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Abstract

The rise of machine learning (ML) has created an explosion in the potential strategies for

using data to make scientific predictions. For physical scientists wishing to apply ML strate-

gies to a particular domain, it can be difficult to assess in advance what strategy to adopt

within a vast space of possibilities. Here we outline the results of an online community-pow-

ered effort to swarm search the space of ML strategies and develop algorithms for predicting

atomic-pairwise nuclear magnetic resonance (NMR) properties in molecules. Using an

open-source dataset, we worked with Kaggle to design and host a 3-month competition

which received 47,800 ML model predictions from 2,700 teams in 84 countries. Within 3

weeks, the Kaggle community produced models with comparable accuracy to our best pre-

viously published ‘in-house’ efforts. A meta-ensemble model constructed as a linear combi-

nation of the top predictions has a prediction accuracy which exceeds that of any individual

model, 7-19x better than our previous state-of-the-art. The results highlight the potential of

transformer architectures for predicting quantum mechanical (QM) molecular properties.
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1. Introduction

The rise of machine learning (ML) in the physical sciences has created a number of notable

successes [1–7], and the number of published outputs is increasing substantially [8]. This

explosion is perhaps not entirely surprising, given that ML ‘search space’ is effectively infinite.

For example, the performance of a particular ML algorithm strategy depends sensitively on at

least four components: (a) the dataset used for training (and the corresponding methodology

used for dataset curation); (b) the feature selection used to construct ML inputs; (c) the choice

of ML algorithm; and (d) the values of the optimal constituent hyperparameters. For compo-

nents (b) and (c), the space of possibilities is continually expanding; for components (a) and

(d), the space of possibilities is potentially infinite. Given the sensitivity of ML approaches to

each of the items outlined above, ML’s explosion within the scientific literature has led to

warnings of an emerging computational reproducibility crisis, a risk exacerbated by the fact

that many peer-reviewed ML publications do not include the data and algorithms required to

reproduce their results [9].

The difficulty of searching an enormous ML space is compounded by the fact that the train-

ing of even simple neural networks has been shown to be an NP-complete problem [10]. Deci-

phering whether any global optima lurk within an effectively infinite ML search space has

been the topic of a great deal of research; however, there seems to be a consensus emerging

that it is practically impossible to demonstrate that any particular ML strategy is in fact optimal

or bias-free, even for very simple systems [11]. Broadly speaking, the parameter spaces in

which a particular ML strategy can be constructed are non-convex, and characterized by mul-

tiple local minima and saddle points in which optimization algorithms can get trapped [12].

Nevertheless, ML algorithms can produce useful results. In a nod to the 1950 Japanese period

drama “Rashomon” (where various characters provide subjective, alternative, self-serving, yet

compelling versions of the same incident), ML’s tendency to produce many accurate-but-dif-

ferent models has been referred to as the “Rashomon effect” in machine learning [13]. In such

a vast space, any individual agent has a chance of stumbling upon a reasonable ML model.

Given the difficulty of rationalizing the uniqueness of any particular ML model or approach,

individual models are increasingly being used as constituents within ensemble models, whose

combined accuracy outperforms that of any individual model [14].

Over the last several years, a number of studies have demonstrated the utility of ‘crowd-

sourced’ approaches for solving scientific problems which involve searching hyperdimensional

spaces [15–19]. Inspired by recent attempts within both particle physics [20, 21] and materials

science [22] using community power to develop ML algorithms, we worked with Kaggle (an

online platform for ML competitions), to design a competition encouraging participants to

develop ML models able to accurately predict QM nuclear magnetic resonance (NMR) proper-

ties from 3D molecular structure information [23]. The fact that some of our authorship team

had worked in this area over several years [24] meant that we had quantitative and qualitative

benchmarks to analyse competition progress in relation to what conventional academic

research approaches had achieved. The so-called ‘Champs Kaggle Competition’ (CKC) ran

from 29-May-19 through 28-Aug-19. The 5 models which achieved the highest accuracy were

awarded respective prize money of $12.5k, $7.5k, $5k, $3k and $2k. Over ~13 weeks, the CKC

received 47,800 model predictions from 2,700 teams in 84 countries (Fig 1A), representing the

most exhaustive search to date of ML strategies aimed at predicting QM NMR properties from

3D molecular structure information. The number of participants who engaged with the CKC

was amongst the highest for any physical science challenge which Kaggle has hosted to date.

Fig 1B and 1C show a steady increase in the number of participants who joined the CKC versus

time. CKC participants reported being drawn to the competition because it: (a) facilitated
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progress on an important research problem; (b) involved a rich, noise-less dataset whose struc-

ture was easy to understand; and (c) had a dataset which was manageable using standard data

processing tools, workflows, and hardware.

Fig 1. (a) map showing the number teams participating from different countries over the duration of the CKC

(countries with less than 5 participants are shown light gray); (b) the number of CKC participants vs. time; (c) number

of submissions per day.

https://doi.org/10.1371/journal.pone.0253612.g001
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2. Competition design

2.1. Domain

NMR is the dominant spectroscopic technique for determining 2D and 3D molecular struc-

ture in solution. Amongst the most important data obtained in an NMR spectrum are the

chemical shifts (which describe the position/frequency of a signal in the spectrum) and the sca-

lar couplings (which determine the splitting/shape of the signal in the spectrum). ML methods

to predict NMR properties are established in academic and commercial workflows for deter-

mining 2D molecular structure from experimental NMR datasets [25–28]. Despite this success,

these 2D approaches often fail when the NMR properties are affected by 3D structure, for

example atoms are separated by several bonds yet remain close in 3D space (ring current

effects, hydrogen bonding etc.). This is an inherently difficult problem as the 3D molecular

structure is simply not well described by 2D representations and there are not enough high-

quality experimental data available to accurately infer most 3D relationships from a 2D struc-

tural representation alone.

The most accurate computed predictions of NMR properties use QM methods like density

functional theory (DFT) to get a one-to-one mapping between a 3D structure and the contri-

bution it has to the experimentally observed NMR property. Accurate QM methods for NMR

property predictions are powerful but expensive. Recent work has thus focussed on developing

ML algorithms which can efficiently reproduce the results of costly QM methods, achieving

results in seconds rather than hours or days [24, 29]. ML approaches have the added appeal

that they can be trained using large datasets of DFT-computed NMR parameters, which are

not limited to experimental structural observations. With a large enough training database, we

have shown in previous work that an ML strategy can approach the accuracy of DFT calcula-

tions of atom-centered NMR parameters such as chemical shift for 3D structure analysis, but

with several orders of magnitude reduction in time [24].

Beyond NMR, the last decade has seen considerable effort focused on machine learning

QM molecular properties [30–36]. Broadly speaking, this work has tended to focus on predict-

ing atomic properties such as partial charges, or molecular properties such as energies and

dipoles. Relatively little work has been carried out designing ML models which are able to pre-

dict pairwise atomic properties such as scalar coupling constants. Our earlier work to develop

pairwise property prediction algorithms were effectively independent-atom treatments, in

which atomic feature vectors describing the local environment of each atom were

concatenated [24]. However, this approach loses information about the relative position/orien-

tation of each atom’s respective environment, which is important for multiple-bond couplings.

The CKC represents an attempt to kickstart research into ML methods able to make accurate

prediction of pairwise properties.

2.2. Dataset & scoring

Scalar couplings are critically dependent on the 3D structure of the molecule for which they

are being measured; however at the time we carried out this work, we were unaware of accu-

rate experimental databases linking pair-wise mutiple-bond NMR scalar couplings to well-

defined 3D molecular structures. Therefore, we decided to run the CKC utilizing molecular

structures included in the QM9 dataset, a publicly available benchmark for developing ML

models of 3D structure-property relationships [37]. QM9 includes ~134k molecules comprised

of carbon, fluorine, nitrogen, oxygen and hydrogen. The molecules included within QM9 have

no more than 9 heavy atoms (non-hydrogen), with a maximum of 29 total atoms. To obtain a

corresponding set of scalar couplings, we extended the QM9 computational methodology,
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using the B3LYP functional [38] and the 6-31g(2df,p) basis set [39–42] to compute NMR

parameters on the optimized QM9 structures. The computed QM9 scalar coupling constants

are available under Creative Commons CC-NC-BY 4.0, enabling others to build on this work.

To remove the possibility of CKC participants overfitting their models to the entire set of

computed QM9 scalar couplings, 65% of molecules in the dataset were randomly partitioned

into a training set and the other 35% to a testing set. The test set was further split, with 29% of

the data in a ‘public’ test set, and 71% of the data in a ‘private’ test set (competitors were

unaware of the specifics of the private/public split). Both the training and test sets included the

molecular geometries and indices of the coupling atoms. Unlike the test set, the training set

included a range of other data, including the calculated scalar coupling values, their break-

down into Fermi contact (FC), spin-dipole (SD), paramagnetic spin-orbit (PSO) and diamag-

netic spin-orbit (DSO) components, and a range of auxiliary information obtained from the

QM computations (e.g., potential energy, dipole moment vectors, magnetic shielding tensors

and Mulliken charges). As the CKC progressed, participating teams continually iterated and

improved their models. A regularly updated and publicly visible leaderboard enabled each

team to see where their model ranked in predicting the public test set data compared to the

model predictions made by all of the other teams.

The leaderboard scores were determined using a function which accounted for the 8 different

types of coupling constants included in the training and testing datasets: 1JHC, 1JHN, 2JHH, 2JHC,
2JHN, 3JHH, 3JHC and 3JHN (where the superscript indicates the number of covalent bonds separat-

ing the atom pairs indicated by the subscript). Since the number of couplings of each type differed

(e.g., the molecular composition of the QM9 test set included 811,999 3JHC couplings compared

to 24,195 1JHN couplings) and spanned different value ranges, the scoring function used the aver-

age of the logarithm of the mean absolute error for each type of coupling constant:

score ¼
1

T

XT

t

log
1

nt

Xnt

i

jyi � ŷij

 !

ð1Þ

where t is an index that runs over the T = 8 different scalar coupling types, i is an index that spans

1..nt, the number of observations of type t, yi is the scalar coupling constant for observation i, and

ŷi is the predicted scalar coupling constant for observation i. This scoring function ensures, for

example, that a 10% improvement in one type of coupling will improve the score by the same

amount as a 10% improvement in another type of coupling, so that no coupling class dominates.

2.3. Recruitment & consent

The competition was run using the online competition platform Kaggle. Recruitment was

done via Kaggle marketing. All participants consented to the competition rules (see S14 in S1

Appendix) prior to submitting solutions. We provided information to the participants about

the overall purpose of the competition (e.g., to develop new quantum mechanical property

predication algorithms, and to aid design of medicines. See S15 in S1 Appendix for full

description used), the timeline, submission format and objective scoring metric, and further-

more by answering questions on the discussion forum [43]. Participants were not required to

provide us with any additional information. Upon competition completion, the email

addresses of the competition winners were passed to the main authors/organizers in order to

invite their collaboration on this paper (all members of the winning teams are co-authors).

While the scoring metric used to determine winners were objective, since the data set used

were synthetic, there was a risk that a team could infer the computational methodology and

perform well by cheating. However, to be eligible for a cash prize, the winners had to share
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their code that could reproduce their predictions. This helped ensure that the competition was

resistant to any form of cheating.

3. Results

3.1. Leaderboard time evolution

Over the course of the CKC, Fig 2A shows the evolution of the best score whose source code was

publicly available (public notebooks), and its relationship to the top score versus time. Fig 2B

shows that the time trace of the top score is well fit by a bi-exponential curve with two distinct

phases. Phase 1 lasted for the first week, during which time the accuracy increased by ~12x (~2.5

improvement in score), with a time constant of ~1.29 ± 0.18 days. Phase 2 lasted for the next 12

weeks, during which time the accuracy improved more gradually by a factor of ~4x (~1.5

improvement in score), with a time constant of ~50.0 ± 16.6 days. To determine which models

were awarded prize money, the final set of model rankings were assessed using Eq (1) to evaluate

how well each of the models predicted the scalar coupling values in the private test set (preventing

competitors inferring the target property from the leaderboard scores rather than from the train-

ing set). Due to the large amount of noise-less data, the positioning in the top 37 submissions was

the same on the public and private leaderboard at the end of the CKC. Several teams commented

that the stability between the public & private leaderboards made for an enjoyable competition.

The top-scoring method achieved a geometric mean error (which is the exponential of the

score in Eq (1)) of 0.039 Hz which was 6-16x more accurate than what could be achieved using

our own recently developed methodology (see S5 and S13 in S1 Appendix for details) [24]. In

addition to the final score, Kaggle also rewards participants who make the best contributions

to: (1) publicly available code, and (2) the discussion forums. As a result of these incentives, a

number of participants opted to voluntarily publish their source code (public notebooks). In

many cases, the public notebooks were then utilized and adapted by other CKC participants.

As shown in Fig 2A, the best score achieved using these public notebooks follows a time trace

which is similar to the leading score, but less accurate by ~1.5. A number of participants made

instructional web posts, scripts, and videos outlining specific approaches which they had taken

during the CKC. For example, video presentations by Andrey Lukyanenko [44] and the NVI-

DIA team [45] discuss the approaches which they utilized to develop the 8th and 33rd place

solutions, respectively. The CKC summary features insightful write-ups by several top teams

in which they describe their various model approaches [46].

3.2. Meta-ensemble model

To assess the extent to which the prize-winning submissions differed from one another (and

other highly ranked submissions), we used the top 400 submissions to construct a meta ensem-

ble (ME) model as a linear combination of the top scoring models:

yi;ME ¼
X400

j¼k

wjyi;j ð2Þ

Given that many of the top models (and all of the prize winners) were ensemble models, we

have adopted the term “meta-ensemble” (ME) to emphasize the fact that Eq (2) is an ensemble

of ensemble models. In Eq (2), the ME prediction yi,ME of the i’th scalar coupling constant is a

linear combination of the predictions yi,j of the j’th ranked model. The index k specifies the

lowest ranked model to be included within the optimized ME model. When k = 1, Eq (2) runs

over the entire list of the top 400 models. When k> 1, Eq (2) neglects top-scoring models. Set-

ting k = 6 for example, the Eq (2) ME model excludes all of the prize-winning models (ranks
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#1 –#5). For ME models constructed using Eq (2), the weights wj were determined by mini-

mizing yi,ME using half of the test set, under the constraint that the weights were positive and

summed to unity. While a range of different ME models can be constructed (e.g., different

ensembles for each type of coupling, median averaging etc.), this simple mean is easy to

interpret.

Fig 2. (a) score evolution vs. time. Black line shows the best performing method vs. time. Blue line shows the best

performing public notebook. Red lines shows the best submission by each team; (b) best fit of the time dependent

leader (black) score to an biexponential curve of the form A�exp(−t/τ1)+B�exp(−t/τ2)+C (A = 2.11; B = 2.97; τ1 = 50.0

days; τ2 = 1.29 days; C = -3.59). Blue indicates the best ME model score.

https://doi.org/10.1371/journal.pone.0253612.g002
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Different classes of machine learning algorithms (or even the same algorithm with dif-

ferent hyperparameters) may be able to learn different regions of the data better than oth-

ers. Thus, by combining the highest scoring model predictions that have the least

correlation for a meta-ensemble, the strengths of various models may be accumulated, a

result confirmed by the ME analysis shown in Fig 3A as a function of k. As expected (for

k = 1..300) the optimized ME model achieves an accuracy which always surpasses that of

the best individual model. In the regime where the top scorers are incrementally being

Fig 3. (a) comparison of the top individual score (orange) to the ME model score (blue) as function of the k value in Eq (2); (b) the number of contributors to the ME

model at a particular k value that had an optimized weight greater than 0.01.

https://doi.org/10.1371/journal.pone.0253612.g003
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eliminated from Eq (2) (k = 1..50), Fig 3A shows that the ME model has a score that is ~0.2

lower than the “best” model. For example, the k = 7 ME model (which neglects the top 6

models) still outperforms the winning solution, and the k = 11 ME model outperforms the

winning solution when the per-type ensemble mentioned above is used. Fig 3B shows how

many contributors to the ME model at a particular k value had an optimized weight

greater than 0.01. Broadly speaking, the Fig 3A results can be lumped into three regimes.

In the first regime (k ~ 1..40) the best performing methods dominate the ME and there is

little to be gained by including within the ME methods that are very different if they per-

form worse. In the second regime (k ~ 41..200), Fig 3A shows that the gap between the top

score and the ME model widens to ~0.4. Here there are many similarly performing yet dif-

ferent methods, so there is much to be gained by combining their different approaches

into a ME. In the third regime (k ~ 201..300) the gain from a ME decreases, presumably

because many of the models are similar variants of the public notebooks. The relative ben-

efit of constructing a ME model (versus using a top-scoring model) thus appears to be

more significant outside of the band of top-scoring and low-scoring models.

For the k = 1 ME model, which was 7-19x more accurate than our previously published

model [24], we analysed in further detail its constituents. The results in Table 1 show the k = 1

ME constituents with weights wi> 0.02, along with the relative rankings j of the constituent

ME models. Table 1 shows that there is no particular model which is dominant: there are five

models with a weighting greater than 0.11, and three with a weighting greater than 0.20. Of the

six models in Table 1, one (#12) falls outside the top 5. Its 0.149 contribution is larger than

prize winning models #3 and #5. Fig 4A shows the submission history of the Table 1 models,

and their relationship to the overall public leader board.

3.3. Correlation analysis

To further understand the relationship between the winning submissions within the k = 1 ME

model, we carried out a correlation analysis on the top 50 team submissions. The submissions

were then ordered using a hierarchical clustering analysis (see S5 and S13 in S1 Appendix).

The results in Fig 4B show that the #1 –#5 teams are part of the same sub-cluster i.e. all rela-

tively similar to each other. Fig 4C specifically highlights the low correlation between models

#1 –#5 compared to model #12, which shows that this team’s approach exists within a region

Table 1. Summary descriptions for the six models in the final ME.

1st 2nd 3rd 4th 5th 12th

Weight wj 0.204 0.270 0.111 0.203 0.046 0.149

Number of submissions 73 167 151 37 53 4

Country USA Spain S. Korea Serbia France USA

Belarus

Team size 5 2 5 4 3 2

Any Chemistry expertise? Y N Y Y N Y

Use of scalar coupling components? N N Y N N N

Translational invariance? Y Y N Y Y Y

Rotational invariance? Y N N Y Y Y

Previous Kaggle experience? N Y Y N Y N

Included additional input features? Y N N Y Y N

Number of model parameters ~105M ~60M ~70M ~60M ~66M ~250K

“Use of Scalar coupling components” refers to whether a team decomposed the scalar couplings into four separate components in their model.

https://doi.org/10.1371/journal.pone.0253612.t001
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of ML strategy space that appears relatively distinct from the prize-winning models, and also

from the top 50 solutions.

Compared to the others in Table 1, team #12 was a relative latecomer to the CKC as shown

in Fig 4A. In addition, the number of parameters in their model is ~100x smaller than the

Fig 4. (a) score evolution vs. time for Table 1 teams. Black line shows the best performing method at a current time.

Colored lines show the best submission by each team; (b) correlation amongst the top 50 submissions. Red indicates

high correlation, and blue low. Bottom and right side shows the ranking of the submission, while top and left features a

dendrogram depicting the hierarchical clustering; (c) correlation between Table 1 teams.

https://doi.org/10.1371/journal.pone.0253612.g004
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others. The low correlation of team #12 compared to the other teams in Table 1 appears to

have arisen because they utilized the ‘Cormorant’ rotationally covariant neural network strat-

egy [47]. Originally developed for learning molecular potential energy surfaces (PESs), Cormo-

rant takes advantage of rotational symmetries in order to enforce physical relationships in the

resultant neural network, by using spherical tensors to encode local geometric information

around each atom’s environment, which transform in a predictable way under rotation. The

use of spherical tensors allows for a network architecture that is covariant to rotations, so that

if a rotation is applied to a layer, all activations at the next layer will automatically inherit that

rotation. As such, a rotation to a Cormorant input will propagate through the network to

ensure that the output transforms as well. This captures local geometric information while still

maintaining the desired transformation properties under rotations. Team #12’s sophisticated

input processing strategy contrasts with the approaches taken by other teams, which tended to

utilize far simpler encoding strategies, either by restricting the input features to have transla-

tional and rotational invariance (e.g., using internal distances), adding translational and rota-

tional noise to make the inputs robust to rotation and translation, or allowing the model learn

invariance on its own. Team #12’s approach is grounded in domain specific physics knowl-

edge, and characteristic of the emphases which physical scientists tend to apply in ML

contexts.

4. Discussion & conclusions

Community-powered approaches offer a powerful tool for searching ML strategy space and

providing accurate predictions for physical science problems like the prediction of 2-body QM

NMR properties. Within 3 weeks, the best score on the Kaggle public leader board achieved an

accuracy which surpassed our own previously published approaches [24], suggesting that an

open source community-powered ‘swarm search’ of ML strategy space may in some cases be

significantly faster and more cost-efficient than conventional academic research strategies

where a single agent (e.g., a PhD student or post-doctoral researcher) spends several years

hunting for solutions in an infinite search space. ME model construction combined with cor-

relation analysis highlights the strength of the CKC ‘swarm search’ approach, in line with the

“Rashomon effect”.

Whereas our earlier approaches to predicting NMR structure coupling constants [24] had

relied on kernel-ridge regression approaches [48] where the internal distances and angles in

the molecules were systematically encoded to a feature vector for the coupling atom pairs

using predetermined basis functions, the community which emerged around the CKC pio-

neered a new application of transformer neural nets [49] to QM molecular property predic-

tion. While such networks have found extensive use for sequence modelling and transduction

problems such as language modelling and machine translation, they represent a relatively new

approach to predicting QM properties like NMR shifts or scalar couplings, and it will be inter-

esting to explore their further application to other QM properties and more general 2-body

property prediction problems, which are relevant in several domains across the physical sci-

ences. The rich portfolio of open source blog posts, data, insight, source code, and discussions

arising from the CKC offers an excellent foundation for subsequent research and follow-up

studies, through community initiatives or more conventional academic research approaches.

Teams #2 and #5 had no domain specific expertise, and yet outperformed participants with

domain expertise, including our own previous attempts [24]. This contrasts with previously

published Kaggle competitions in particle physics [20, 21] and materials science [22], where

the winners tended to be domain experts. Table 1 shows that teams with prior domain exper-

tise (e.g., #1 and #4) used their insight to calculate additional input features beyond those

PLOS ONE A community-powered search of machine learning strategy space to find NMR property prediction models

PLOS ONE | https://doi.org/10.1371/journal.pone.0253612 July 20, 2021 11 / 16

https://doi.org/10.1371/journal.pone.0253612


which we provided, and which they then used as model input. For example, team #1 used Mul-

liken charges and atomic valency, while team #4 used electronegativity, first ionization energy,

electron affinity, mulliken charge, and bond types. Despite this added complexity, team #1

only narrowly managed (i.e., within the CKC’s final hours) to improve on the approach of

team #2, which used a simple cartesian input representation with no additional data.

All of the prize winning teams utilized deep neural networks where the encoder learned the

pair-feature vectors from the coordinates, atom types, distances, etc. A separate feed forward

neural network (decoder) was then used to make scalar coupling predictions per coupling type

or sub coupling type. The relatively simple input descriptions used by many of the top teams

transferred to the neural network the challenge of learning an effective input representation.

Such approaches contrast with those favored by physical scientists, which utilize more complex

descriptors constructed so as to include domain specific insight (e.g., rotational symmetries

for team #12). Taking advantage of the variance in approaches, the various model predictions

can be combined into a ME model whose combined accuracy surpasses that of any individual

model, 7-19x more accurate than what our previous methods were able to achieve. The benefit

of a ME model seems to be most significant in the regime where there are many independent

individual models with similar performance.

Fig 2A shows that the average benefit which new models contributed to the overall

improvement in prediction accuracy decreased versus time, with a rapid improvement over

the first week, followed by a much more gradual improvement over the next 13 weeks. Fig 1C

shows that the number of model predictions was approximately constant versus time with an

increase over the final 20 days. These observations indicate an overall decrease in the relative

cost/benefit ratio as a function of time. This cost/benefit decrease is qualitatively compatible

with conclusions drawn from previous meta-analyses of scientific progress [50], which suggest

that search strategies for scientific discovery tend to become less efficient with time. In our

case, these results suggest that a shorter competition may have furnished similar insights. The

results also highlight potential shortcomings in the elaborate scheme of awards and prizes

which scientific disciplines utilize to incentivize progress and recognize ‘top-performers’–e.g.,

the fact that solution #12 played a more important role in the optimized ME model compared

to some of the prize winning models offers an important reminder that scientific progress is a

community effort that depends on a range of important contributions, which can often go

unrecognized in conventional indicators of prestige.

The results of this study demonstrate how community science initiatives in conjunction

with open data can enable rapid scientific progress in ML domains, reaffirming the commu-

nity benefits that can arise when scientific workers make their data and algorithms open. Web-

based platforms enable distributed community efforts to build engagement with scientific con-

cepts at a time where scientific approaches face mounting challenges across media and political

landscapes. Given the constraints on conventional scientific collaboration which have arisen

as a result of social distancing, distributed scientific community efforts like these may become

more prevalent in the near term. For example, there has been a steady increase in the number

of scientific stack exchanges, which (like Kaggle) incentivize scientific communities to share

knowledge and expertise. Digital platforms which benefit from the ubiquity of cloud comput-

ing and which enable distributed communities to engage with one another to undertake collec-

tive problem solving are likely to play an important role in our emerging scientific future. Such

approaches may be particularly useful for problems like ML, where the strategy spaces are

effectively infinite. Moving forward, it will be interesting to explore the extent to which search

efficiencies might be enhanced by combining the intelligence of human agents with machine

agents.
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prediction of nuclear magnetic resonance spectra. Journal of Cheminformatics. 2016; 8(1):26. https://

doi.org/10.1186/s13321-016-0134-6 PMID: 27158267

28. Brandolini AJ. NMRPredict Modgraph Consultants, Ltd, 1348 Graham Place, Escondido, CA 92129.

http://www.modgraph-usa.com. Contact company for pricing information. Journal of the American

Chemical Society. 2006; 128(40):13313–. https://doi.org/10.1021/ja059832t

29. Paruzzo FM, Hofstetter A, Musil F, De S, Ceriotti M, Emsley L. Chemical shifts in molecular solids by

machine learning. Nature Communications. 2018; 9(1):4501. https://doi.org/10.1038/s41467-018-

06972-x PMID: 30374021

30. Hansen K, Biegler F, Ramakrishnan R, Pronobis W, von Lilienfeld OA, Müller K-R, et al. Machine Learn-

ing Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical

Space. The Journal of Physical Chemistry Letters. 2015; 6(12):2326–31. https://doi.org/10.1021/acs.

jpclett.5b00831 PMID: 26113956

31. Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA. Big Data Meets Quantum Chemistry Approxima-

tions: The Δ-Machine Learning Approach. Journal of Chemical Theory and Computation. 2015; 11

(5):2087–96. https://doi.org/10.1021/acs.jctc.5b00099 PMID: 26574412

32. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for Quantum chemis-

try. Proceedings of the 34th International Conference on Machine Learning—Volume 70; Sydney,

NSW, Australia: JMLR.org; 2017. p. 1263–72.
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