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Frustrated self-assembly of non-Euclidean crystals
of nanoparticles
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Self-organized complex structures in nature, e.g., viral capsids, hierarchical biopolymers, and

bacterial flagella, offer efficiency, adaptability, robustness, and multi-functionality. Can we

program the self-assembly of three-dimensional (3D) complex structures using simple

building blocks, and reach similar or higher level of sophistication in engineered materials?

Here we present an analytic theory for the self-assembly of polyhedral nanoparticles (NPs)

based on their crystal structures in non-Euclidean space. We show that the unavoidable

geometrical frustration of these particle shapes, combined with competing attractive and

repulsive interparticle interactions, lead to controllable self-assembly of structures of com-

plex order. Applying this theory to tetrahedral NPs, we find high-yield and enantiopure self-

assembly of helicoidal ribbons, exhibiting qualitative agreement with experimental observa-

tions. We expect that this theory will offer a general framework for the self-assembly of

simple polyhedral building blocks into rich complex morphologies with new material cap-

abilities such as tunable optical activity, essential for multiple emerging technologies.
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Chemically synthesized nanoparticles (NPs) display a great
diversity of polyhedral shapes1. Recent experiments
revealed that under attractive interactions from van der

Waals forces, hydrogen bonds, and coordination bonds, these
NPs can form a number of assemblies with interesting structural
order, high complexity, and hierarchy at the nanoscale, from
helices to curved platelets, capsids, and hedgehogs2–11. How these
simple polyhedral building blocks led to the observed complex
structures remains an open fundamental question. Simulations of
these systems face challenges from both the intrinsic complexity
of NP–NP interactions and the rugged free-energy landscape of
the high-dimensional phase space of their assembly12,13. Real-
time-imaging techniques have only recently begun to reach the
resolution to investigate the pathways of these self-assembly
problems14,15. The answer to this question is not only important
for emerging technologies stemming from the unique properties
of these nanoscale assemblies, but also offers new insight into
how complex hierarchical structures form in nature.

The mathematical problem of packing regular polyhedra in 3D
Euclidean (flat) space provides a hint to answering this intriguing
question. It is the rule rather than the exception that a generic
polyhedron does not tile 3D Euclidean space16. Taking the tet-
rahedron as an example, one finds that five tetrahedra can form a
pentamer with a small gap, and 20 tetrahedra “almost” form an
icosahedron, again leaving small gaps (Fig. 1a). Perfect face-to-
face attachment can only be enforced at the expense of elastic
stress. Furthermore, realistic NPs also contain electrostatic
charge, leading to repulsions that compete with attractions. These
features make the self-assembly of polyhedral NPs an interesting
“frustrated self-assembly” problem where both geometric
frustration17–23 and repulsion–attraction frustration come into
play24.

Despite the complexity originating from multiple frustrations,
polyhedral NPs assembled into ordered structures such as helices
in experiments9. We conjecture that this self-assembly phenom-
enon can be understood theoretically using crystalline structures
of these polyhedra in non-Euclidean space. Although the
assembly of most polyhedra is geometrically frustrated in

Euclidean 3D space, they can form non-Euclidean crystals in
some ideal curved space, where gaps or overlaps are eliminated by
precisely tuning the space’s Gaussian curvature16. This can be
illustrated by a familiar example in 2D. Regular pentagons cannot
tile a 2D Euclidean surface. When positive Gaussian curvature is
introduced into the surface, the gaps between the pentagons close
while the plane turns into a sphere, and the pentagons fold into
an unfrustrated non-Euclidean crystal: the regular dodecahedron
(Fig. 1b). Similarly, any regular polyhedron can always tile as a
non-Euclidean crystal in a 3D curved space16,25 called a regular
honeycomb, or polytope when the number of tiles is finite. These
non-Euclidean crystals are characterized by perfect, 100% volume
fraction packings of these polyhedra, and thus are the true
thermodynamics ground states of the problem. General non-
Euclidean crystals have been utilized in understanding complex
structures of condensed matter from Frank–Kasper phases to
metallic glasses, hard-disk packings, liquid crystalline order,
nanoparticle supercrystals, and biological materials25–41.

In this paper, we show that non-Euclidean crystals provide us
with sets of “reference metrics” �g42 of the stress-free packing of
these polyhedral NPs, characterizing their thermodynamic
ground states (which cannot be realized in Euclidean 3D space),
and thus offer a starting point to construct an energy functional
of the assembled structures, the minimization of which guides us
in the search for self-assembly morphologies.

The self-assembly we consider here are driven by competing
attractive and repulsive interactions and the surface energy is
typically low. These factors lead to arrested growth in certain
directions, allowing a rich set of low-dimensional morphologies
(e.g., 2D-sheets and 1D-bundles rather than 3D-bulk solids). A
typical example of this type of NP self-assembly experiment has
been described in ref. 9. Thus, compared to “flattening” schemes
of non-Euclidean crystals where disclinations are introduced to
relieve the stress studied in refs. 25–30,32–38, we consider a dif-
ferent route of stress-relief where low-dimensional assemblies are
free to choose their morphologies in Euclidean 3D space. The
introduction of disclinations can further reduce the stress of the
assemblies, and we leave that for future work.

Fig. 1 Geometric frustration of polyhedra and polygons, and tetrahedral NPs. a Five tetrahedra can almost form a pentamer; 20 tetrahedra can almost
form an icosahedron. b A 2D example of geometric frustration: pentagons do not tile Euclidean surface, but can form a regular crystal (dodecahedron) on
the 2-sphere S2. c CdTe tetrahedral NPs (yellow tetrahedra) are coated with a layer of chiral ligands (L- or D-Cysteine). The blue-shaded areas represent
the soft interaction regions where coordination bridges between ligands can form. d Elastic deformations in this continuum theory represent distortions of
the soft ligand interactions.
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We apply our theory to this experiment where tetrahedral NPs
assemble, and show good qualitative agreement between the
predicted and observed trend of how the assembled morphologies
depend on experimental parameters which control the interac-
tions between the NPs. Importantly, we find that the electrostatic
repulsion between the NPs provides an experimentally realistic
tuning knob for the final morphology of the assembly.

This theory not only can be applied to a broad range of NP
assembly systems to explain and predict the morphologies of the
assembly, but also brings fundamental understandings on how a
completely new design space can be opened for the nanoscale
self-assembly of complex, curved, and hierarchical structures
from simple polyhedral and other NPs.

Results
Model energy of frustrated nanoparticle self-assembly. In this
section we discuss a general model energy for frustrated NP self-
assembly. We will discuss in more detail how NP interactions and
kinetics determine the actual form of this energy in the next
section, as we apply this general model to the system of tetra-
hedral NPs—the experimental system studied in ref. 9 (Fig. 1c, d).

We construct the general energy of the assembly by adding up
the energy associated with (i) the aforementioned elastic
frustration, Eelastic, (ii) electrostatic repulsion between the NPs,
Erepulsion, (iii) the boundary of the assembly, Eboundary, and (iv)
binding between the NPs, Ebind,

E ¼ Eelastic þ Erepulsion þ Eboundary þ Ebind: ð1Þ
Although this self-assembly problem is discrete in nature as the
building blocks are individual polyhedral NPs, we consider this
energy in the continuum limit, where analytic results can be
obtained, by modeling the NPs and coordination bonds between
them as a homogeneous continuum (see more details in the
section “Tetrahedral nanoparticles and their curved crystals”).

In this continuum theory, the elastic energy is
Eelastic ¼ 1

2

R
�MEelastic

ffiffiffiffiffiffiffiffiffiffi
det �g

p
d3x, where

ffiffiffiffiffiffiffiffiffiffi
det �g

p
d3x is the refer-

ence volume element43 and �M is a region in the non-Euclidean
crystal. The (Euclidean) actual metric of the assembly g cannot be
equal to the metric of the non-Euclidean crystal �g (which
describes the ideal, stress-free, distances between the NPs)
everywhere, and a strain

ϵ ¼ 1
2
ðg� �gÞ; ð2Þ

necessarily develops. Close to any local minimum, Eelastic can be
expanded in powers of the strain tensor:

Eelastic ¼ 2μ ϵτνϵ
ν
τ þ λðϵννÞ2; ð3Þ

where μ, λ are the Lamé coefficients, ν, τ= 1, 2, 3 are the three
spatial directions and indices are contracted with �g. These elastic
constants are mainly determined by the deformation of the
ligands and coordination bonds between the NPs, instead of the
NPs thermselves. This Eelastic captures the unavoidable geometric
frustration of assembling polyhedra NPs in 3D Euclidean space,
in a continuum limit.

The repulsion term Erepulsion encodes screened as well as long-
ranged electrostatic repulsion, commonly found in NPs. The
boundary term Eboundary describes surface energy associated with
the boundary of the assembly. The binding energy Ebind denotes
the energy released while the NPs bind, and is proportional to the
volume of the assembly.

As mentioned above, we are interested in the case where
complex low-dimensional morphologies are adopted by the NPs
to minimize the frustration in 3D Euclidean space as well as the
electrostatic repulsion. This problem can be solved in two steps.

In step one, we choose the appropriate slice �M from the non-
Euclidean crystal, and in step two, we solve for the morphology of
the assembled structure. For any given �M, the boundary and
binding energies, Eboundary+ Ebind, are fixed, as Eboundary depends
on the number of exposed faces of the polyhedral NPs and Ebind
depends on the volume of �M, both of which are fixed for a given
�M. Thus, in the second step, morphology only depends on the
combination of Eelastic+ Erepulsion. This second step is the main
theoretical advance of this paper.

The first step of determining the appropriate slice �M itself is a
considerably more complicated question that requires non-
equilibrium statistical mechanics. The first determining factor
for the choice of �M comes from the kinetic pathways. Any self-
assembly follows a pathway through the formation of inter-
mediate structures, such as small clusters, fibers, or sheets44,45,
which are precursors to the final configuration. Correspondingly,
the reference non-Euclidean crystal can often be decomposed into
sub-structures representing the precursors. We associate a
pathway to every decomposition of the reference non-Euclidean
crystal (or equivalently, subgroups of the non-Euclidean crystal’s
global symmetry group). The second determining factor is the
competition between all four energy terms described above. As
the assembly progresses, stress builds up, often in anisotropic
ways. In addition, repulsion also favors 1D and 2D assemblies. At
the same time, surface and binding energy drives smooth and
tight clusters. The interplay between all these effects eventually
determines the slice �M. Similar types of problems has been
studied for bundles of chiral fibers46 and polygon assembly in
2D20, but a general understanding for 3D self-assembly problems
has not been reached yet. In the section “Tetrahedral NPs and
their curved crystals” we discuss how the slice �M is selected for a
system of tetrahedral NPs based on kinetic pathways and
energetic arguments.

Tetrahedral NPs and their curved crystals. Here we specialize
the model to the assembly of charged tetrahedral CdTe NPs
binding via chiral surface ligands. These NPs in experiments self-
assemble into enantiopure and uniform helices at the scale of
microns9.

In these experiments, the NPs assemble in a mixture of water
and methanol, and the surface of the NPs are coated with L- or D-
Cysteine (Cys) ligands. Van der Waals forces, hydrogen bonding,
and coordination bonds between ligands induce face-to-face
binding of the NPs. Cadmium ions (Cd++) are added to regulate
the ligand coordination bonds between the NP’s surfaces (see the
“Methods” section for more details of the experiment).

We apply the general energy introduced in the section “Model
energy of frustrated nanoparticle self-assembly” to this problem
of frustrated assembly of tetrahedra NPs (Fig. 1c and d). The
continuum approach of this theory is justified by considering the
interactions between the NPs. The NPs are polydisperse with sizes
in the range of 3–5 nm, while the size of the “coordination bridge”
(the Cys ligands on both NPs and the Cd++ ion in between) is
about 1 nm. Thus, rather than a hard-polyhedra model, it is more
appropriate to model these NPs (including their ligands) as
deformable tetrahedra, and the assemblies as an elastic con-
tinuum. Note that the elasticity of this continuum mainly comes
from the variation of the interaction energy of the NPs as the NPs
displace and rotate relative to one another, and not the elasticity
of the CdTe NP cores, which are very stiff.

A term-by-term decomposition of the model energy in Eq. (1)
can be analyzed as follows for this experimental system. The term
Ebind is the binding energy from the Van der Waals, hydrogen
bonding, and coordination bonds between the NPs, assuming
perfect face-to-face binding. This perfect binding is geometrically
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frustrated, and the energy cost of the frustration is modeled as
Eelastic, where the elastic constants (μ, λ) describes how the
binding energy varies as the NP-NP attachment deviate from the
perfect bonding. The electrostatic repulsion of the charged NPs
determine the Erepulsion part. The surface term Esurface is the
energy cost associated with the surface between the assembly and
the solution.

As mentioned in the section “Model energy of frustrated
nanoparticle self-assembly ”, Ebind+ Esurface depends on how the
slice �M is cut from the non-Euclidean crystal, and is not affected
by the morphology. On the other hand, Eelastic+ Erepulsion selects
the morphology after the cut �M is given. In this paper, we focus
our quantitative theory on determining the morphology using
Eelastic+ Erepulsion for a given region �M that is a sheet from the
non-Euclidean crystal. We include qualitative discussions on
general principles on what determines the cut of �M regarding
both the competition between Eelastic+ Erepulsion and Ebind+
Esurface and kinetic pathways in the sections “Thin shell self-
assembly” and “Helicoidal morphology of NPs assemblies and
comparison with experiments”.

The essential step to construct Eelastic is to find the ideal metric
�g, which describes the stress-free distance between the tetrahedra,
which is inherited from the non-Euclidean crystal. For these
tetrahedra NPs, we choose to start from the 600-cell polytope,
which is a periodic tiling of the 3-sphere S3 (i.e. the surface of a
ball in 4D Euclidean space) by regular tetrahedra with the lowest
curvature, and thus least stressed in Euclidean space.

To understand the structure of the 600-cell (detailed in SI
section I), let us start by considering how tetrahedra assemble
when they are brought together by attractive interactions. It is
well-known that they can form infinite straight 1D helices with
no frustration, either left-handed (LH) or right-handed (RH),
called “tetrahelices” or Bernal spirals (Fig. 2a)47.

The chiral Cys ligands induce a small rotation angle between
two bound tetrahedral NPs, rather than perfect face-to-face
binding. As shown in Fig. 2b, this twist energetically selects
tetrahelices with the same handedness as the ligands. Under the
spontaneous tendency of tetrahedra to form tetrahelices, even a
small chiral bias in the ligands can propagate along the tetrahelix,
giving it the same handedness. In the following discussion, we
only use this chiral symmetry breaking to select the fibration, but
geometrically we still use the undistorted 600-cell as the reference
metric. The twist due to the ligands is a perturbative effect that
can be ignored in this initial consideration.

Self-assembly of tetrahelices is geometrically frustrated in 3D
Euclidean space, because the twist forbids two homochiral
tetrahelices to be glued side-to-side (Fig. 2c), but it can be
realized on the hypersphere S3(R) of radius R in Euclidean 4D
space, where twist is compensated by curvature. The 3-sphere’s
radius R is fixed by the tetrahedron’s size a: R= ϕa with ϕ being
the golden ratio ϕ ¼ ð1þ ffiffiffi

5
p Þ=2. The tetrahelices appear as

closed parallel rings of 30 tetrahedra touching perfectly side to
side (Fig. 2d). 20 such (homochiral) terahelices organized in four
nested toroidal shells form the 600-cell regular polytope (Fig. 2f±i)
which is a regular tiling of S3 with tetrahedra48. The global
structure of linked rings has the topology of the Hopf
fibration49,50 (Fig. 2e). Starting from all RH or all LH tetrahelices,
this construction leads to the same (achiral) 600-cell, so the latter
has two chiral decompositions: one contains all LH-, and the
other all RH-tetrahelices. The 600-cell has the lowest curvature
among regular polytopes formed by tetrahedra (hence a relatively
low frustration) so we take it as the reference configuration for
these self-assembling NPs.

It is convenient to parameterize the ideal packing of the
tetrahelices in the 600-cell with angular coordinates Φμ= (α, β, θ)

on S3, where the α-axis is orthogonal to the concentric toroidal
shells, the θ-axis is aligned with the vertices of RH-tetrahelices,
and the β-axis is aligned with the vertices of the LH-tetrahelices
(Fig. 2j and SI section I). The reference metric �g, which describes
the ideal, stress-free distances of the tetrahedra packing, takes the
following form in the coordinates (α, β, θ)

�gμν ¼
1 0 0

0 1 �cos 2α

0 �cos 2α 1

0
B@

1
CA: ð4Þ

The metric depends on α only, so the surfaces Σα (α= const.) are
flat tori, as shown by Bianchi in 189451. More detailed discussions
of this reference metric can be found in SI section II.

Thin shell self-assembly. The next step is to choose the slice �M
which represents the low dimensional assembly (with the thick-
ness h much smaller than width W and length L) at low surface
tension. In this paper we choose to study the (one-tetrahedron-
thick) shell between two special toroidal surfaces ΣN,S located at
α ¼ αN;S � π

4 � arctan 1
2 (with the mid-surface at the Clifford

torus α= π/4) as our slice �M (Fig. 2k and l).
This choice of �M is justified as follows. First, from the kinetic

pathway perspective, evidences from TEM images taken at
different stages of the self-assembly process indicate that
tetrahelices form first and they later combine into the micro-
sized helical ribbons as their final assembly9. This leads to a
natural stress-free direction which is along the tetrahelices from
the early stage of the assembly. The growth of the assembly along
this stress-free direction is only limited by the non-equilibrium
nucleation process of the assembly, and not by stress, so it can
reach the scale of microns, as observed in the experiment. In
particular, as shown in Fig. 2l, tetrahedra coated with L-Cys form
LH tetrahelices, leading to a low-stress direction along β, and
tetrahedra coated with D-Cys form RH tetrahelices, leading to a
low-stress direction along θ. Second, from the energetic
perspective, as the tetrahelices bind along directions perpendi-
cular to this low-stress direction, repulsion favors the growth of
thin sheets rather than thick bundles, and the stress from
geometric frustration limits the width of the sheet. Furthermore,
surface and binding energies favor smooth and tight clusters.

The choice of the shell between two special toroidal surfaces
ΣN,S satisfies these considerations at the same time. It contains
both the LH and RH tetrahelices, which are the stress-free
directions of NPs with L-Cys and D-Cys ligands, respectively. Top
and bottom surfaces of this shell are both smooth triangulated
surfaces, giving low surface energy. Next, we use Eq. (4) in Eq. (1)
to compute the effective energy of the thin assembly, and
minimize it to find the morphology of the assembly.

Since tetrahelices in 3D Euclidean space are open chains and
not closed rings, we should interpret the 600-cell order only as a
local reference configuration: the global topology of the
tetrahelices is not fixed by the topology of the reference 600-
cell. This is different from e.g. models of the cholesteric blue
phase, which used the global topology of the 3-sphere33 to find
the frustrated ground state. Therefore, we cut the shell along the θ
and β directions into an open rectangular prism (where θ, β are
no longer bounded by [0, 2π], Fig. 2l). This also justifies our
approximation of this sheet as an elastic thin sheet, as the width
and length can grow much greater than the thickness (which the
size of one tetrahedron).

We expand �gijðαÞ around the mid-surface

�gijðtÞ ¼ �aij � 2t�bij þ t2�cij þ oðt3Þ; ð5Þ
where we defined the parameter t≡ R(α−π/4) along the thickness
direction, similarly to a thin shell in elasticity43,52. Directly from
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the 600-cell, the shell we consider here includes the north and
south rings (Fig. 2g and h), αN < α < αS, which leads to a total
thickness of the shell h ¼ 2 arctanð1=2ÞR. In order for the thin
shell approximation to be valid, we need the thickness to be much
smaller than both the width and the length, as well as the radius
of curvature. As we discuss below when comparing the theoretical
and experimental results (see the section “Helicoidal morphology
of NPs assemblies and comparison with experiments”), this
criterion is indeed satisfied in the cases we explore here. The
reference first and second fundamental forms �aij � �gijð0Þ and
�bij � � 1

2R ∂t�gijð0Þ are

�a ¼ 1 0

0 1

� �
and �b ¼ 1

R

0 �1

�1 0

� �
: ð6Þ

The reference first fundamental form �a represents the ideal in-

plane metric of the mid-surface. The reference second funda-
mental form �b represents the reference curvature. It is off-
diagonal, so it favors pure twist around the axis defined by the
tetrahelix direction. The twist between the contact surfaces of the
tetrahelices packed in the shell generates stress between the upper
and lower surfaces of the sheet, as depicted in Fig. 2k. This
geometric frustration manifests in the fact that �a and �b are
incompatible in a surface embedded in Euclidean space for which
det �b= det�a ¼ �1=R2, while Kð�aÞ ¼ 0, violating Gauss’ Theorema
Egregium det �b= det�a ¼ Kð�aÞ. Note that the
Gaussi–Codazzi–Peterson–Mainardi (GCPM) equations are
satisfied.

We minimize the energy of the shell to find the actual first and
second fundamental forms a and b. We first consider the

Fig. 2 Structure of the 600 cell. a Tetrahelices are chiral linear assemblies of tetrahedra. b Chiral ligands induce a twist between neighboring tetrahedra,
and select and handedness of the tetrahelix. When the tetrahelix and the relative twist have the same (opposite) handedness, the distance between 4th-
nearest neighbor tetrahedra’s centers d(1, 4) increases (reduces), thus lowering (increasing) their electrostatic repulsion. At the same time, the edges of
the tetrahelix become more (less) coiled. c In 3D Euclidean space, two tetrahelices cannot fit side-to-side. d Two tetrahelices fitting perfectly together on
the 3-sphere S3 (a stereographic projection). e The base icosahedron of the 600 cell. The 4 toroidal shells are indicated by color gradient, with the α
coordinate of the boundaries between them marked. f–g 4 toroidal shells of the 600 cell, each containing 5 tetrahelices. f North pole bundle (0 < α < αN): 5
tetrahelices around the North pole of the base. g North ring of 5 tetrahelices wrapped around the North pole bundle (the latter is not visible). h South ring
of 5 tetrahelices wrapped around the North ring. The surface triangles are facing the South pole of the base. The north and south rings together occupy the
space αN < α < αS. i South pole bundle (αS < α < π/2): 5 tetrahelices are closely packed around the South pole of the base. j The coordinate Φμ= (α, β, θ)
(stereographic projection). k The slice �M, which contains the north and south rings (g and h, a total of 300 tetrahedra arranged in 10 tetrahelices,
corresponding to the middle 10 triangles in the base icosahedron in e), are characterized by layers of constant α surfaces within αN < α < αS. The angle
between (θ, β) evolves across the layers, according to the reference metric [Eq. (4)]. l The middle layer of �M is the Clifford torus (α= π/4, represented as a
square with opposite edges identified). The θ axis is along the RH tetrahelices, and along the long side of the ribbon when RH tetrahelices assemble. The
assembled ribbon (gray rectangle) has reference metric �g from the 600 cell but is not limited by the size of the Clifford torus.
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elasticity part,

Eshell
elastic ’ Estretch

elastic þ Ebend
elastic ¼

Z
�M0

dA ½Estretch
elastic þ Ebend

elastic� ð7Þ

where now �M0 is the Clifford torus and dA ¼ R2
ffiffiffiffiffiffiffiffiffi
det �a

p
d2Φ is

the area element of the mid-surface. The out-of-plane bending
energy density Ebend

elastic depends on b� �b

Ebend
elastic ¼

κ

2
½ð1� νÞTrðb� �bÞ2 þ νTr2ðb� �bÞ� ð8Þ

and the in-plane stretching energy, Estretch
elastic depends similarly on

a� �a with κ replaced by k, with stiffness k � hY
8ð1�ν2Þ and

κ � h3Y
12ð1�ν2Þ, where Y, ν are the Young’s modulus and Poisson

ratio. It is worth pointing out that although the thickness scaling
of the stretching and bending elastic energies are derived in the
continuum limit, they represent a good approximation for an
assembly of rigid NPs connected by soft ligands, as long as the
curvature is not too large and a continuous limit of the
deformation field is well-defined. The agreement with experi-
mental results verified this continuum approach. A more detailed
derivation of this thin shell elastic energy can be found in SI
section III.

This mode of geometric frustration is similar to a number of
problems in the literature on elasticity of twisted ribbons53–57.
The minimization of this type of elastic energy Eshell

elastic has analytic
solutions in two limits55–57: “wide” ribbons (W �

ffiffiffiffiffiffi
Rh

p
) are

stretching-dominated, so a ’ �a, and the solution is a cylindrical
helical ribbon. “Narrow” ribbons (W �

ffiffiffiffiffiffi
Rh

p
) are bending-

dominated, so b ’ �b, and the solution is a helicoid. This
crossover comes from the competition between the bending
energy, Ebend ~ LW5κ4, and the stretching energy, Estretch ~ h2 ⋅
LWκ2 (see ref. 55).

Interestingly, the assembled ribbons observed in ref. 9 and
experiments we perform in this paper have W>

ffiffiffiffiffiffi
Rh

p
, which may

lead to the conclusion that they belong to the wide ribbon limit.
However, the observed morphologies are much closer to
helicoids. As we analyze below, this is due to the bending
stiffening effect of the electrostatic repulsion.

Bending stiffening from electrostatic repulsion. In all realistic
cases, NPs carry some charge from spontaneous ionization of
their surface and adsorptions of charged species from the media.
Tetrahedral CdTe NPs in this experiment are negatively charged.
The electrostatic repulsion, screened by ions in the solution,
effectively stiffens the bending rigidity and enlarges the bending-
dominated regime to much wider ribbons. Assuming a uniformly
charged shell with total charge q and charge density ρ= q/hWL,
the potential at a point R(σ) on the sheet is

ϕðσÞ ¼ hρ
4πϵ

Z
�M0

dAðσ 0Þ 1
dðσ; σ 0Þ exp

�dðσ; σ 0Þ
ξ

� �
ð9Þ

where σ is the coordinate of the 2D sheet, dðσ; σ 0Þ ¼ jRðσÞ �
Rðσ 0Þj is the 3D Euclidean distance between two points on the
sheet, ϵ is the dielectric constant, and ξ is the Debye screening
length, which depends on the solvent. We will study the regime
h≪ ξ≪W, where repulsion has a significant effect on the
bending stiffness, but is still a short range force compared to the
width and length of the sheet.

The electrostatic energy density Erep ¼ hρ ϕðσÞ can be written
as an effective bending energy (SI section IV):

Erepulsion ¼
π

8
h2ρ2ξ3

4πϵ
2Trðb2Þ � ðTrbÞ2� �

: ð10Þ

We neglected corrections to the stretching energy because in the

thin sheet limit, the stretching and bending elastic energies are
OðhÞ and Oðh3Þ respectively, whereas Eq. (10) is Oðh2Þ. Summing
Erepulsion with Ebend

elastic [Eq. (8)] gives the effective bending energy

Ebend
eff ¼ κeff

2
½ð1� νeff ÞTrðb� �beff Þ2 þ νeff Tr

2ðb� �beff Þ�; ð11Þ

where

κeff ¼ κþ 2Q; ð12Þ

νeff ¼
κν � 2Q
κþ 2Q

; ð13Þ

and

Q � π

8
h2ρ2ξ3

4πϵ
ð14Þ

is the electric self-energy of a patch of size ξ on the ribbon. Similar
corrections to the elastic moduli were studied for charged fluid
membranes in ionic solutions in refs. 58–61. The correction to �b
affects its traceless part, �b

0
ij ¼ �bij � Trð�bÞδij=2, which obtains an

overall factor ℓ−1

�b
0
eff ¼

�b
0

‘
; ‘ / ρ2ξ3

hϵ Y
ð15Þ

up to numerical factors of order 1, while the trace part remains 0.
Thus, the repulsion has two effects: it increases the bending

rigidity [Eq. (12)] and lowers the the curvature of the reference
metric [Eq. (15)]. These two effects are related, as Q/κ ~ ℓ, so in
the limit of strong repulsion, ℓ≫ 1 and bending rigidity is
dominated by repulsion.

An important consequence of the correction is that the
reference radius R of S3 is enlarged into ℓR. In this strong
repulsion regime, the characteristic length scale for the bend-
stretch crossover,

ffiffiffiffiffiffiffiffi
‘Rh

p
, can exceed the physical width

(W �
ffiffiffiffiffiffiffiffi
‘Rh

p
), bringing a ribbon into the bending-dominated

regime even when W>
ffiffiffiffiffiffi
Rh

p
. The morphology of this regime is

solved in the section “Helicoidal morphology of NPs assemblies
and comparison with experiments”. Using Eq. (15) in
W �

ffiffiffiffiffiffiffiffi
‘Rh

p
, we find that the critical volumetric charge density

ρ above which the self-assembly is bending-dominated is

ρ> ρc ¼
2
3

Y
εε0
ξ3

W2 � ϕah
ϕa

� �1
2

; ð16Þ

where ε is the relative permittivity (ε ~ 32 for methanol at 298 K)
and ε0 is the vacuum permittivity.

Helicoidal morphology of NPs assemblies and comparison
with experiments. Without loss of generality, we describe an
assembly of RH tetrahelices, with long axis aligned with θ. The
treatment of LH tetrahelices can be generated with mirror sym-
metry, as we discuss below.

In the reference configuration, the RH helices are packed side
by side across the direction β. The ligand’s D-chirality favors the
formation of long RH tetrahelices while inter-helices bonds are
more frustrated, so we conjecture that the longest dimension L of
the thin-shell is parallel to the RH-helices. We therefore cut a
rectangular region out of the Clifford torus with the long side L
parallel to θ and the short side W parallel to β (Fig. 2l). In the
limit of L≫W the actual metric a needs to be independent of θ,
so stress grows only in the width direction, minimizing the
energy. In the repulsion-controlled bending-dominated regime,
we impose the constraint b ¼ �b and find the actual 2D metric aij
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by minimizing Estretch
elastic (see SI section V for more details):

aij ¼ cosh2β
1 0

0 1

� �
: ð17Þ

The embedding of the mid-surface, under free boundary
conditions, is an RH helicoid (Fig. 3b)

Rðβ; θÞ ¼ ‘R sinh β cos θ; sinh β sin θ; θ
� �

; ð18Þ
where R= ϕa is the radius of the 3-sphere, and a is the edge
length of the tetrahedra. Importantly, this RH helicoid has the
same chirality as the tetrahelices and the ligands. This prediction
is consistent with the structures seen in ref. 9, where high R ligand
(D Cys) concentration systematically leads to RH assemblies with
nearly perfect enantioselectivity. Similarly, for L ligands (L Cys),
we exchange β↔ θ which reverses the handedness of the
tetrahelices, but leaves �b invariant. Imposing ∂βaij= 0 and
minimizing Estretch, we find that now the helicoidal solution
must be LH (Fig. 3b).

The pitch of the helicoid is given by

p ¼ 2π‘R ¼ 2π
ρ2ξ3

hε Y

� �
R: ð19Þ

Hence the repulsion between NPs is a crucial design parameter:
the pitch can be tuned by the charge density ρ on the NPs, the
screening length ξ via the control of ion concentration in the
solution, and the solution’s dielectric constant ε.

It is worth noting that we started from a rectangular sheet of
length L and width W, but the resulting pitch p is independent of
L and W. This is true for the repulsion-controlled bending-
dominated regime we discussed above. In the intermediate regime
where stretching and bending energies are comparable, p may
depend on W, as discussed for the purely elastic case in ref. 55.

In this experiment, the width of the helicoid is determined by
the competition between the binding energy Ebind ~−ϵbind ×

(hWL) and the (repulsion-corrected) elastic energy of the ribbon,

Eelasticþrepulsion � Y ´ ðhWLÞ ´ W
‘R

� �4

: ð20Þ

At equilibrium, ∂(Ebind+ Eelastic+repulsion)/∂W= 0, giving

W � ϵbind
Y

	 
1
4
‘R � ϵbind

Y

	 
1
4 ρ2ξ3

hε Y

� �
R: ð21Þ

Because stress does not accumulate along the long axis of the
helicoid, the length L is controlled by the kinetic processes of the
assembly.

In experiments, twisted sheets were produced in a mixture of
water and methanol, while concentration of cadmium ions was
used to control the kinetic rate of the assembly. As discussed in
Methods, ξ and ε depend on the concentration of ions and the
water/methanol ratio. The predicted dependence of the pitch on
ξ, h, ε [Eq. (19)] agrees qualitatively with the experimental data
(Fig. 3a, c). Additionally, the measured thickness h of the ribbons
is much greater than a single tetrahedra (~5 nm in size). This
indicate that the assembled helices in the experiment consist of
multiple layers of stacked these single-tetrahedral-thick helicoids.

We are now in a position to reexamine the thin shell
approximation we took here. The width and length of the
assembled helicoids are of order 102–103 nm and much greater
than the thickness of the single-tetrahedron shell
(2 arctanð1=2ÞR � 5 nm as we discuss below Eq. (5)). Even when
considering multiple layers of ribbons stacked together, the
thickness is still much smaller than the other two dimensions. In
addition, the radius of curvature of the resulting morphology is at
the scale of the pitch, which is ~ℓR. Both this theoretical
prediction and the observed radius of curvature are much greater
than the thickness, justifying the thin shell approximation
we took.

Fig. 3 Comparing morphology of assemblies from experiment and theory. a Experimental observation of helical assemblies of tetrahedral CdTe NPs. b
Helicoidal solution for the ribbon’s mid-surface obtained from the model. c Linear prediction of the helicoid’s pitch on ξ, ϵ, h [Eq. (19)] (red line) fitted on
the experimental data (black data points), where a= 4.5 nm. Error bars show the upper and lower quartiles of the distribution of pitch and thickness of the
helices based on each SEM image.
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The theory described above provides a strategy to experimen-
tally tune the pitch of chiral helices by adjusting charge density,
solvent properties, and curvature of the reference metric, offering
control of a range of physical properties. By measuring the
circular dichroism (CD) spectra of self-assembled helicoids in
dispersions, we find that water/methanol ratio induces different
chiroptical responses at a range of wavelengths via its control of
the pitch (Fig. 4b, c and see the “Methods” section). We also
numerically simulated circularly polarized light (CPL) interacting
with self-assembled helicoids with geometric parameters in the
range produced from the experiments (varying the pitch in the
range 200–1600 nm) (Fig. 4a), finding a monotonic increase of
the CD peak with the pitch (Fig. 4d), the linear part (at smaller
pitch) of which agreeing with experiment (Fig. 4e). Importantly,
the amplitude of the CD spectra is much higher than for typical
biological molecules and the maximum located in the near-
infrared part of the spectrum suitable for biomedical imaging,
remote sensing, and information technologies.

Discussions
We present a non-Euclidean self-assembly theory for polyhedral
NPs, which explains how complex ordered structures can be
assembled from simple polyhedral NPs. We apply this theory to
the geometrically frustrated self-assembly of tetrahedral NPs
subject to chiral binding, and solved for helicoidal structures in
agreement with experimental observations. We further show that
electrostatic repulsion between the NPs provides an important
tuning parameter to control the final morphology.

Although this theory focuses on the equilibrium morphology, it
also provides insight into the assembly’s kinetic pathways. In
particular, the translational symmetry of the 2D reference metric
�a means that the assembly of these sheets is scalable: smaller
pieces of the sheet can merge and form a larger sheet, giving the

self-assembly process a high yield of the target structure. This
scalability refers to the connectivity of the assembly (topology of
the contact network), instead of the morphology, which is are
highly corporative ground states and depends on the size of the
cluster19. This scalability comes from the homogeneity of the
reference metric, which is translationally invariant across this
sheet. As a result, how an NP connects to its neighbors is the
same at different places on the sheet, allowing smaller pieces to
merge. As they merge, the morphology adjusts as the cluster
grows, but the topology of the contact network remains the same.
If instead the in-plane metric was not translationally invariant,
the local NP connectivity would be different in different locations,
and the sheet could only grow from one nucleation seed, which is
much slower. Interestingly, scalability is a trivial requirement for
the assembly Euclidean crystals (as the metric is always flat and
homogeneous), but a very nontrivial condition for cutting sub-
structures from non-Euclidean crystals. The scalability of the
metric greatly increases the yield, which was also observed
experimentally, and provides an important measure when this
theory is applied to a new new self-assembly system.

One interesting mechanism that naturally emerges in this theory
is the propagation of chirality from the molecular scale (i.e., L- or D-
Cys ligands on the NPs) to the assembled helices at the micron
scale. As pointed out in the literature, chiral symmetry breaking
mechanisms are highly nontrivial, and LH structures at the mole-
cular scale can lead to either LH or RH structures at larger length
scales, depending on the binding mechanism and the direction62–64.
Here, the intrinsic chiral symmetry breaking of binding tetrahedra
into 1D tetrahelices65 provides a convenient channel for molecular
scale chirality to propagate to the micron scale, as we discussed.

In addition, as observed in previous studies of geometrically
frustrated systems, topological defects such as disclinations may
arise, easing the stress at the expense of losing local attraction66.
Here, similarly, extra tetrahelices can be inserted as disclination

Fig. 4 Experimental and numerical results of CD spectra of assembled structures. a Numerical simulation of helical ribbons irradiated with circularly
polarized electromagnetic waves of varying wavelength. The CD spectra are shown for helices with pitch (p) varied between 200 and 1600 nm. b, c
Experimental measurement of normalized CD of [LH in (b) and RH in (c)] helices of tetrahedral CdTe NPs at water/methanol ratios 1:2–1:6 where the yield
of the helices is high. Helices of longer pitch, which occur at higher methanol, are studied using simulations (a, d). d, e Characteristic CD peak wavelength
plotted as function of the helical pitch, from numerical simulations (d) and experiments (e).
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lines in the 600-cell, increasing its radius R and decreasing its
curvature. Under this consideration, the proposed continuum
model, at a lower curvature of the reference metric, can also be
viewed as a continuum limit of tetrahedra assemblies with a
continuous distribution of disclinations. We expect this to be a
more realistic model of the experimentally observed morpholo-
gies, given their mesoscale size.

We would like to also point out interesting relations between
this work and the self-assembly of amphiphilic molecules and
peptides into chiral ribbons67–69. Although the elastic energy of
these molecular assemblies shares similarities with our theory, the
origin of the twist comes from chiral bonding between the
molecules, which is intrinsically different from the geometrically
frustrated polyhedral tiling we consider here.

This theory opens a new design space for the self-assembly of
NPs, where shape and interaction of the NPs are reflected in their
ideal non-Euclidean crystal structures, which in turn inform us
about the self-assembly in our 3D Euclidean space. Generalization of
this theory to more varieties of NPs, which exhibit tilings in either
spherical or hyperbolic space, as well as diverse ways in selecting
slices from these non-Euclidean crystals (e.g., clusters, tubes, shells,
hierarchical structures), open a suite of intriguing new questions for
future study. The new morphologies that will emerge, may lead to
novel materials capabilities. Besides chiral optical response in Fig. 4,
the engineering of self-assembled structures in non-Euclidean space
is applicable to realization of metamaterials with unique mechanical,
acoustic, catalytic, and biological properties.

Methods
Materials. L-Cys hydrochloride monohydrate, hydrochloric acid (HCl) sodium
hydroxide (NaOH), sulfuric acid (H2SO4, 98%) and methanol were purchased from
Sigma-Aldrich. Cadmium perchlorate hexahydrate (Cd(ClO4)2 ⋅ 6H2O) was
obtained from Alfa-Aesar. Aluminum telluride (Al2Te3) was purchase from
Materion Advanced Chemicals. All chemicals were used as received. Ultrapure
deionized water (18.2 MΩ) was used for all solution preparations.

Synthesis of CdTe NPs. The synthesis of CdTe NPs were according to previous
publications70 with appropriate modifications. Briefly, 0.985 g Cd(ClO4)2 ⋅ 6H2O
and 0.99 g cysteine hydrochloride monohydrate were dissolved in 100 mL deio-
nized water. The pH of the solution was adjusted to 11.2 with 1.0 M NaOH. The
obtained solution was transferred into a 250 mL three-neck round-bottomed flask
and connected to a 50 mL three-neck round-bottomed flask by tubes. The system
was quickly purged with nitrogen for 30 min to remove all the oxygen in the glasses
and solution. Then 0.10 g Al2Te3 was added into the small flask and purged
another 30 min to remove any possible oxygen in the system. 10 mL 0.50 M H2SO4

was quickly injected into the small flask to react with Al2Te3 to generate H2Te gas,
which was slowly purged into the reaction solution of cadmium precursor by
nitrogen flow. The reaction solution was refluxed at 100 °C for 8 h to obtain CdTe
NPs in a size of 4.5 ± 0.42 nm. The as-synthesized NPs need to be wrapped with Al
foil and aged as least three days before further assembly behavior.

Self-assembly of CdTe NPs. The self-assembly of CdTe NPs into helices with a
series of pitch lengths was referred to our recent publications9,71 with appropriated
modifications. Firstly, 500 μL CdTe NPs with aging time beyond 3 days were mixed
with 20 μL 0.10M Cd(ClO4)2. The pH value of the mixed solution was adjusted to
8.0 with 1.0 M HCl. Then different volumes of methanol from 500 to 5000 μL were,
respectively, added into the 500 μL above solution to initiate the self-assembly of
CdTe NPs. The obtained turbid solution was incubated at room temperature under
light irradiation for 3 days to assemble NPs into helices. Afterwards, the assembled
helices were centrifuged at 2800 × g for 3 min and dispersed in water to wash
unassembled NPs by another two times’ centrifugations in the same conditions as
above. The obtained helix was finally dispersed in water for further measurements
and characterizations.

Characterization. CD and extinction spectra were acquired using J-1700 CD
spectrophotometers with a PMT detector and an InGaAs NIR detector. All the
spectra were measured in a quartz cuvette with a light path of 10 mm. The zeta-
potential were measured by Zetasizer Nano ZSP (Malvern Instruments Ltd., GB).
SEM images were taken by FEI Nova 200 Nanolab Dual Beam SEM with an
acceleration voltage of 5 kV and a current of 0.4 nA. For counting the geometrical
parameters of the helices, the middle region of the helices was used for analysis and
more than 50 helices were counted for each case.

Calculation of Debye screening length. The Debye screening length, ξ, was
calculated using

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εrε0 kT

e2NA ∑
i
zici

vuut ð22Þ

where e is the elementary electric charge, NA is the Avogadro’s number, zi is the
charge number (valence) of ith component, ci is the molar concentration of ith
component, εr is the relative electric permittivity of the electrolyte, ε0 is the electric
permittivity of vacuum, k is the Boltzmann constant, and T is the absolute tem-
perature. For 500 mL CdTe NPs solution before mixing with methanol, the ions in
the solution were consisted of Na+ (0.1635 M), Cl− (0.0851M), Cd2+ (0.0275M)
and ClO�

4 (0.0315 M). After mixing with different volume of methanol, the con-
centration of each ion was diluted to different extents to get a series of Debye
screening lengths.

Dielectric constant of water/methanol mixtures. The dielectric constants of
water/methanol mixtures were according to refs. 43,72, which summarized a
polynomial formula for the dielectric constant of methanol/water mixtures with the
percentage of water in the mixtures based on a series of reported dielectric
values:

εðxÞ ¼ 32:91þ 0:208 x þ 0:00246 x2 ð23Þ
where x the molar fraction of water in methanol/water mixtures.

FDTD simulations. The CD spectra for nanohelices with variable pitch lengths
were simulated with commercial software package Lumerical FDTD Solutions. The
size of nanohelices used for simulation were according to SEM images of the
assembly of L-CdTe under the water/methanol ratio of 1:3, which generated a left-
handed ribbon with a length, width, thickness and pitch of around 1200, 300, 100
and 600 nm. The pitch was varied from 200 to 1600 nm while kept other geometric
parameters the same. To study the pitch effect on CD peak positions, the nanohelix
was illuminated by left/right-handed CPL consisted by two total-field scattered-
field (TFSF) sources with the same k-vector but with a phase difference of ±90° for
left/right-handed CPL, respectively. Two analysis groups consisted of a box of
power monitor were used to calculate the absorption and scattering intensity,
respectively. The CD spectra were recorded as the difference of the extinction
under left/right-handed CPL. The simulation wavelengths were set in the range of
300–2000 nm. The refractive index for CdTe was obtained from the Sopra Material
Database. The refractive index of water backgrounds was 1.33. The mesh size was
10 nm. The orientation of nanohelices were considered in the simulation. The
nanohelices were placed in a parallel, perpendicular and 4π-averaged
orientations68,71 in comparison with the k-vector of incident photons, which show
nanohelices under perpendicular orientation have a similar CD and extinction peak
position with respect to the random orientation (see Fig. 3).

Data availability
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