginations disrupt axoplasmic flow leading to defective

organelle transportation79,82 that could contribute to further neurodegen-

eration. Acrylamide and hexane neurotoxicity are classified as primary

axonopathies, which lends support to classification of RLN also as an

axonopathy.57,73,79,81,82

Axonal paranodal evaginations were also detected in the proximal

sciatic nerve axons of rats, 1 month after the formation of a neuroma,

after crushing and ligation.76 The evaginations contained similar

membrane-bound organelles and dense laminar bodies seen in subclini-

cal RLN cases and in neurons from acrylamide- or hexane-treated ani-

mals53,71,73,74,80; they were most numerous in the large myelinated

fibers.41 These findings suggest that loss of trophic support from the

muscle could be another important factor leading to generation of

these paranodal evaginations,76 or it could simply reflect that disruption

to both anterograde and retrograde axonal transportation systems can

cause evagination.

Other histopathological features reported to occur in the RLn of sub-

clinical RLN cases are axonal spheroids and axonal atrophy though they

have not been quantified.3,4,7,53 Axonal spheroids are the hallmark patho-

logical sign of axonal dystrophy, a process that is distinct from axonal

degeneration, and associated with synaptic dysplasia, abnormal axonal

regeneration, or an imbalance with axonal transportation.87,88 The timing

of axonal spheroid development can serve as a clue for a primary (before

degeneration signs occurring) versus a secondary (development of end-

bulbs after degeneration) axonal transportation deficit.89 End-bulb forma-

tion (where the axon terminal swells) has not been reported specifically in

RLN, and with the reported paranodal swellings, it is likely that axonal

transportation deficits arise in the RLn (left more than right) before the

loss of axonal integrity. Axonal atrophy is detectable in end-stage axonal

degeneration of various types.41 These pathological changes, although

associated with many different etiologies, are all interpreted as an axonal

pathology, supporting primary axon degeneration in RLN.

4 | AXONAL DEGENERATION

For many years, axonal degeneration, studied in humans and mice, was

thought simply to encompass Wallerian degeneration and apoptosis via

two separate pathways. Wallerian degeneration is seen in the axon dis-

tal to a site of injury and involves activation of calpain, resulting from

increased axonal calcium influx that leads to orderly degradation of the

cytoskeleton and membrane proteins.90 The influx of calcium is

hypothesized to result from the reversed action of the Na1-Ca21

exchanger as the Na1/K1 ATPase pump fails.91 The axonal debris gen-

erated by the proteolysis of the structural proteins and axonal fragmen-

tation is then removed in a coordinated glial response,92 including

phagocytosis by infiltrating macrophages.93

In 2002, Raff et al90 proposed a different classification for types of

axonal degeneration:

1. the classical example of Wallerian degeneration of the distal axon

after axotomy, whereby the proximal axon and cell body degener-

ate via apoptosis

2. dying-back degeneration of the distal axon following:

a chronic insult to the cell body, resulting in the distal axon degener-

ation extending proximally which can, eventually, result in the

death of the cell body

b pathology at the axon terminal (eg, removal of a neurotrophic fac-

tor), that maintains the cell body’s integrity (eg, axonal pruning

during metamorphosis, whereby excessive or redundant neurons

are refined in the central nervous system during development)

These observations of 3 different axonal degeneration scenarios were

first made from in vitro experimental observations and mouse models94

but there was very little understanding of the relevant cellular path-

ways that contributed to them. Coleman89 expanded upon the conse-

quences of the classical “transecting” lesion inducing Wallerian

degeneration, by hypothesizing that one or more focal lesions, not nec-

essarily transecting the axon, trigger degeneration of the whole, distal

axon. This would explain why proximal axonal numbers remain nearly

normal in many peripheral neurodegenerative diseases.41 Indeed, cur-

rent evidence suggests that neuronal cell body numbers in the nucleus

ambiguous are unaffected in RLN, providing further supportive evi-

dence that RLN is a distal axonopathy.22,55,95 Raff et al90 speculated

that degeneration of only the distal axon could convey a distinct

advantage to neurons if they become disconnected from their target

cells: it would allow conservation of neuronal resources enabling the

axon to reconnect with its terminal when conditions become more

favorable. Coleman surmised that Wallerian degeneration could be the

final convergent pathway of axonal degeneration in dying-back and dis-

tal axonopathies,89 which would explain this key pathological feature

of RLN.6

Defining RLN as a distal axonopathy and the confirmation experi-

mentally, of deficits in axonal transportation, would provide an oppor-

tunity for extrapolation from related research in other species that

might help define novel therapeutic targets. In recent years, significant

strides have been made towards unraveling the molecular signaling of

different forms of axonal degeneration96 (reviewed by Conforti et al97)

and identifying pathways that converge on the common Wallerian

degeneration pathway, proposed by Coleman89 (Figure 5). A key

upstream event is the activation of SARM1, which occurs after axot-

omy,98 traumatic brain injury,99 mitochondrial potential loss,100 and

excitotoxicity,101 that is, both in disease and with injury, leading to

MAP kinase pathway initiation102 and SCG10 (Stathmin-2; neuronal

associated growth protein) loss.103 Overexpression of SARM1 alone

does not result in axonal degeneration; an additional signal (such as an

axotomy) is essential.104 The other key upstream event that initiates

axonal degeneration is down regulation of the enzyme NMNAT2 (a nic-

otinamide mononucleotide adenylyltransferase that undergoes bidirec-

tional axonal transport). NMNAT2 converts nicotinamide

mononucleotide to NAD1, and its overexpression in experimental

models delays Wallerian degeneration.97 NMNAT2 is also essential for

axonal survival and growth.105,106 The exact mechanism behind the

protective effects of NMNAT2 overexpression are undetermined, but

it does not appear simply to be mediated through an increase in
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NAD1; the basal levels of NAD1 are not increased by this overexpres-

sion, and supplementation of neurons with NAD1 in vitro, does not

protect against degeneration.107–109 However, SARM1 overexpression

does trigger rapid NAD1 consumption,96 supporting the idea that

changes in NAD1 concentrations might play a role in this model of

axonal degeneration. SCG10 loss accelerates axonal degeneration in a

similar fashion to NMNAT2,103 however its protective effects are less

pronounced. SARM1 activation and NMNAT2 inactivation both lead to

MAPK activation, and in turn, ATP levels are depleted (causing failure

of the Na1/K1 ATPase pump), and intracellular calcium concentrations

will increase leading to cytoskeletal disassembly.97 The increased cal-

cium concentration activates calpain and in turn, degrades calpastatin,

both of which are well-established events in the latter phases of Wal-

lerian degeneration.110,111 It is clear that mitochondria play a key role

in Wallerian degeneration, but whether their roles are limited to the ini-

tiation or downstream execution of axonal degeneration (or both) is

not yet established. Axonal degeneration is a key feature of many neu-

rological conditions caused by mutations in mitochondrial proteins (eg,

CMT type 2K caused by mutations in GDAP1),112 implying that mito-

chondrial dysfunction itself can initiate axonal degeneration under cer-

tain circumstances.

Although two key elements in this pathway of axonal degeneration

(SARM1 and NMNAT2) have been identified (Figure 5), their exact

actions are, as yet, unknown. It will be crucial to identify disease-

specific degeneration pathways associated with distal axon loss to

ensure that targeted, efficacious therapies can be developed in RLN.

4.1 | Bilateral mononeuropathy or polyneuropathy?

When the severity of RLN is sufficient to cause clinical signs, the typi-

cal neuropathological changes identifiable in the left RLn, are also

detected (with less severity) in the right6,20,23,55,56,113,114; a disparity

that has been explained by the right RLn’s shorter length compared

with that of the left.21 If true, this feature alone implicates length-

dependency as a key feature in this disease. Although degeneration of

the right RLn is consistently reported in pathological studies, develop-

ment of right arytenoid dysfunction has been reported in only one

horse with RLN115 (RLN cases typically present with left laryngeal dys-

function in isolation20,115,116). However, these pathological studies con-

firm the disorder’s bilateral occurrence and reveal that the disorder

cannot solely be explained by the physical course of the left RLn.

Bilateral degeneration of one pair of peripheral nerves has been

reported in humans as a component of the mononeuropathy multiplex

syndrome (defined as the isolated and differential involvement of sepa-

rate nerves) often because of a generalized systemic disorder and most

commonly diabetes mellitus.117 Signs of nerve dysfunction relate to the

specific nerve affected: frequently they are initially asymmetrical, but

they progress to symmetrical nerve dysfunction and then to other

nerve groups.41,117 This suggests that systemic disorders (at least ini-

tially) can have localized nerve involvement. Indeed, length dependency

is a common feature of many peripheral nerve disorders with a genetic

basis: even though defective protein expression is a generalized fea-

ture, the signs are most readily apparent in the longest nerves.60,118 In

humans, the longest nerves are to the distal extremities and length

dependency is revealed by many of the CMT disorders that have distal

sensory loss, or distal neurogenic muscle atrophy (leading to pes cavus

deformity).60,118 Length dependency is also a feature of some acquired

neuropathies such as diabetic neuropathy (reviewed by Kazamel and

Dyck119).

Determining whether this equine neuropathy affects only the RLn

or in addition, other long nerves, has been a key objective in several

studies over past decades3,6,7,20,23,113 because the answer has major

implications for research into the etiopathogenesis. In particular, certain

acquired causes (eg, trauma from neck stretch or thoracic vessel pulsa-

tion) would be ruled out if other long nerves are affected, whereas

toxic or genetic causes might be more likely if the disease is found to

be a polyneuropathy. Polyneuropathies typically produce diverse clini-

cal signs according to the nerves that are diseased120: for example,

equine polyneuropathies include those with a toxic etiology (such as

Australian Stringhalt, lead, and possibly haloxon) result in laryngeal dys-

function, dysphagia, proprioceptive deficits and gait

abnormalities.121–127 Similarly, disorders such as equine motor neuron

disease, are associated with widespread, generalized and symmetrical

peripheral motor nerve involvement.128

Clinical signs associated with involvement of other nerves is not a

consistent feature of RLN, but the sub-clinical involvement of the right

RLn, suggests that other nerves might also have subclinical involve-

ment. Consequently, some researchers investigating RLN’s pathology,

have included the histological examination of other long peripheral

nerves in horses, such as the phrenic, lateral palmar, ulnar, tibial, medial

plantar, median, and peroneal nerves.3,4,7,20,23,24 Unfortunately, many

of these studies were underpowered, unblinded, subjective or poorly

controlled. Some authors report a lack of involvement of other nerves

in this disorder. For example, Duncan et al4 examined multiple

FIGURE 5 Working model of an integrated axon degeneration
signaling cascade. Injury leads to SARM1 activation and NMNAT2
depletion. Energetic failure promotes ionic imbalance including
intra-axonal calcium accumulation, leading to calpain activation and
proteolysis of intermediate filaments in the axonal cytoskeleton.
Cumulative structural damage leads to irreversible fragmentation of
the damaged axon. Arrows with questions marks reflect postulated
interactions
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made from models of acrylamide and hexane neurotoxicity is that these

paranodel evaginations disrupt axoplasmic flow leading to defective

organelle transportation79,82 that could contribute to further neurodegen-

eration. Acrylamide and hexane neurotoxicity are classified as primary

axonopathies, which lends support to classification of RLN also as an

axonopathy.57,73,79,81,82

Axonal paranodal evaginations were also detected in the proximal

sciatic nerve axons of rats, 1 month after the formation of a neuroma,

after crushing and ligation.76 The evaginations contained similar

membrane-bound organelles and dense laminar bodies seen in subclini-

cal RLN cases and in neurons from acrylamide- or hexane-treated ani-

mals53,71,73,74,80; they were most numerous in the large myelinated

fibers.41 These findings suggest that loss of trophic support from the

muscle could be another important factor leading to generation of

these paranodal evaginations,76 or it could simply reflect that disruption

to both anterograde and retrograde axonal transportation systems can

cause evagination.

Other histopathological features reported to occur in the RLn of sub-

clinical RLN cases are axonal spheroids and axonal atrophy though they

have not been quantified.3,4,7,53 Axonal spheroids are the hallmark patho-

logical sign of axonal dystrophy, a process that is distinct from axonal

degeneration, and associated with synaptic dysplasia, abnormal axonal

regeneration, or an imbalance with axonal transportation.87,88 The timing

of axonal spheroid development can serve as a clue for a primary (before

degeneration signs occurring) versus a secondary (development of end-

bulbs after degeneration) axonal transportation deficit.89 End-bulb forma-

tion (where the axon terminal swells) has not been reported specifically in

RLN, and with the reported paranodal swellings, it is likely that axonal

transportation deficits arise in the RLn (left more than right) before the

loss of axonal integrity. Axonal atrophy is detectable in end-stage axonal

degeneration of various types.41 These pathological changes, although

associated with many different etiologies, are all interpreted as an axonal

pathology, supporting primary axon degeneration in RLN.

4 | AXONAL DEGENERATION

For many years, axonal degeneration, studied in humans and mice, was

thought simply to encompass Wallerian degeneration and apoptosis via

two separate pathways. Wallerian degeneration is seen in the axon dis-

tal to a site of injury and involves activation of calpain, resulting from

increased axonal calcium influx that leads to orderly degradation of the

cytoskeleton and membrane proteins.90 The influx of calcium is

hypothesized to result from the reversed action of the Na1-Ca21

exchanger as the Na1/K1 ATPase pump fails.91 The axonal debris gen-

erated by the proteolysis of the structural proteins and axonal fragmen-

tation is then removed in a coordinated glial response,92 including

phagocytosis by infiltrating macrophages.93

In 2002, Raff et al90 proposed a different classification for types of

axonal degeneration:

1. the classical example of Wallerian degeneration of the distal axon

after axotomy, whereby the proximal axon and cell body degener-

ate via apoptosis

2. dying-back degeneration of the distal axon following:

a chronic insult to the cell body, resulting in the distal axon degener-

ation extending proximally which can, eventually, result in the

death of the cell body

b pathology at the axon terminal (eg, removal of a neurotrophic fac-

tor), that maintains the cell body’s integrity (eg, axonal pruning

during metamorphosis, whereby excessive or redundant neurons

are refined in the central nervous system during development)

These observations of 3 different axonal degeneration scenarios were

first made from in vitro experimental observations and mouse models94

but there was very little understanding of the relevant cellular path-

ways that contributed to them. Coleman89 expanded upon the conse-

quences of the classical “transecting” lesion inducing Wallerian

degeneration, by hypothesizing that one or more focal lesions, not nec-

essarily transecting the axon, trigger degeneration of the whole, distal

axon. This would explain why proximal axonal numbers remain nearly

normal in many peripheral neurodegenerative diseases.41 Indeed, cur-

rent evidence suggests that neuronal cell body numbers in the nucleus

ambiguous are unaffected in RLN, providing further supportive evi-

dence that RLN is a distal axonopathy.22,55,95 Raff et al90 speculated

that degeneration of only the distal axon could convey a distinct

advantage to neurons if they become disconnected from their target

cells: it would allow conservation of neuronal resources enabling the

axon to reconnect with its terminal when conditions become more

favorable. Coleman surmised that Wallerian degeneration could be the

final convergent pathway of axonal degeneration in dying-back and dis-

tal axonopathies,89 which would explain this key pathological feature

of RLN.6

Defining RLN as a distal axonopathy and the confirmation experi-

mentally, of deficits in axonal transportation, would provide an oppor-

tunity for extrapolation from related research in other species that

might help define novel therapeutic targets. In recent years, significant

strides have been made towards unraveling the molecular signaling of

different forms of axonal degeneration96 (reviewed by Conforti et al97)

and identifying pathways that converge on the common Wallerian

degeneration pathway, proposed by Coleman89 (Figure 5). A key

upstream event is the activation of SARM1, which occurs after axot-

omy,98 traumatic brain injury,99 mitochondrial potential loss,100 and

excitotoxicity,101 that is, both in disease and with injury, leading to

MAP kinase pathway initiation102 and SCG10 (Stathmin-2; neuronal

associated growth protein) loss.103 Overexpression of SARM1 alone

does not result in axonal degeneration; an additional signal (such as an

axotomy) is essential.104 The other key upstream event that initiates

axonal degeneration is down regulation of the enzyme NMNAT2 (a nic-

otinamide mononucleotide adenylyltransferase that undergoes bidirec-

tional axonal transport). NMNAT2 converts nicotinamide

mononucleotide to NAD1, and its overexpression in experimental

models delays Wallerian degeneration.97 NMNAT2 is also essential for

axonal survival and growth.105,106 The exact mechanism behind the

protective effects of NMNAT2 overexpression are undetermined, but

it does not appear simply to be mediated through an increase in
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additional peripheral nerves from 2 Thoroughbreds with RLN, but with

no significant pathological findings. Hahn et al20 examined median, per-

oneal and phrenic nerves of 3 horses (a Thoroughbred, Warmblood,

and a Clydesdale) with severe RLN, concluding that there were no sig-

nificant neuropathological findings in nonlaryngeal nerves, even though

one of the horses was reported with moderate loss of large myelinated

fibers, multiple onion bulbs, and an increased frequency of hypomyeli-

nated internodes in semi-thin sections of peroneal and median nerves.

In contrast, several reports detail the possible significance of RLN-

associated pathological features in other long, nonlaryngeal nerves.3,7,23

Indeed, Duncan et al (14 years after their study described above) exam-

ined the deep peroneal nerves of 14 male Draft horse foals, reporting

the presence of B€ungner bands and onion bulbs in nerves from 6

month old foals.24 The authors made no comment about clinical signs

associated with peroneal nerve dysfunction being present in any foal,

nor was there any investigation into pathological changes within the

peroneal nerve-innervated muscles.54 Cahill and Goulden examined

long limb motor nerves (median, peroneal and tibial) in 2 of 4 male

Thoroughbred horses with clinically relevant RLN3,7,23,56 that ranged in

age from 2 to 22 years; unfortunately the ages of the 2 cases chosen

for limb nerve analysis were not disclosed3,7,23 and no control horses

were included. The pathology was graded as the number of pathologi-

cal changes (regenerating clusters, onion bulbs, demyelination/remyeli-

nation and myelin debris in the Schwann cell cytoplasm) per fascicle.

The 2 cases had occasional (1–2 changes per fascicle) or moderate

(5–10 changes per fascicle) pathological changes in the extensor digito-

rum longus (EDL) peroneal branch, superficial and common peroneal,

median and the tibial nerves, by light microscopy.3 EM and teased fiber

studies on the peroneal nerves revealed that the type and degree of

pathology in the peroneal nerves from RLN-affected horses was similar

to that present in the proximal left and distal right RLn.7,23

Some authors have additionally, or instead, searched for histopath-

ological, neuropathic changes in selected limb muscles because RLN-

associated intrinsic laryngeal muscle pathology is readily identified.20,56

Cahill and Goulden56 found no significant histopathological changes in

the tibialis cranialis, gastrocnemius or biceps femoris muscles of 4

horses with clinically relevant RLN. In contrast, presumed neurogenic

muscle fiber atrophy was detected in the EDL muscle of 3 of the 4

horses, although in only one of these animals was the key feature of

neuronal regeneration (seen in RLN), known as fiber type grouping

detected.56 It is noteworthy that these apparent EDL muscle changes

occurred despite the lack of nerve pathological changes in previous

studies of the deep peroneal nerve by the same and other

authors3,23,56 suggesting either that muscle histopathological assess-

ment for neurogenic change has greater sensitivity than nerve histol-

ogy, or that the detected muscle changes were not neurogenic in

origin.

Conflicting results obtained by these various groups and between

examination of nerves and muscles, reveal the problems associated with

unblinded, uncontrolled, subjective histopathological assessment. In par-

ticular, including greater numbers of height-, sex-, and breed-matched

control horses would have enabled more robust conclusions to be

drawn, given that each is associated with RLN development.1,2,8,14,129

Furthermore, typically authors have failed to consider the influence of

age, even though age-related neuronal degenerative changes occur in

many peripheral nerves of various species.67,130–133 Indeed, neurode-

generative changes reported in the median and peroneal nerves of a

horse with clinically relevant RLN, might have been age-related (the

horse was 16 years old)20 rather than associated with underlying dis-

ease. In a study looking at the lateral palmar (sensory) nerve in horses

free from detectable neuromuscular disease (unknown breeds) horses

aged between 5 and 7 years old had evidence of demyelination/

remyelination in up to 20% of myelinated nerve fibers.133 Other than

the RLn (and the paired phrenic nerves), the longest peripheral nerves

in horses are sensory rather than motor; however, no studies have

evaluated clinical or histopathological sensory nerve involvement in

horses with RLN.

In certain neuropathies in other species, both the peripheral and

central nervous systems can be involved.134 For example, in horses

with equine motor neuron disease, there is prominent degeneration of

the spinal cord ventral horn cell bodies of the peripheral motor

nerves.128 Cahill and Goulden22,55 examined the nucleus ambiguus of

clinically affected or subclinically affected RLN horses55 but identified

no relevant pathological features. However, a search for central

involvement in RLN (ie, in a length-dependent neuropathy) might most

logically be made in the longest central nerve tracts: these would be

the sensory proprioceptive tracts from the thoracic limbs (funiculus

cuneate) and pelvic limbs (funiculus gracilis), with the latter containing

the longest axons. The same authors reported significantly higher num-

bers of spheroids in the lateral cuneate nuclei (which receives sensory

input from the cervicothoracic spinal nerves) in subclinical and clinical

RLN cases when compared with the control group,22 but despite evalu-

ating the gracilis nucleus for increased spheroids, none was reported.55

Since spheroid formation is seen with aging, the apparent increased

spheroidal numbers in the diseased groups could be explained by the

lack of age matching between the control and diseased groups: the

horses in the control group were all <3 years old, whereas the diseased

group’s horses ranged from 2 to 22 years old.135

Perhaps then, RLN represents the localized involvement of two

nerves (the left and right RLn) associated with a systemic disorder that

has subclinical involvement of other long nerves in only a few (eg, the

most severely affected, or tallest) horses. Unfortunately, despite the

previous work, no clear conclusion regarding the possible involvement

of other nerves in RLN can be made. In particular, the trend for studies

to evaluate subjective histopathological features in unblinded, uncon-

trolled fashion and with low power, means that this crucial question

remains unanswered such that RLN cannot yet be defined as bilateral

mononeuropathy or a polyneuropathy with certainty.

5 | OBJECTIVE FUNCTIONAL TESTING OF
THE RLn

Nerve function testing for a suspected neuropathy helps define each

tested nerve’s involvement but also the type of pathology (axonal or

myelin-based).44 Function is assessed either directly, by examining the

speed of conduction (NCV) or, indirectly, via the measure of latency
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(delay from nerve stimulation to muscle contraction) and through func-

tionality of the innervated structure (ie, the larynx in RLN). Testing of

the paired RLn’ functionality has included direct measurement of NCV

and nerve conduction latency measurements.136–139 Of these techni-

ques, accurate measurement of the NCV in the RLn (and others) in

affected horses might best help define if RLN is an axonopathy or mye-

linopathy and whether other nerves are also involved. This routine

technique is used diagnostically in human peripheral neuropathy

patients to help define the precise phenotypic features of the disease

(distinguishing between CMT types or sensorimotor peripheral neuro-

pathies for example).140 The characteristic electrophysiological features

of an axonopathy include a reduction in the amplitude of a compound

motor action potential (CMAP) and a normal NCV, whereas a myelin-

opathy is characterized by a normal CMAP, with a slowed NCV.44 Con-

duction blocks have historically been recognized as signifying

demyelination, especially segmental demyelination, however more

recently this phenomenon has also been detected in distal axonopa-

thies.141 Presumably, conduction blocks could occur in grade 4 RLN

horses when the loss of myelinated axons in the left RLn is great

enough to stop the propagation of the action potential to the laryngeal

muscles. In this situation, pathological evaluation of the RLn would be

necessary to differentiate axonal loss from demyelination as the cause

for the conduction block. Unfortunately, NCVs are influenced by many

factors such as the individual’s age, sex, height, and skin temperature:

for instance, in humans, every 1 cm increase in height, accounts for a

0.2 m/s decrease in NCV142,143 and women have slower NCVs in the

RLn than men.144 The negative correlation between height and NCV

has been attributed to the abrupt tapering of the nerve fiber diameter

with increasing nerve length (which is mainly caused by a reduction in

the axonal diameter) rather than to any effect on internodal

distance.145–147

Likely, because of practical constraints, very few researchers have

evaluated the NCV of the RLn in horses. The latency (using electrolar-

yngeography) of the RLn in Clydesdale horses with varying grades of

RLN was reported by Hawe et al (2001). They reported no significant

difference between the Clydesdales’ size-adjusted latency values and

their RLN endoscopic grade.138 There was no information included in

the study regarding the amplitude of the CMAPs produced. Recurrent

laryngeal nerves (RLn) NCVs were reported directly by Cheetham

et al137 in horses with normal (Havemeyer grade 1) arytenoid function:

the NCV of the left RLn (39.164.4 m/s; mean6 SD) was significantly

slower than that of the right RLn (5064.2 m/s). The authors concluded

that this data suggests that the primary pathology associated with RLN

might be demyelination rather than axonal loss, although significant

demyelination has not been reported in horses with (grade 1) normal

arytenoid function.3,4,7 Finally, a slower left RLn NCV compared with

the right was reported in one horse with subclinical RLN by Duncan

et al,113 although the velocities were not included.

Steiss et al reported the latency of a CMAP, as a measure of the

NCV, in both the RLn in 5 normal horses and 7 ponies. This revealed a

longer conduction latency in the proximal left RLn compared with the

proximal right nerve (no left-right differences were detected in the dis-

tal RLn).139 However, no correction was made for differences in nerve

length in our study, which likely explains the longer latency of the left

RLn. Nevertheless, the similar left and right RLn conduction latencies

reported in dogs and humans144,148 were explained by the left side’s

wider diameter (and therefore faster conducting) axons when com-

pared to the right, compensating for the longer path.37 The left distal

RLn of young (<2 year old) horses that lacked histopathological fea-

tures of RLN, had significantly fewer myelinated nerve fibers, and

smaller diameter myelinated nerve fibers than those in the right distal

RLn. Furthermore, the proportion of the widest myelinated fibers (>9.5

lm) was also always lower in the left RLn compared with the right.149

These findings imply that the equine RLn and their NCVs are unusual.

Nerve conduction velocities (NCVs) in the left and right RLn of horses

have been shown to differ between the two nerves in several studies;

this has been recapitulated in normal ponies and horses, as well as in

RLN cases.113,137–139,150 The interpretation of this finding differs

between authors: is RLN simply ubiquitous or does it result from dete-

rioration of ‘normal’ equine anatomy?

Despite this previous research, the correct classification of RLN’s

primary basis based on objective electrophysiological recordings

remains unclear. This might largely because of differences between

methodologies, low numbers of animals, and differences in signalment

in the animals examined. It also very likely relates to the practical diffi-

culties encountered when performing these sorts of tests in horses.

6 | CONCLUSIONS

The majority of the histopathological changes (B€ungner bands, regener-

ating clusters, paranodal evaginations, and spheroids) reported in RLN-

affected horses are associated with primary axonal dysfunc-

tion.3,4,6,7,20,30,52,53,113,114 Further, we have discussed how pathological

features traditionally associated with primary myelinopathies (ie, onion

bulbs and demyelination and remyelination) also occur in primary axo-

nopathies. In RLN, these histopathological changes occur simultane-

ously with other pathological features that are exclusively reported in

axonopathies such as paranodal evaginations (that occur in toxic axo-

nopathies and axotomies) and at sites of axonal degeneration.4,53 In

addition, we have highlighted evidence that suggests axonal transporta-

tion deficits might play a role in the etiopathogenesis of RLN.

While there is compelling evidence that RLN affects both the left

and (to a lesser extent) right RLn, it is not yet clear whether in some

horses, other long nerves are also affected. There is some pathological

evidence to suggest subclinical involvement of other long peripheral

nerves in cases of RLN (B€ungner bands, and onion bulbs in nonlaryng-

eal peripheral nerves),3,4,7,20,23,24 nevertheless these findings are not

found in all studies; typically, and unfortunately, most of these studies

suffer from the limitations discussed throughout this review article and

a comprehensive, objective, blinded study that evaluates other long

peripheral nerves, and long spinal tracts of the CNS, with age, height,

breed, and sex matched controls is required.

In summary, in our opinion RLN is best currently classified as a dis-

tal axonopathy with clear evidence of involvement of both RLn. Fur-

ther, from a functional and clinical perspective, this disease can best be
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additional peripheral nerves from 2 Thoroughbreds with RLN, but with

no significant pathological findings. Hahn et al20 examined median, per-

oneal and phrenic nerves of 3 horses (a Thoroughbred, Warmblood,

and a Clydesdale) with severe RLN, concluding that there were no sig-

nificant neuropathological findings in nonlaryngeal nerves, even though

one of the horses was reported with moderate loss of large myelinated

fibers, multiple onion bulbs, and an increased frequency of hypomyeli-

nated internodes in semi-thin sections of peroneal and median nerves.

In contrast, several reports detail the possible significance of RLN-

associated pathological features in other long, nonlaryngeal nerves.3,7,23

Indeed, Duncan et al (14 years after their study described above) exam-

ined the deep peroneal nerves of 14 male Draft horse foals, reporting

the presence of B€ungner bands and onion bulbs in nerves from 6

month old foals.24 The authors made no comment about clinical signs

associated with peroneal nerve dysfunction being present in any foal,

nor was there any investigation into pathological changes within the

peroneal nerve-innervated muscles.54 Cahill and Goulden examined

long limb motor nerves (median, peroneal and tibial) in 2 of 4 male

Thoroughbred horses with clinically relevant RLN3,7,23,56 that ranged in

age from 2 to 22 years; unfortunately the ages of the 2 cases chosen

for limb nerve analysis were not disclosed3,7,23 and no control horses

were included. The pathology was graded as the number of pathologi-

cal changes (regenerating clusters, onion bulbs, demyelination/remyeli-

nation and myelin debris in the Schwann cell cytoplasm) per fascicle.

The 2 cases had occasional (1–2 changes per fascicle) or moderate

(5–10 changes per fascicle) pathological changes in the extensor digito-

rum longus (EDL) peroneal branch, superficial and common peroneal,

median and the tibial nerves, by light microscopy.3 EM and teased fiber

studies on the peroneal nerves revealed that the type and degree of

pathology in the peroneal nerves from RLN-affected horses was similar

to that present in the proximal left and distal right RLn.7,23

Some authors have additionally, or instead, searched for histopath-

ological, neuropathic changes in selected limb muscles because RLN-

associated intrinsic laryngeal muscle pathology is readily identified.20,56

Cahill and Goulden56 found no significant histopathological changes in

the tibialis cranialis, gastrocnemius or biceps femoris muscles of 4

horses with clinically relevant RLN. In contrast, presumed neurogenic

muscle fiber atrophy was detected in the EDL muscle of 3 of the 4

horses, although in only one of these animals was the key feature of

neuronal regeneration (seen in RLN), known as fiber type grouping

detected.56 It is noteworthy that these apparent EDL muscle changes

occurred despite the lack of nerve pathological changes in previous

studies of the deep peroneal nerve by the same and other

authors3,23,56 suggesting either that muscle histopathological assess-

ment for neurogenic change has greater sensitivity than nerve histol-

ogy, or that the detected muscle changes were not neurogenic in

origin.

Conflicting results obtained by these various groups and between

examination of nerves and muscles, reveal the problems associated with

unblinded, uncontrolled, subjective histopathological assessment. In par-

ticular, including greater numbers of height-, sex-, and breed-matched

control horses would have enabled more robust conclusions to be

drawn, given that each is associated with RLN development.1,2,8,14,129

Furthermore, typically authors have failed to consider the influence of

age, even though age-related neuronal degenerative changes occur in

many peripheral nerves of various species.67,130–133 Indeed, neurode-

generative changes reported in the median and peroneal nerves of a

horse with clinically relevant RLN, might have been age-related (the

horse was 16 years old)20 rather than associated with underlying dis-

ease. In a study looking at the lateral palmar (sensory) nerve in horses

free from detectable neuromuscular disease (unknown breeds) horses

aged between 5 and 7 years old had evidence of demyelination/

remyelination in up to 20% of myelinated nerve fibers.133 Other than

the RLn (and the paired phrenic nerves), the longest peripheral nerves

in horses are sensory rather than motor; however, no studies have

evaluated clinical or histopathological sensory nerve involvement in

horses with RLN.

In certain neuropathies in other species, both the peripheral and

central nervous systems can be involved.134 For example, in horses

with equine motor neuron disease, there is prominent degeneration of

the spinal cord ventral horn cell bodies of the peripheral motor

nerves.128 Cahill and Goulden22,55 examined the nucleus ambiguus of

clinically affected or subclinically affected RLN horses55 but identified

no relevant pathological features. However, a search for central

involvement in RLN (ie, in a length-dependent neuropathy) might most

logically be made in the longest central nerve tracts: these would be

the sensory proprioceptive tracts from the thoracic limbs (funiculus

cuneate) and pelvic limbs (funiculus gracilis), with the latter containing

the longest axons. The same authors reported significantly higher num-

bers of spheroids in the lateral cuneate nuclei (which receives sensory

input from the cervicothoracic spinal nerves) in subclinical and clinical

RLN cases when compared with the control group,22 but despite evalu-

ating the gracilis nucleus for increased spheroids, none was reported.55

Since spheroid formation is seen with aging, the apparent increased

spheroidal numbers in the diseased groups could be explained by the

lack of age matching between the control and diseased groups: the

horses in the control group were all <3 years old, whereas the diseased

group’s horses ranged from 2 to 22 years old.135

Perhaps then, RLN represents the localized involvement of two

nerves (the left and right RLn) associated with a systemic disorder that

has subclinical involvement of other long nerves in only a few (eg, the

most severely affected, or tallest) horses. Unfortunately, despite the

previous work, no clear conclusion regarding the possible involvement

of other nerves in RLN can be made. In particular, the trend for studies

to evaluate subjective histopathological features in unblinded, uncon-

trolled fashion and with low power, means that this crucial question

remains unanswered such that RLN cannot yet be defined as bilateral

mononeuropathy or a polyneuropathy with certainty.

5 | OBJECTIVE FUNCTIONAL TESTING OF
THE RLn

Nerve function testing for a suspected neuropathy helps define each

tested nerve’s involvement but also the type of pathology (axonal or

myelin-based).44 Function is assessed either directly, by examining the

speed of conduction (NCV) or, indirectly, via the measure of latency
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regarded as a mononeuropathy of the left RLn: however, when consid-

ering the etiology and pathophysiology of this disorder, there is insuffi-

cient evidence to classify the disease as either a bilateral

mononeuropathy or polyneuropathy, a classification that remains fun-

damentally important for the study of this enigmatic, and highly preva-

lent equine neurodegenerative disease.
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regarded as a mononeuropathy of the left RLn: however, when consid-

ering the etiology and pathophysiology of this disorder, there is insuffi-

cient evidence to classify the disease as either a bilateral

mononeuropathy or polyneuropathy, a classification that remains fun-

damentally important for the study of this enigmatic, and highly preva-

lent equine neurodegenerative disease.
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