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Abstract: Waste tobacco stems from the tobacco industry were used to obtain activated car-
bon by thermal conversion and chemical activation with KOH. The aim was to investigate
its adsorption ability towards Zn(II), Cd(II), and Pb(II) from aqueous solutions. Fundamen-
tal physical and chemical properties were investigated, and the point of zero charge pH
was detected. The results showed that the obtained activated carbon was characterized
by a high specific surface area, pore volume, and negative surface charge, which could
make it an efficient metal adsorbent. In the next step, the optimal adsorption conditions
were determined using Central Composite Design. Finally, the adsorption kinetics and
thermodynamics were studied. The adsorption rate is very high for Pb(II) and Cd(II),
whereas it is noticeably lower for Zn(II). The negative value of Gibbs free energy change
(∆G) confirmed that the adsorption process of the tested metal ions is feasible and proceeds
spontaneously. The thermodynamics indicate that the adsorption of zinc and lead on the
tested carbon is an exothermic process, and for cadmium, this process is endothermic.

Keywords: adsorption; activated carbon; tobacco stems; tobacco waste; lead; zinc; cadmium

1. Introduction
Water deficit, as well as poor water quality, has resulted in a global water crisis [1].

Without changes in water management, the water crisis will deepen, exacerbating existing
inequalities. According to a report by the European Investment Bank, around 380 billion m3

of wastewater is generated worldwide annually, which is an alarming increase compared to
previous years. Forecasts indicate that by 2030 this number will increase to 470 billion m3,
and by 2050, it will reach 574 billion m3 [2]. The increase in the production of wastewater,
which pollutes water and soil, has mainly been caused by industrialization and urban-
ization. Industrial and municipal wastewater is a common source of contamination of
surface and groundwater with various harmful compounds, including heavy metals. Metal
mining, smelting, foundries, and other metal-based industries also create large amounts
of waste and wastewater containing trace elements [3]. Ore mining processes such as
crushing, flotation, and roasting generate chemicals that can pollute the environment,
posing a serious threat to aquatic ecosystems and human health, especially since metals are
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not biodegradable. In particular, heavy metals such as lead, zinc, or cadmium can accu-
mulate in aquatic organisms and enter the food chain [4]. As a result, many methods for
removing metal ions from water and wastewater have been developed, including chemical
precipitation [5], coagulation and flocculation [6], ion exchange [7], membrane separation
processes [8], adsorption [9], and others.

The sustainable management of water resources in the world requires ensuring ac-
cess to clean drinking water and implementing innovative water treatment technologies.
Adsorption is one of the most often used technologies, and the most common adsorbents
include activated carbons obtained from hard coal, peat, or brown coal, as well as carbon
nanotubes, graphene, and natural clays [10]. In recent years, carbon materials obtained
from plant biomass (biochars) have gained significant importance in the adsorption method
for removing pollutants from water [11]. Due to their ecological properties and low price,
they have become a promising adsorbent compared to expensive activated carbons pro-
duced from synthetic fuel precursors. The production of commercial activated carbons
is associated with high costs, which limits their use in fields such as environmental engi-
neering, agriculture (as fertilizers), or construction engineering (as composites). In turn,
biochars can be produced at minimal cost from easily available agricultural waste [12].
Such a solution enables the recycling of resources, which not only reduces the amount
of waste but also contributes to saving natural resources and reducing carbon dioxide
emissions. Activated biochars are obtained in thermochemical conversion processes, most
often as a result of the high-temperature pyrolysis of biomass without access to oxygen, as
well as hydrothermal carbonization, gasification, or torrefaction. In the pyrolysis process,
organic matter is decomposed, volatile components are removed, and a porous structure is
created. Further activation of the material (e.g., with steam, oxidizing gases, or chemical
compounds) increases the number and size of pores and, thus, the surface available for the
adsorbate. Depending on the type of original biomaterial, the conditions of synthesis, and
the methods of physical and chemical activation, activated carbons differ significantly in
terms of physicochemical properties (e.g., specific surface area, porosity, elemental com-
position, presence of functional groups, pH value of the zero-charge point, etc.) [13]. It
is crucial to transform existing knowledge into effective and practical water treatment
systems, including the use of biochar technologies that promote savings and the protection
of natural resources. Currently, research on the use of biochars focuses on developing meth-
ods for their production, studying their properties, and determining the applications of the
obtained biochar products in the context of thermochemical processes. This approach is in
line with the “waste-to-treasure” concept and supports activities aimed at CO2 neutrality,
resource recycling, energy saving, and emission reduction [14].

A potential source of biochar is tobacco (Nicotiana tabacum L.)—a plant widely culti-
vated worldwide, mainly for the production of tobacco products such as cigarettes, cigars,
and snuff. According to [15], global tobacco production was 6.4 million tons in 2023. The
largest tobacco producer is China, which produces about 2.4 million tons of tobacco per
year, followed by India, Brazil, and Zimbabwe. It is estimated that more than 200 million
tons of waste is generated annually in the process of tobacco cultivation and cigarette pro-
duction [16]. This waste includes by-products generated during the cultivation, production,
and processing of tobacco products, such as stems, dust, and tobacco leaf residues that
can still be smoked. Tobacco stems, unlike crop straw (wheat or rye stalks), are difficult to
biodegrade in the natural environment. For this reason, they are usually burned in the open
after the leaves have been harvested. This action leads to the pollution of the atmosphere
and groundwater as a result of the release of harmful nicotine [17,18]. Therefore, it is
important to develop effective methods of managing this waste, which will allow for its
proper treatment and transformation into resources. Biomass from tobacco waste can be



Materials 2025, 18, 2324 3 of 25

used to produce valuable bioproducts, such as biofuels [19,20], carbon materials [21], or
natural fertilizers [22,23]. The transformation of tobacco waste into bioproducts creates new
opportunities in the tobacco industry, improving its sustainability while also benefiting
society by contributing to environmental protection and the development of an economy
based on renewable resources [24,25].

The process of extracting bioactive compounds from tobacco waste [26,27], the pro-
duction of fermentable sugars from tobacco stems [28], and the use of biochar from tobacco
stems as a fertilizer to improve the physical properties of soil [22,29] have been described in
detail in the literature. However, little is known about the use of activated carbons obtained
by the thermochemical conversion of these wastes in drinking water treatment processes,
especially as adsorbents of pollutants. Currently, the use of biochar obtained from plant
biomass in water treatment systems is limited. This is due to the fact that biochars are
heterogeneous materials obtained from different types of biomass. Differences in their
properties, such as pH, ionic strength, organic matter content, and other factors, make
the pollutant sorption process more complex than in the case of commercial activated
carbon [30]. Therefore, each biochar requires individual research to determine its proper-
ties and capabilities for the sorption of various pollutants. The aim of this work was to
investigate the sorption properties of activated carbon obtained by the thermochemical
transformation of waste tobacco stems in relation to three heavy metals: Zn(II), Cd(II), and
Pb(II). The optimal conditions for the sorption of these compounds were determined, and
studies on the sorption kinetics and thermodynamics were carried out, which will allow
for the practical application of such activated carbon in water treatment systems.

2. Materials and Methods
2.1. Materials

Biomass from waste tobacco stems obtained from the tobacco industry in Poland was
used (Figure 1a). Activated carbon from tobacco waste was prepared according to the
literature [31], with minor modifications, as described below. The biomass was subjected to
slow pyrolysis at a temperature of 400 ◦C with a heating rate of 5 ◦C/min and a reaction
time of 120 min. Pyrolysis was carried out in a horizontal tube furnace (PRW-S100 × 780/11
by Czylok Sp. z o.o., Jastrzębie Zdrój, Poland) with a nitrogen stream (5 L/min). The
obtained biochar (Figure 1b) was chemically activated using KOH. For this purpose, 1 g
of biochar was mixed with 2 g of KOH, and 100 mL of demineralized water was added,
and then, the sample was stirred for 24 h (400 rpm). After this time, the biochar sample
was dried at 105 ◦C, placed in a nickel boat, and subjected to pyrolysis in a nitrogen stream
(5 L/min). The temperature in the furnace was increased at a rate of 5 ◦C/min to the
activation temperature of 800 ◦C, which was maintained in the furnace for 2 h. After the
pyrolysis process was completed, the material was left in the reactor until room temperature
was reached. Then, it was flooded with 5% HCl and left for 24 h. The sample was washed
abundantly with hot distilled water to pH ≈ 7 in the effluent and dried at 105 ◦C to a
constant mass. The activated carbon prepared in this way (Figure 1c) was stored in a glass
container and marked as TWAC (tobacco waste activated carbon).

Three metals were selected for sorption studies, i.e., Pb(II), Zn(II), and Cd(II), which
are most frequently found locally in surface and groundwater, raw and treated sewage,
and even in drinking water [32–35] as a result of their infiltration with contaminated
sewage. Solutions of the heavy metals Zn(II), Cd(II), and Pb(II) were prepared from zinc
nitrate (Zn(NO3)2·6H2O), cadmium nitrate (Cd(NO3)2·4H2O), and lead nitrate (Pb(NO3)2

analytical grade), which were purchased from Pol-Aura Sp. z o.o. (Zawroty, Poland).
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Figure 1. Image of the biomass used: (a) tobacco waste stems; (b) biochar obtained by slow pyrolysis
at 400 ◦C; and (c) activated carbon obtained after chemical modification (TWAC).

2.2. Methods
2.2.1. Measurements

The concentration of metal ions in water extracts and samples after sorption was ana-
lyzed using an inductively coupled plasma–atomic emission spectrometer type ICP-AES.
The determination of pH was carried out using the pH meter pH/mv CP-401 (ELMETRON,
Zabrze, Poland) with an accuracy of ±0.002 pH. The content of basic elemental components
(C, H, N, S) was determined on an elemental analyzer type LECO Tru/Spec CHN/S. The
specific surface area, pore volume, and size distribution were determined based on the
course of the nitrogen vapor adsorption/desorption isotherm at 77 K on an ASAP 2020 mi-
crometer analyzer (Micrometrics, Atlanta, GA, USA). The distribution of functional groups
in the tested adsorbent was assessed using a Fourier-transform infrared spectroscopy
(FT/IR-6200, Jasco, Heckmondwike, UK). FTIR spectra were recorded in the range from
4000 to 400 cm−1. Infrared spectra were collected using an ATR attachment.

2.2.2. Physicochemical Analyses of Activated Carbon

The tested activated carbon was characterized in terms of physicochemical properties
such as pH, moisture, ash, volatile substances, bulk density, iodine value, and methylene
blue index. The water pH was measured in aqueous solutions by the potentiometric
method using a pH meter. The total moisture content (Ha) was assessed in accordance with
the standard [36]. The determination consisted of determining the weight loss of the tested
material as a result of its drying at 105 ◦C. The determination of ash content (Aa) in the
tested samples was performed in accordance with the standard [37]. The determination
consisted of burning 1 ± 0.1 g of TWAC in a furnace at a temperature of 815 ± 10 ◦C for
90 min in an FCF22S muffle furnace (CZYLOK, Jastrzębie_Zdrój, Poland) and measuring
the mass loss after incineration of the sample. The ash content in the sample was expressed
in terms of the air-dry state. The bulk density was determined in accordance with the
standard [38].

The volatile matter (VM) content was determined in accordance with the stan-
dard [39]. The determination consisted of placing samples with TWAC in an oven heated
to 850 ± 10 ◦C for 7 min, cooling the sample, and measuring the mass. The volatile matter
content was converted to a dry and ash-free state as follows:

VM[%] =

(
∆m
m

·100 − Ha

)
· 100
100 − (Ha + Aa)

, (1)

where ∆m is the mass loss between the weighed portion and the final sample, g; m is the
mass of the TWAC sample used for measurement, g; Ha is the moisture content in the
analytical sample, %; and Aa is the ash content determined in the analytical sample, %.
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The efficiency of the biochar modification process was assessed based on the available
surface area and estimated by performing a standardized determination of the iodine
adsorption number (iodine value) in accordance with [40]. The methyl number was
determined according to [41].

The H/C ratio defining the hydrophobic nature of the solid and the O/C ratio defining
the presence of functional oxygen groups were calculated from the elemental composition
of the tested activated carbon. The oxygen content was determined by the calculation
method based on the difference according to the following equation:

O(%) = 100% − [Aa(%) + C(%) + N(%) + H(%) + S(%)]. (2)

2.2.3. Point of Zero Charge pH

The pHpzc is the pH value at which the surface of a solution or suspension of a solid in
water has an electric charge of zero. The pHpzc of the adsorbent material was determined
in accordance with [42] using the constant addition method. Eleven 100 mL glass bottles
were prepared with 50 mL of 0.01 M NaCl solution in each. By adding 0.1 M HCl or 0.1 M
NaOH solution, the pH values of the tested solutions were set in the range of 2 to 12. The
bottles were tightly closed and left for 2 h to stabilize the pH of the solution, after which the
pH of the solution was measured (initial pH). Then, 0.15 g of the tested carbon was added
to the solutions with the appropriate initial pH and flushed with nitrogen gas to remove
CO2 from the solution, and then, the bottles were tightly closed. After that, the bottles with
the solutions were shaken for 24 h at 200 rpm using an orbital shaker type RS-OS 5 and
then set aside. After 72 h of equilibration at room temperature, the final pH of the solution
was measured. The pHpzc was determined by plotting a curve of the difference between
the final pH and initial pH against the initial pH.

2.2.4. Sorption Studies

Adsorption studies of Zn(II), Cd(II), and Pb(II) were carried out in single-component
aqueous solutions consisting of deionized water and the tested compounds. In the first
step, the optimal adsorption conditions were established. The initial concentrations of
Zn(II), Cd(II), and Pb(II) were assumed to be in the range of 10 to 90 mg/dm3. The TWAC
doses were assumed to be in the range of 1 to 6 g/L, and the pH was assumed to be in
the range of 3–6. Each metal of the appropriate concentration and a volume of 100 mL of
distilled water were introduced into conical flasks. Samples prepared in this way were
shaken on a rotary shaker for an hour at 20 ◦C, after which the vessels were placed in a
dark room for 23 h. After this time, the water from the conical flasks was decanted and
centrifuged in a centrifuge (MWP-2 type) at 2500 rpm. The efficiency of the Zn(II), Cd(II),
and Pb(II) adsorption process was evaluated as the percentage removal (PR) of the tested
contaminants as follows:

PR(%) =

(
1 − Ce

Ci

)
·100%, (3)

where Ci and Ce are the initial and equilibrium metal concentrations, respectively, mg/L.
Then, the optimization process was carried out as described further in the next subsection.
In this way, the best values of the pH and adsorbent mass ma were determined for each
initial concentration as well as overall. For all three metals, the procedure was carried out
in the same way.

In the next step, metal sorption kinetics studies were conducted using the determined
pH = 5 and ma equal to 5 g/L with a static method (batch). Aqueous solutions of metals in
the amount of 50 mg/L were added to the prepared solutions in three separate flasks. Then,
the samples were shaken for a period of 5 to 120 min. After the specified time, samples
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of the solutions were taken for metal concentration analysis. The sorption capacity of the
adsorbent towards metals, q (mg/g), was determined as follows:

q =
Ci − Ce

ma
V, (4)

where Ci and Ce are the initial and equilibrium metal concentrations, respectively, mg/L; V
is the volume of the tested solution, L; and ma is the mass of the adsorbent, g.

The kinetics were modelled using several theoretical models as follows: the pseudo-
first-order (PFO) equation, the pseudo-second-order (PSO) equation, the intraparticle diffu-
sion (IPD) equation, and the IPD model with one term (IPD1) according to the equations
described in [43]. The final equilibrium concentrations of metals were used to determine
the adsorption isotherms. The following isotherms were considered: Freundlich, Langmuir,
Langmuir–Freundlich, Elovich, Temkin, and Toth (equations as in [9]). The parameters of
the kinetics models and the adsorption isotherms were determined using the nonlinear
fitting and least squares method. To estimate the fit quality, the determination coefficient
R2 was used as well as the standard error of regression as follows:

SE =

√
1

n − p − 1

n

∑
i=1

(ŷ(xi)− yi)
2, (5)

where n is the number of data points (xi, yi), x is the independent variable, y is the depen-
dent variable, ŷ is the model equation, and p is the number of parameters of the model [43].

To determine the effect of temperature, thermodynamic studies based on standard
equations (e.g., [43]) were conducted at 20, 30, 40, and 50 ◦C and initial heavy metal
concentrations ranging from 10 to 250 mg/L. Experiments were also carried out at pH = 5
and adsorbent mass ma = 5 g/L to maintain the optimal sorption conditions.

For all experiments, the concentrations of metals in solutions after sorption were quan-
titatively determined using an inductively coupled plasma–atomic emission spectrometer
(ICP-AES). Three series of measurements were performed for each sample, and the average
value was taken.

2.2.5. Optimization of Adsorption Parameters

The Central Composite Circumscribed Design (CCD) method with α = 23/4 ≈ 1.68
was used to select the optimal adsorption parameters with three independent variables:
the initial solution pH, initial adsorbate concentration Ci, and adsorbent mass ma. These
variables were normalized and coded as x1, x2, and x3, respectively, and then, a 20-point
CCD scheme was applied. For each of the 20 sets of independent variables, measurements
of the final concentration of each adsorbate were performed, and its percentage removal
was calculated. To assess the effect of individual independent variables on the removal
efficiency, a second-degree polynomial with respect to variables x1, x2, and x3 was used to
describe the modelled percentage removal (MPR) as follows:

MPR(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x3 + a4x2
1 + a5x2

2 + a6x2
3 + a7x1x2 + a8x2x3 + a9x3x1, (6)

where a0, a1, . . . , a9 are coefficients that were further determined using the least squares
method. In the calculations, all combinations of the base functions 1, x1, . . . , x3x1 were
tested, and the best fit was assumed to be the one that gave the highest value of the adjusted
R2 value, calculated as AR2 = 1 − (n − 1)/(n − m)

(
1 − R2), where n is the number of

measurement points (20), m is the number of base functions taken into account, and R2 is
the coefficient of determination. Solutions that gave coefficients ai burdened with too high
p-values were also rejected. In this way, the base functions that had a negligible effect on the
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quality of the fit were eliminated from further consideration (i.e., some of the coefficients ai

were assumed to be equal to zero as a result).
In the next step, an attempt was made to determine the optimal values of inde-

pendent variables that would give the highest possible percentage removal. For this
purpose, the maximum of the MPR function was sought in the considered range of
independent variables:

MPR(x1, x2, x3) = max ⇒ xo
1 , xo

2 , xo
3 ⇒ pHo, Co

i , mo
a , (7)

where the superscript “o” stands for “optimal”.
Unlike the pH and adsorbate mass, the initial concentration is a variable whose value in

natural conditions is an existing quantity and cannot be easily changed; therefore, attempts
were also made to select the optimal adsorption conditions (i.e., pH and adsorbent mass
ma) for a given initial adsorbate concentration Ci. For this purpose, the geometric locus of
the MPR function was determined, giving the highest possible value for a given value x2,
i.e., the maximum of the MPR(x1, x2, x3) was determined, treating x2 as a parameter:

MPR(x1, x2 = const, x3) = max ⇒ xbC
1 (x2), xbC

3 (x2) ⇒ pHbC(Ci), mbC
a (Ci), (8)

where the superscript “bC” means “best for concentration Ci”. The pHbC and mbC
a values

determined in this way depend on the initial concentration. However, in technical condi-
tions, this is inconvenient because it would require tracing Ci and adjusting the pH and ma

accordingly; therefore, the average percentage removal (APR) was calculated by averaging
over the initial concentration in the considered range as follows:

APR(x1, x3) =
1

2α

∫ α

−α
MPR(x1, x2, x3)dx2, (9)

and then the optimal pH and ma values were determined:

APR(x1, x3) = max ⇒ xbA
1 , xbA

3 ⇒ pHbA, mbA
a , (10)

where the superscript “bA” means “best on average”. The values of pHbA and mbA
a

determined in this way can be considered optimal for many adsorption processes with
various initial adsorbate concentrations within the range considered in this work.

3. Results and Discussion
3.1. Physicochemical Properties of the Adsorbent

The physicochemical properties of TWAC obtained in the pyrolysis process are pre-
sented in Tables 1 and 2. After adding the TWAC into distilled water, the solution pH
increased to 9.05, indicating the absorption of protons. The alkaline nature of the solu-
tion is related to the pyrolysis process, which leads to the formation of carbonates and
aromatic structures with condensed rings with C–O bonds or the reduction of carboxyl
groups [44–46]. The presence of negatively charged organic groups, such as COO (carboxy-
late), OH (hydroxyl), and carbonates bound to the surface of activated carbon, also affects
the alkalinity of the coal. The obtained ash content in TWAC is within the range obtained
for biochars from wood biomass (approx. 43.2–50.8%). According to [47], this is related
to the different lignin and cellulose content in the biomass and the degradation of acidic
functional groups during high-temperature pyrolysis, which results in higher ash content
and a high pH. Compared to commercial activated carbons, the ash content is relatively
high [48]. Jin Zhang et al. (2019) carried out the fast pyrolysis of tobacco stems at 450 ◦C
and obtained a similar ash content (25.5%) [18]. The research results (Table 1) indicate that
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the volatile substances (21.5%) were not completely evaporated, which may be the reason
for the clogging of some pores in the TWAC. This is also indicated by the determined iodine
value of the TWAC, which is much lower than that suggested by the determined specific
surface area of 875.38 m2/g.

Table 1. Physicochemical characteristics of the activated carbon obtained from tobacco waste.

Quantity pH Moisture Content
(Ha)

Ash Content
(Aa)

Volatile Matter
(VM)

Density BET
Surface

Iodine
Value

Methylene
Blue Index

Unit % % % g/cm3 m2/g mg/g cm3

Value 9.05 1.94 26.8 21.5 0.713 875.38 285.6 20

Table 2. Elemental analysis of the activated carbon obtained from tobacco waste.

Quantity C (%) H (%) N (%) S (%) O (%) H/C O/C

Value 49 2.5 1.3 0.06 20.34 0.05 0.42

Table 2 presents the results of the elemental analysis of C, H, N, S, and O of the tested
activated biochar. The obtained content of elemental components is comparable to that for
biochar obtained in the pyrolysis process from other types of biomass, e.g., from sunflower
husks or pine or spruce bark [49,50]. The content of N and S in TWAC is very low, 1.3% and
0.06%, respectively, which indicates that it should not affect the formation of a corrosive
environment in the pyrolysis reactor chamber. Knowledge of the H/C and O/C ratios
allows us to determine the diversity of the chemical structure of the tested biochar. The
H/C ratio describes the aromaticity of the biochar and its stability, while the O/C ratio
allows for a comparison of the biochar richness in oxygen functional groups. Higher H/C
and O/C values represent a greater amount of oxygen functional groups [51]. In the case of
the tested carbon, low H/C and O/C ratio values were obtained, 0.05 and 0.42, respectively,
which indicates the loss of functional groups containing H and O (hydroxyl, carboxyl, and
others) due to the dehydration and decarboxylation reactions in the pyrolysis process and
a higher degree of carbonization of the tested biochar [52]. Moreover, it is believed that the
decrease in the H/C ratio is related to dehydration and the increased aromatization of the
organic material surface [47,53,54]. The low H/C ratio suggests that the biochar is strongly
thermally modified and has large amounts of unsaturated structures [55].

3.2. Structural Characteristics

The nitrogen adsorption/desorption isotherms recorded for the tested TWAC sample
and the pore volume distribution versus their diameter are shown in Figure 2. According
to the IUPAC classification, the isotherm can be classified as type IV with a hysteresis loop
of type H3 occurring at higher equilibrium pressures p/ps = 0.5. However, the entire
adsorption branch of the loop of this isotherm seems to have the same shape as the type II
isotherm, especially in the range of low and medium p/ps concentrations [56]. Therefore,
according to [57], the determined isotherm can rather be classified as pseudo-type II,
associated with delayed capillary condensation. This isotherm is characteristic of porous
adsorbents with strong adsorbate–adsorbent interactions and corresponds to single- and
multilayer physical adsorption. Such isotherms are characteristic of micro- and mesoporous
structures with a wide range of pore sizes [58]. The course of adsorption/desorption
isotherms also allows for the assessment of the pore shape, since the nature of the hysteresis
loop depends on the type of pores present in the adsorbent. According to de Boer [59],
the obtained hysteresis loop can be attributed to pores formed between two planes with
different mutual inclinations.
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The total pore volume of TWAC calculated from water vapor adsorption data is
0.649 cm3/g. The large BET surface area (875.38 m2/g) and total pore volume indicate the
suitability of TWAC in environmental engineering for the removal of heavy metal ions from
water and wastewater. This surface area is smaller than that reported for activated carbons
but larger than that reported for biochars prepared based on the same raw material. For
example, the BET surface area for activated carbon was reported to be 1800 m2/g in [60] and
121 m2/g in [58], and for biochars, it was 234 m2/g in [61] and 310 m2/g [62]. Figure 1b
shows the pore size distribution of the tested sample determined by the BJH method,
which varied from 1 to 10 nm. The graph shows that the dominant pores in the TWAC
adsorbent are mesopores with a diameter of about 4 nm. The sizes of hydrated heavy metal
ions are 0.430 nm, 0.426 nm, and 0.401 nm for Zn2+, Cd2+, and Pb2+, respectively, which
indicates the possibility of multilayer adsorption in both the mesopores and micropores of
the adsorbent [63,64].

3.3. Point of Zero Charge pH

The charge of the adsorbent surface plays an important role in the ion sorption process
at the solid/solution interface. The adsorption of various substances is highly dependent on
the solution’s pH value. A small change in the solution’s pH can lead to a large increase or
decrease in the electrostatic interaction between ions, substances, and ionizable sites on the
adsorbent surface [65]. When the pH of the solution in contact with the adsorbent is below
the point of zero charge (pHpzc), the adsorbent surface is positively charged, and conversely,
when the pH increases above the pHpzc, the surface is negatively charged. Figure 3 shows
the results of the pHpzc for the tested biochar sample. The pHpzc value of biochar is 9.15.
The high observed pHpzc value is due to the high activation temperature (800 ◦C) in the
pyrolysis process, which results in the formation of carbonates in the TWAC structure [62].
Figure 3 shows that the surface of the adsorbing material is positively charged below the
pH value of 9.15; hence, for effective cation sorption, the solution pH should be above that
value. However, this is only one of the factors affecting the sorption. In the considered
case, such a large pH value would result in precipitation rather than sorption. Therefore, in
further studies, the solution pH was lowered to avoid possible precipitation.
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The pHpzc values directly depend on the type of activation used, as well as on the
chemical properties of the activation solution [66]. The literature shows that biochars and
activated carbons obtained by the pyrolysis of biomass exhibit a large variability in the
pHpzc. For example, in studies on the adsorbent from tobacco stems obtained by activation
with ZnCl2 and CO2 at a temperature of 750 ◦C, pHpzc = 9.05 was obtained [62], whereas
for activated carbon prepared from starch chemically activated in KOH at a temperature of
750 ◦C, the pHpzc was 5 [67], and for biochar obtained from apple and cherry sawdust at a
temperature of 800 ◦C after chemical activation with KOH, it was 6.6 [68].

3.4. FTIR Analysis

The identification of surface functional groups present in a material is important for
understanding its chemical and sorption properties and adsorption mechanisms [69,70].
The Fourier-transform infrared (FTIR) analysis results indicate qualitative differences in the
biochar surface functional groups, which depend on the raw material used and pyrolysis
conditions [71]. Figure 4 shows the FTIR spectra of TWAC before and after the adsorption
of Pb(II), Cd(II), and Zn(II).
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The broad absorption band in the range of 3500–3010 cm−1 indicates the presence of
hydroxyl groups (–OH) originating from cellulose, hemicellulose, lignin, and other organic
compounds and amine groups (–NH) originating from the tobacco stem biomass [58].
The intensity of the band assigned to stretching (–OH) decreased slightly in the case of
Pb(II), and after Cd(II) sorption, the peak showed a slight shift, indicating the breakage
of O–H bonds (Figure 4). In the case of Pb(II), no other clear changes were observed
in the FTIR spectrum after adsorption, suggesting that the adsorption process may take
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place via physical or electrostatic interactions that do not lead to significant changes in the
functional groups of the adsorbent, and these mechanisms are more difficult to capture in
the FTIR spectrum [72]. The stretching vibration bands of the –CH groups, in particular
the methyl substituents of aromatic rings (–CH3) and the methylene bonds connecting
aromatic rings (–CH2), are present in the spectra of TWAC samples after Zn(II) and Cd(II)
adsorption near a wavenumber of 2960 cm−1, which suggests that they influence the
sorption of these metals [73,74]. However, they are not visible in the spectrum of TWAC
after Pb(II) sorption. The band present in the 1560 cm−1 region can be attributed to the
stretching vibrations of both the C=C groups in aromatic structures and C=O in carboxylates,
ketones, and quinones [75,76], with a significantly decreased peak corresponding to C=C
and C=O stretching upon Zn(II) and Cd(II) adsorption. The appearance of a new peak
around 1424 cm−1 (related to aliphatic vibrations such as methyl (–CH3) or methylene
(–CH2) groups and (–COO−) groups) indicates the participation of these groups in the
removal of Cd(II) and Zn(II) and the formation of complexes with these groups [51,73].
The transformation of –COOH groups into anionic form (–COO−) as a result of biomass
pyrolysis may lead to the appearance of a peak in the range of 1420–1430 cm−1 because
carboxyl groups can cause asymmetric vibrations in this region of the FTIR spectrum. A
small peak around 1250 cm−1 is most often associated with the vibrations of C–O groups in
phenolic groups (–OH), as well as ester groups (–C–O–C–) and aliphatic (–CH2, –CH3) or
carbonyl (C=O) groups. The high peak at 1003–989 cm−1 may be caused by the stretching
vibrations of the C–O bond of alcohol groups and carboxylic acids; its intensity decreased
after the adsorption of Zn(II) and Cd(II) [77,78]. On the other hand, the position of the peak
at 869 cm−1 may be the result of the chelation of Zn(II) and Cd(II) with oxygen groups on the
adsorbent surface. This peak is responsible for the out-of-plane vibrations of C–H groups in
aromatic, carboxyl (–COOH) in anionic form (–COO−), and epoxy (–C–O–C–) groups. The
obtained FTIR spectra are consistent with the changes in the elemental composition, which
indicates that an increase in the pyrolysis temperature results in the formation of activated
carbon with increased aromaticity and decreased acidity and polarity (Table 2) [79].

3.5. Optimization of Sorption Conditions

In order to determine the optimal values of the selected parameters in the adsorption
process, the CCD method was used. The values of the original independent variables pHi,
Ci, and ma, their normalized equivalents, and the determined percentage removal (PR) are
given in Table 3. The removal efficiency of Pb(II) is high and ranges from 82% to 99.5%.
However, for the two remaining metal ions, the adsorption efficiency is lower and ranges
from about 29% to 99% for Zn(II) and from 40% to 99.5% for Cd(II).

Table 3. Input and output data for removal optimization with CCD.

pHi x1
Ci,

mg/L
x2

ma,
g x3

Ce,mg/L Removal (PR), %

Zn Cd Pb Zn Cd Pb

3.6 −1 26 −1 0.2 −1 6.16 3.59 1.97 76.5 86.3 92.5
5.4 1 26 −1 0.2 −1 2.70 3.37 0.97 89.7 87.1 96.3
3.6 −1 74 1 0.2 −1 51.89 31.2 2.12 29.7 57.8 97.1
5.4 1 74 1 0.2 −1 22.63 10.44 1.0 69.3 85.9 98.6
3.6 −1 26 −1 0.5 1 1.88 2.4 0.39 92.8 90.8 98.5
5.4 1 26 −1 0.5 1 0.55 0.73 0,25 97.9 97.2 99.0
3.6 −1 74 1 0.5 1 17.73 19.54 0.47 76.0 73.5 99.4
5.4 1 74 1 0.5 1 1.45 3.61 0.38 98.0 95.1 99.5
3.0 0 50 0 0.35 0 25.31 19.66 0.52 49.4 60.7 99.0
6.0 0 50 0 0.35 0 0.48 2.45 0.23 99.0 95.1 99.5



Materials 2025, 18, 2324 12 of 25

Table 3. Cont.

pHi x1
Ci,

mg/L
x2

ma,
g x3

Ce,mg/L Removal (PR), %

Zn Cd Pb Zn Cd Pb

4.5 0 10 0 0.35 0 0.32 0.05 0.13 96.8 99.5 98.7
4.5 −1.68 90 0 0.35 0 30.59 27.21 0.62 66.0 69.8 99.3
4.5 1.68 50 0 0.1 0 29.44 30.02 0.99 41.1 40 82
4.5 0 50 −1.68 0.6 0 2.11 4.42 0.88 95.8 91.2 98.2
4.5 0 50 1.68 0.35 0 5.09 5.60 0.39 89.8 88.8 99.2
4.5 0 50 0 0.35 −1.68 6.35 7.24 0.53 87.3 85.5 98.9
4.5 0 50 0 0.35 1.68 5.51 6.31 0.44 89.0 87.4 99.1
4.5 0 50 0 0.35 0 5.95 6.93 0.41 88.1 86.1 99.2
4.5 0 50 0 0.35 0 6.21 5.86 0.49 87.6 88.3 99.0
4.5 0 50 0 0.35 0 5.72 7.11 0.51 88.6 85.8 99.0

Figure 5 shows correlation graphs between the obtained values of percentage removal
and the values of the initial pH and the mass of the adsorbent. In all cases, a positive
correlation was observed, which indicates that approximately higher values of pHi and
higher values of ma give a higher removal efficiency.
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initial pH (a) and adsorbent mass ma (b).

To obtain the optimal pHi and ma values for each of the adsorbates studied, the
MPR function was used, as described in Section 2.2.5. The determined forms of the MPR
function, AR2 fit indicator, and APR function for the individual adsorbates are given in
Table 4 and illustrated in Figure 6. The most complex MPR dependence was obtained
for Zn(II)—it is characterized by a high fit quality and contains both linear and quadratic
terms, as well as mixed terms. For Cd(II), the MPR function is slightly less complex but is
characterized by a poorer quality of fit. In the case of Pb(II), the MPR function is extremely
simple and seems to depend only on the adsorbent mass, but its quality of fit is quite poor.
It should be emphasized that the determined functions are empirical in nature and do not
result directly from the adsorption mechanism. Nevertheless, they are helpful in selecting
the optimal adsorption conditions.
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Figure 6. Plots of MPR and APR functions: (a) MPR for Zn(II), (b) APR for Zn(II), (c) MPR for
Cd(II), (d) APR for Cd(II), (e) MPR for Pb(II), and (f) APR for Pb(II); the maxima of the functions in
the considered range of variables are marked in red; the values of the variables defining the maxima
are given in framed white rectangles.
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Table 4. Functions describing the empirical percentage removal of Zn(II), Cd(II), and Pb(II) on the
activated carbon under study; x1, x2, and x3 are normalized variables representing pHi, Ci, and ma.

Adsorbate Function or
Indicator Value

Zn(II) MPR 87.05 + 11.97x1 − 9.93x2 + 14.02x3 − 3.84x2
1 − 5.87x2

3 + 5.43x1x2 − 3.22x1x3 + 6.31x2x3
AR2 0.942
APR 87.05 + 11.97x1 + 14.02x3 − 3.84x2

1 − 5.87x2
3 − 3.22x1x3

Cd(II) MPR 86.47 + 8.40x1 − 7.27x2 + 9.21x3 − 5.68x2
3 + 5.31x1x2

AR2 0.765
APR 86.47 + 8.40x1 + 9.21x3 − 5.68x2

3

Pb(II) MPR 99.57 + 2.86x3 − 2.88x2
3

AR2 0.738
APR 99.57 + 2.86x3 − 2.88x2

3

Based on the form of the MPR function, the position of its maximum was determined,
located in the studied range of variables, corresponding to the optimal values of the
adsorption parameters, which are shown in Table 5.

Table 5. Optimal values of adsorption parameters.

Adsorbate Optimal Conditions for Sorption Best Parameters for Given
Concentration

Best Parameters on
Average

Zn(II)
pHo

i = 6.00
Co

i = 90mg/L
mo

a = 5.9 g/L

pHbC
i = 4.55 + 0.0204Ci

mbC
a = 3.8 + 0.0242Ci

pHbA
i = 5.6

mbA
a = 4.8 g/L

Cd(II)
pHo

i = 6.00
Co

i = 90mg/L
mo

a = 4.7 g/L

pHbC
i = 6.0

mbC
a = 4.7 g/L

pHbA
i = 6.0

mbA
a = 4.7 g/L

Pb(II)
pHo

i = 3.0–6.0
Co

i = 10–90mg/L
mo

a = 4.2 g/L

pHbC
i = 3.0–6.0

mbC
a = 4.2 g/L

pHbA
i = 3.0–6.0

mbA
a = 4.2 g/L

In the case of Zn(II), the percentage removal varies in the range from about 10% to 100%
and is approximately greater the higher the pHi values and the mass of the adsorbent. The
best adsorption conditions resulting from the MPR function are pHo

i = 6.0, Co
i = 90 mg/L,

and mo
a = 5.9 g/L, but it should be noted that MPR values close to 100% occur for a mass

of the adsorbent above 4 g/L and pHi above 4.5. The averaged optimal pHi and ma values
over the concentrations that maximize the APR function are 5.6 and 4.8 g/L, respectively.

The percentage removal of Cd(II) is characterized by high variability (20–100%) and
is clearly positively correlated with the adsorbent mass and pH value. Unlike Zn(II), the
optimal adsorbent mass is independent of Ci and equals about 4.7 g/L. As for the initial
pH, for low cadmium concentration values, the pHi value seems to be of little importance,
but for higher concentrations, better results are obtained for pHi close to 6.0. Values of the
percentage of removal close to 100% are obtained for pHi above 5.0 and ma above 3.5 g/L.
The averaged optimal values for pHi and ma are 6.0 and 4.7 g/L, respectively.

In the case of Pb(II), the percentage removal varies from about 85 to 100%. The
adsorbent mass has a significant effect on the removal percentage—its optimal value is
about 4.2 g/L, but MPR values close to 100% are also obtained for masses above about
3.5 g/L. In turn, the influence of the Ci and pHi values is relatively small in the considered
range of their variability (hence, the MPR function lacks variables x1 and x2, and there is
only x3 corresponding to the adsorbent mass).
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Comparing the optimal values of pHi and ma for all three adsorbates, it can be seen
that they are similar, which is especially visible in the case of the values of pHbA

i and mbA
a .

As indicated by the above analysis of the variability in the MPR and APR functions, small
deviations from these values do not significantly affect the adsorption efficiency. Therefore,
it seems reasonable to choose one common value for each of pHi and ma that would give
high values of the removal percentage for all three adsorbates. Based on the above analysis,
such values can be assumed as pHi = 5–6 and ma = 4–5 g/L. In order to avoid possible
ion precipitation in further studies, pHi = 5.0 was assumed. As for the adsorbent mass,
ma = 5 g/L was chosen.

3.6. Sorption Kinetics—The Effect of Contact Time

The results of the adsorption kinetics of Zn(II), Cd(II), and Pb(II) on the TWAC are
presented in Figure 7 and Table 6. The studies showed that the amount of heavy metals
removed from the solution increased with an increase in the shaking time of the samples.
Initially, the sorption process was very fast, with the adsorption rate being higher for Pb(II)
and Cd(II) (Figure 7), for which 90% of the equilibrium value was achieved after about
2 min, while for Zn(II), about 60% of the equilibrium adsorption value was achieved after
around 5 min. After this time of contact with the adsorbent, Pb(II) and Cd(II) showed
similar values of sorption capacity, 9.67 mg/g and 9.33 mg/g, respectively. They are
significantly higher than that for Zn(II) of 6.18 mg/g.
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Figure 7. Adsorption kinetics of Zn(II), Cd(II), and Pb(II) on TWAC at the initial metal concentration
of 50 mg/L.

The kinetic curves describe the course of the adsorption process from the initial state
to the equilibrium state in terms of quality and quantity and indicate the direction of
adsorption. The shape of the kinetic curves for Pb(II) and Cd(II) sorption in the initial phase
of the adsorption process indicates a strong interaction between the active sites located
on the adsorbent surface and Pb(II) and Cd(II) ions. In the case of Zn(II) sorption, the
curve shows that its ions gradually occupied the adsorbent surface until the adsorption
equilibrium state was reached after about 120 min. Over time, the active sites on the TWAC
surface were completely saturated with the adsorbate, and the experimental curves reached
the saturation state of the TWAC exchange complex (Figure 7).
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Table 6. Results of the analysis of the adsorption kinetics of Zn(II), Cd(II), and Pb(II).

Parameter or Indicator Unit Zn(II) Cd(II) Pb(II)

Pseudo-first-order (PFO) model: dq/dt = k1(Qe − q)
Qe mg/g 8.22 9.84 9.91
k1 min−1 0.24 0.58 0.73

t1/2 min 2.87 1.19 0.95
SE mg/g 0.61 0.11 0.06

Pseudo-second-order (PSO) model: dq/dt = k2(Qe − q)2

Qe mg/g 8.83 9.98 9.97
k2 min−1 0.045 0.28 0.60

t1/2 min 2.49 0.35 0.17
SE mg/g 0.32 0.02 0.01

Intraparticle diffusion (IPD) model: q = ki
√

t + C

ki
mg/g

min−0.5 0.67 0.64 0.62

C mg/g 3.33 5.26 5.42
SE mg/g 2.03 3.15 3.25

Intraparticle diffusion model with one term (IPD1): q =
(
1 − 6/π2exp(−Bt)

)
Qe mg/g 8.02 9.54 9.62
B min−1 0.17 0.67 2.73

t1/2 min 7.19 1.78 0.44
SE mg/g 1.52 1.70 1.71

The parameters of the considered adsorption kinetics models are presented in Table 6.
In the PFO and PSO models, a better agreement in fitting the results was obtained than
in the case of the IPD and IPD1 models. For the tested metals, the obtained results of
the adsorption rate constants in the PFO, PSO, and IPD1 models are similar. No sig-
nificant differences were observed between the adsorption rate constants, especially for
Cd(II) and Pb(II); slightly lower values were noted for Zn(II) (Table 6). However, the
PSO model obtained a lower regression standard error for Zn(II) (SE = 0.32 mg/g), Cd(II)
(SE = 0.04 mg/g), and Pb(II) (SE = 0.01 mg/g) compared to PFO, which suggests that the
adsorption rate of metals on the activated carbon was controlled by the chemical adsorption
mechanism due to surface adsorption interactions between heavy metal ions and func-
tional groups [80,81]. According to [82], the PSO model describes the external diffusion
in the boundary layer, surface adsorption, and intramolecular diffusion processes. The
half-saturation times predicted by the models are very small and range from about 15 s to
about 2 min for Pb(II) and Cd(II), whereas they range from about 3 to 8 min for Zn(II). This
means that Pb(II) and Cd(II) have a higher mobility in solution due to smaller hydration
complexes, so they pass through the boundary layer faster, whereas Zn(II) interacts less
strongly with the adsorbent, which slows down its adsorption.

In the IPD model, the obtained C values for the intersection point are in each case
greater than zero (Table 6), which suggests that intraparticle diffusion is involved in
the adsorption process; however, this is not the rate-controlling step of the adsorption
process. The constant related to the thickness of the boundary layer increases in the
order Zn(II) < Cd(II) < Pb(II), which indicates that Pb(II) and Cd(II) are more strongly
adsorbed on the adsorbent surface than Zn(II). In the case of Pb(II) and Cd(II), a higher
C value suggests a greater influence of the boundary layer on the adsorption process,
which may result from a higher chemical affinity for the adsorbent and weaker hydration.
The calculated intraparticle diffusion rate constants in the IPD model are similar for the
individual metals—about 0.6 mg/g min−0.5. The adsorption mechanism of Zn(II), Cd(II),
and Pb(II) depends on both the boundary layer (IPD1) and the internal diffusion (IPD).
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According to [83], the fast adsorption of metal ions in the initial stage is controlled by the
boundary layer and intramolecular diffusion, while in the later stage, the slow adsorption
can be controlled by intramolecular diffusion.

3.7. Adsorption Isotherms

The parameters of several adsorption isotherms for the considered metal ions on the
tested activated carbon are presented in Table 7. Isotherms corresponding to the nonlinear
Elovich model are shown in Figure 8.

Table 7. Isotherm constants for the adsorption of Zn(II), Cd(II), and Pb(II) on the tested activated carbon.

Parameter Unit Zn(II) Cd(II) Pb(II)

Freundlich isotherm : q = KFC1/nF
e

KF mg/g (L/mg)1/nF 12.28 7.31 64.41
nF – 4.69 3.26 1.58
SE mg/g 2.98 1.323 10.63
R2 – 0.945 0.987 0.906

Langmuir isotherm : q = QL(KLCe)/(1 + KLCe)
KL L/mg 3.67 0.16 1.51
QL mg/g 26.82 28.72 64.23
SE mg/g 4.62 2.689 5.69
R2 – 0.868 0.947 0.93

Langmuir–Freundlich isotherm : q = QL(KLCe)
nLF /

(
1 + (KLCe)

nLF
)

KLF L/mg 0.034 0.034 2.362
QLF mg/g 26.06 21.13 107.95
nLF – 34.16 34.16 1.389
R2 – 0.748 0.621 0.943

Elovich isotherm : q/QE = KECeexp(−q/QE)
KE L/mg 2.23 1.228 2.88
QE mg/g 8.11 8.27 68.35
R2 – 0.982 0.936 0.974

Temkin isotherm : q = KTln(ATCe)
KT mg/g 3.05 3.57 13.69
AT L/mg 179.17 15.96 15.54
R2 – 0.921 0.927 0.957

Toth isotherm : q = ATCe/
(

BT + CmT
e

)1/mT

AT mg/g 148.02 165.86 65.11
BT mg/g 0.301 0.637 0.666
mT – 0.109 0.156 0.971
R2 – 0.949 0.992 0.937

Comparing the adsorption of heavy metals on TWAC, it was found that the amount of
metals bound by the adsorbent decreased in the order Pb(II) > Zn(II) > Cd(II) (Figure 8).
A similar trend, regardless of the type of biochar used, was observed in [84], where the
sorption of Pb(II), Zn(II), and Cd(II) on biochars derived from rapeseed straw, wheat straw,
miscanthus, and soft coal was analyzed. The process of element sorption was described by
the Hill model isotherms in the monometallic system for initial concentrations from 0.05 to
50 mg/L for Cd(II) and Zn(II) and from 0.5 to 85 mg/L for Pb(II).
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At the maximum initial concentration, the adsorbed amounts were 60 mg/g for Pb(II),
32 mg/g for Zn(II), and 28.7 mg/g for Cd(II). The obtained adsorption capacity values are
slightly lower compared to the results obtained in [85], in which sorption was carried out
on biochar also obtained from tobacco stems in a pyrolysis process at 700 ◦C for 6 h, and the
Pb(II) and Cd(II) contents were approximately 58 mg/g and 70 mg/g, respectively. On the
other hand, a similar sorption capacity (approx. 60 mg/g) was obtained for Pb(II) in [62]
for biochar obtained by chemical activation using ZnCl2 + CO2 and pyrolysis at 750 ◦C.

The parameter values of the isotherms indicate that the adsorption mechanism differs
for individual metals. The coefficients of determination R2 for Zn(II) range from 0.748 to
0.982, with the best fit obtained for the Elovich isotherm and slightly worse fits for the
Freundlich and Temkin models. This suggests that the sorption mechanism is mixed. In
addition to chemisorption, which is described by the Elovich model, physical interactions
of Zn(II), such as electrostatic interactions and multilayer adsorption, are also possible.
Furthermore, Zn(II) can bind by complexation with the functional groups of activated
carbon and interact electrostatically.

The Elovich model also best describes Pb(II) sorption, which is confirmed by the
highest coefficient of determination (R2 = 0.974). Analysis of the sorption isotherms indi-
cates that Pb(II) is mainly adsorbed via chemisorption, as indicated by the good fit of the
Elovich model and high adsorption capacity in the Langmuir model (QL = 64.23 mg/g)
and Langmuir–Freundlich models (QLF = 107.95 mg/g). The probable mechanism of Pb(II)
sorption includes complexation with the functional groups of the adsorbent, ion exchange,
and electrostatic interactions. Pb(II) shows the highest adsorption capacity, which indicates
strong chemical interactions, and the high QE value suggests that the sorption is strongly
dependent on the activation energy.

In turn, the Toth and Freundlich isotherms best describe Cd(II) sorption—the de-
termination coefficients are 0.992 and 0.987, respectively. The Toth model describes the
adsorption on heterogeneous surfaces, where the process is more complex and involves
different interaction mechanisms, which suggests a different affinity of Cd(II) to the ad-
sorbent. On the other hand, the Freundlich model indicates the multilayer adsorption
of Cd(II), which suggests the presence of both chemisorption and physisorption on the
heterogeneous adsorbent surface [86].
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3.8. Sorption Thermodynamics

Sorption thermodynamics studies allow the prediction of sorption efficiency in var-
ious conditions, which is crucial in designing water and sewage treatment technologies.
Temperature affects the adsorption efficiency of metal ions in the adsorption process. Tem-
perature change causes changes in basic thermodynamic parameters, such as free energy
change (∆G), enthalpy change (∆H), and entropy change (∆S) [87]. The results of the
thermodynamic analysis of metal adsorption are presented in Table 8 and Figure 9.

Table 8. Results of thermodynamic studies of Zn(II), Cd(II), and Pb(II) adsorption on activated carbon
prepared from tobacco waste.

Temperature,
T, ◦C

The Gibbs Free Energy Change (∆G), kJ/mol

Cd(II) Zn(II) Pb(II)

20 −24.67 −25.70 −28.65
30 −25.63 −26.21 −27.66
40 −26.58 −26.72 −26.66
50 −27.53 −27.23 −25.67

∆H, kJ/mol 3.3 ± 1.3 −10.69 ± 3.32 −57.73 ± 10.05
∆S, kJ/(mol K) 0.095 ± 0.004 −0.051 ± 0.01 −0.099 ± 0.03
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In each case, the change in the Gibbs free energy (∆G) is negative, which indicates
that adsorption occurs spontaneously. With an increase in temperature, the value of the Keq

constant, determined using the Langmuir equation, clearly decreased for Pb(II) and slightly
decreased for Zn(II), whereas it increased insignificantly for Cd(II) (Figure 9). This shows
that temperature did not significantly affect Cd(II) and Zn(II) sorption. Negative values
of the enthalpy change in the Pb(II) and Zn(II) sorption indicate the exothermic nature of
the process. Similar values of the enthalpy change were obtained for the Pb(II) adsorption
process on the adsorbent prepared from coconut shells modified with polysiloxane [88].
In turn, in the case of Cd(II), the enthalpy change is positive, which, combined with
the positive value of the entropy change ∆S, means that Cd(II) sorption on TWAC is an
endothermic process, occurring better at higher temperatures. Negative values of ∆G were
also obtained for the adsorption of Pb(II) ions on activated carbon obtained from tamarind
wood in [89]. In the case of Pb(II) adsorption, the ∆H value is below −40 kJ/mol, which
confirms the chemical nature of its sorption process, whereas in the case of Zn(II) and Cd(II),
the ∆H value is above −20 kJ/mol, which indicates the physical nature of the adsorption.
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3.9. Comparative Studies

The properties of the activated carbon used in this study were compared with those
reported in the literature (Table 9). The maximum sorption capacity for Zn(II), Cd(II), and
Pb(II) on the tested adsorbent is comparable to that for other biosorbents derived from
agricultural waste and wood materials. This indicates the potential of this waste material
as an effective sorbent for the removal of heavy metals in water and soil purification
processes. Although some biomaterials such as rapeseed straw achieve better sorption
results, especially for Cd(II), tobacco waste still remains a material worth further research,
especially in the context of Pb(II) and Zn(II) removal. In addition, its availability and ease
of processing into activated carbon make it an interesting alternative in the development of
innovative water treatment technologies.

Table 9. Comparison of sorption results on various biosorbents.

Biomass Raw
Material Activation Method Adsorbate Maximum Sorption

Capacity, mg/g Reference

Tobacco stems Pyrolysis at 800 ◦C +
modification with KOH

Zn
Cd
Pb

32
28.7
60

This study

Sorghum straw Slow pyrolysis at 600 ◦C Cd
Pb

29
125 [90]

Olive branches Pyrolysis at 450 ◦C
+ activation with H3PO4

Zn
Cd
Pb

34.97
38.17
41.32

[91]

Walnut shell Pyrolysis at 400 ◦C +
modification with KMnO4

Zn
Cd
Pb

58.96
44.94
70.37

[92]

Rice straw
Pyrolysis at 450 ◦C + modification

with chitosan and pyromellitic
anhydride (PMDA)

Cd
Pb

≈30
≈9 [93]

Oedogonium
biomass Pyrolysis at 600 ◦C Zn

Cd
13.70
9.11 [94]

Rape straw Pyrolysis at 600 ◦C Cd 81.1 [95]

Hemp fibers

Room temperature + modification
with 17.5% NaOH + boiling

temperature + modification with
0.7% NaClO2

Zn
Cd
Pb

2.29
3.93

15.32
[96]

Cotton straw
(Gossypium sp. L.) Pyrolysis at 500 ◦C Cd

Zn
≈8.7
≈6 [97]

4. Conclusions
Based on the research conducted and results obtained, the following conclusions

regarding the adsorption of Zn(II), Cd(II), and Pb(II) on activated biochar obtained from
waste tobacco stems can be formulated:

• The research conducted on the selection of optimal parameters for the adsorption of
Zn(II), Cd(II), and Pb(II) indicate that the mass of the adsorbent and the initial pH
should be 4–5 g/L and pH = 5–6, respectively. To avoid possible ion precipitation, the
suggested pH value is 5.0.

• The amount of adsorbed compounds depends on the type of metal and satisfies the
approximate relationship Pb(II) > Zn(II) > Cd(II).

• The results of the adsorption kinetics indicate that the adsorption process of Pb(II) and
Cd(II) is very fast—after a few minutes, the adsorbent is practically saturated. In the
case of Zn(II), the adsorption process is much slower and takes about two hours. The
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kinetics seem best described by a pseudo-second-order model, which indicates that in
addition to physical sorption, adsorption includes chemical interactions leading to the
binding of metal ions on the adsorbent surface via mechanisms such as ion exchange
or complexation.

• Pb(II) adsorption occurs most strongly, mainly through chemisorption, while Zn(II)
and Cd(II) sorption shows a more complex mechanism including both chemisorption
and physical adsorption.

• The adsorption occurs spontaneously for all the tested metals; the process is exothermic
for Zn(II) and Pb(II), whereas it is endothermic for Cd(II).

Further studies will be focused on assessing the effectiveness of the obtained adsorbent
in the sorption of heavy metals from real industrial wastewater. It is also worth investi-
gating the effect of surface modification on the selectivity of adsorption and analyzing the
profitability of the entire process on a semi-technical or industrial scale. The use of tobacco
waste as a low-cost precursor is consistent with the assumptions of the circular economy
and creates prospects for the development of sustainable adsorbents for applications in
water purification and environmental remediation.
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Mieszanki Mineralno-Asfaltowej. The Polish Committee for Standardization: Warszawa, Poland, 2020.

39. PN-EN ISO 18123:2023-10; Solid Biofuels. Determination of The Contnet of Volatile Matter; The Polish Committee for Standard-
ization: Warszawa, Poland, 2023.

40. ASTM D4607-14 (2021); Activated Carbons, Methods of Tests, Determination of Adsorption Value of Iodine. The Polish Committee
for Standardization: Warszawa, Poland, 2013.

41. ASTM D2330-20; Standard Test Method for Methylene Blue Active Substances. ASTM International: West Conshokocken, PA,
USA, 2020.

42. Tripathy, S.S.; Kanungo, S.B. Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5 M NaCl and major ion sea water on a mixture of
δ-MnO2 and amorphous FeOOH. J. Colloid. Interf. Sci. 2005, 284, 30–38. [CrossRef] [PubMed]
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