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Abstract

The consistent and accurate quantification of proteins by mass spectrometry (MS)-based 

proteomics depends on the performance of instruments, acquisition methods and data analysis 

software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH2.0, 
Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for 

processing data from SWATH-MS (sequential window acquisition of all theoretical fragment ion 

spectra), a method that uses data-independent acquisition (DIA) for label-free protein 
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quantification. We analyzed high-complexity test datasets from hybrid proteome samples of 

defined quantitative composition acquired on two different MS instruments using different 

SWATH isolation windows setups. For consistent evaluation we developed LFQbench, an R-

package to calculate metrics of precision and accuracy in label-free quantitative MS, and report the 

identification performance, robustness and specificity of each software tool. Our reference datasets 

enabled developers to improve their software tools. After optimization, all tools provided highly 

convergent identification and reliable quantification performance, underscoring their robustness 

for label-free quantitative proteomics.

Introduction

Mass spectrometry-based quantitative proteomics is an essential tool to elucidate the 

complex and dynamic nature of proteomes1,2, enabling the in-depth characterization of 

protein expression changes. Due to their experimental simplicity and capacity to process 

large cohorts of samples, label-free quantification approaches are most frequently used. 

While data-dependent acquisition (DDA) selects precursor ions according to their 

abundances, data-independent acquisition (DIA) approaches implement a parallel 

fragmentation of all precursor ions, regardless of their intensity or other characteristics, 

thereby enabling to establish a complete record of the sample3. In recent years, several data-

independent acquisition (DIA) mass spectrometric strategies including SWATH-MS4 

(sequential window acquisition of all theoretical fragment ion spectra), HDMSE5 (high 

definition MSE), and AIF6 (all-ion fragmentation) were established that circumvent some of 

the problems arising from data-dependent acquisition (DDA), such as stochastic and 

irreproducible precursor ion selection7,8, under-sampling9 and long instrument cycle 

times8.

In addition to the mass spectrometric method applied, computational methods, e.g. for raw 

data processing, protein database searching, and statistical analysis of the quantitative data, 

critically impact the results of quantitative proteomics analyses. As such, evaluating the 

correctness and relative performance of these methods is essential10. Quantitative 

proteomics would greatly benefit from an objective comparative benchmarking of the 

performance and robustness of the various computational approaches and software solutions 

available or currently in development. Meaningful and unbiased comparisons of software 

tools and their appropriate use are challenging for a number of reasons11: methods and 

algorithms may be assessed by scientists lacking relevant expertise, the tested method may 

suffer from insufficient documentation, or the interpretation of the test results may be 

subjective12–15. In addition, benchmarking requires high-quality standardized data sets, 

defined metrics and dedicated software to implement and analyze these metrics, not only to 

compare existing methods but also to evaluate potential improvements and pitfalls when new 

methods are developed.

To address these challenges, we developed a computational benchmarking framework for 

label-free quantitative proteomics, LFQbench, that analyzes and processes data acquired 

from hybrid proteome samples16 containing several proteomes mixed in defined 

proportions. To demonstrate the approach, we applied LFQbench to evaluate the 
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performance of the DIA approach SWATH-MS, which provides high-throughput, accurate 

quantification, and reproducible measurements within a single experimental setup17. We 

centrally acquired high quality benchmarking data sets using different instrument platforms 

and acquisition modes, and focused our comparative analysis on five widely-used analysis 

tools for SWATH-MS data: four ‘peptide-centric’ query17 tools (OpenSWATH18, 

SWATH2.0, Skyline19, and Spectronaut20) and the ‘data-centric’ approach DIA-Umpire19. 

While the former use MS/MS libraries to extract groups of signals that reliably represent a 

specific peptide, followed by statistical methods to distinguish true from false 

matches14,18,21, the latter assembles “pseudo” tandem MS spectra that can be identified 

and quantified with conventional database-searching and protein-inference tools without an 

assay library8,22. All respective software developers participated in our study, ensuring an 

optimal analysis workflow and parameters for each SWATH software tool.

Results

As a benchmarking sample, two hybrid proteome samples consisting of tryptic digests of 

human, yeast and E.coli proteins were mixed in defined proportions16 (Figure 1) to yield 

expected peptide and protein ratios of 1:1 for human, 2:1 for yeast, and 1:4 for E.coli 

proteins if samples A and B are compared. This sample set is referred to as HYE124 

(Supplementary Figure 1). While the absolute amounts of individual proteins are not known, 

these samples provide a defined ground truth for bioinformatics analysis, i.e., defined 

relative changes between samples, and a sufficiently large number of peptides to enable the 

in-depth evaluation of both precision and accuracy of relative label-free quantification16. We 

analyzed HYE124 samples A & B in technical triplicates on two different instrument 

platforms (TripleTOF 5600 and TripleTOF 6600) using two different SWATH-MS 

acquisition modes (Supplementary Figure 1), generating a total of four benchmark datasets. 

To individually address the effects of SWATH window number (32 vs. 64 windows) and 

window size (fixed vs. variable), we generated a second sample set with higher ratio 

differences (termed HYE110, see online methods), which was analyzed in four different 

acquisition modes on the TripleTOF 6600 platform (Supplementary Figure 1). This allowed 

us to test the performance of the software tools on data generated using a variety of 

instruments and settings of different sensitivity and co-fragmentation frequency.

Data Evaluation Software: LFQbench

To standardize the complex evaluation process of label-free quantification performance and 

to make it transparent, we developed the LFQbench software tool. LFQbench is an R-

package that implements automated calculation of metrics for precision (coefficients of 

variation of reported peptide and protein intensities between replicates) and accuracy 

(deviations from expected abundance ratios) (Supplementary Table 1) of label-free 

quantification16, as well as the performance in separating proteins ratios for the different 

species (Table 1 and Supplementary Table 2) in hybrid proteome sample sets. LFQbench 

directly imports results from label-free quantification software tools, applies filter criteria 

defined by the software developers of our study and computes protein level quantification 

information. Next, LFQbench evaluates and graphically represents precision and accuracy of 

label-free quantification experiments based on hybrid proteome samples. This resource 
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provides current and future software developers with a standardized set of reports on protein 

and peptide level that enable an in-depth performance evaluation of their software tools. 

LFQbench is fully compatible with data from hybrid proteome samples acquired on other 

instrument platforms16,23 enabling the objective assessment of other variables, such as 

different acquisition schemes, or the comparison of different MS platforms. In addition, 

LFQbench provides a data simulator, which enables the users to visualize both an “ideal” 

dataset and the effects of commonly observed problems, e.g., incorrect background 

subtraction (Supplementary Figure 2). The LFQbench evaluation software is publicly 

available at https://github.com/IFIproteomics/LFQbench.

Effects of mass spectrometers and SWATH acquisition modes

First we compared TripleTOF 5600 and TripleTOF6600 systems. The latter provided 

between 15% and 137% more peptide identifications and between 14% and 102% more 

protein identifications in the HYE124 sample (Supplementary Table 3), largely due to its 

higher resolution chromatographic system. Next we analyzed the effect of SWATH window 

setups on quantification results. For the HYE124 sample, depending on MS instrument and 

software, the 64w setup provided between 9% and 54% higher numbers of peptide 

identifications and between 9% and 37% higher numbers of protein identifications 

(Supplementary Table 3) compared to the 32w setup. Additionally, the 64w setup resulted in 

approximately 2-fold higher median signal to noise ratio compared to the 32w setup 

(Supplementary Figure 3). This is most likely due to a decrease in interferences derived from 

co-fragmentation of other precursors. The HYE110 sample was further acquired with two 

additional windows schemes (Supplementary Figure 1). Again, we observed the highest 

median signal to noise ratio for the 64 variable window setup (Supplementary Figure 3). 

Both the increase in the number of windows and the switch from fixed to variable windows, 

contributed to these effects to a similar extent. The variable (optimized) windows setups 

provided between 3% and 29% more peptide identifications and between 4% and 25% more 

protein identifications compared to fixed windows setups. 64 windows setups provided up to 

32% more peptide identifications and up to 21% more protein identifications than 32 

windows setups.

The results from the HYE124 dataset showed that the change of swath window size had the 

largest impact on the results of SWATH2.0 (49%-54% increase in peptides), while the 

instrument type had the largest effect on results provided by DIA-Umpire (99% - 137% 

increase). Generally, all tools benefitted more from changing instrument type than from 

changing window size (Supplementary Table 3). We observed a very high technical 

reproducibility of reported peptide intensities (R2:0.92-0.99 depending on software tool 

(Supplementary Table 4), and CVs below 14% in HYE124 sample) within each dataset 

(Supplementary Figure 4, CVs reported in Table 1 and Supplementary Table 2 and 

Supplementary Figure 5), and a good correlation (R2:0.78-0.91) between datasets for all 

library-based tools (Supplementary Figure 6). For all subsequent analyses, we focused on 

the HYE124 dataset generated by the TripleTOF 6600 using 64 swath windows, which 

generated the highest number of identifications among the acquired datasets. Results from 

other settings are provided in Supplementary Figures 7 and 8, and in ProteomeXchange 

repository.
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Label-free quantification performance: First Iteration—We performed two analysis 

iterations to clearly illustrate the advantages of our benchmarking data set for the future 

development of software tools for label-free proteomics. In the first iteration, the developers 

analyzed the datasets with the latest publicly available version of each software tool, using 

optimized parameters (Supplementary Table 5), and a retention time window width and m/z 

tolerance agreed on by the developers of library-based tools. We ran LFQbench on the data 

provided by the developers and sent them the results to identify pitfalls in the software 

workflows. Next, we initiated an open discussion among developers, who improved their 

tools by implementing solutions to issues uncovered in the first analysis step, which were 

then validated in a second iteration.

First, we analyzed the relative quantification accuracy of proteins quantified by either single 

or multiple peptides. Single hit proteins consistently showed a higher quantification variance 

than proteins defined by multiple peptides (Supplementary Figure 9). Therefore, we required 

at least two peptides to report a valid quantification value of a protein. Additionally, we 

required a protein to be quantified in at least two replicates in one sample to reduce the 

number of false negative proteins (human proteins falsely reported to be exclusive for one of 

the samples, Supplementary Figure 10). Analysis of results provided by the five software 

tools in their initial setting revealed both a similar dynamic range in intensities 

(Supplementary Table 6) and a similar performance in terms of quantification precision and 

accuracy for high abundance proteins. Across all software tools, protein ratios within the 

lowest intensity tertile displayed the highest variance (average standard deviation for E. coli 
proteins distribution = 0.68) and differed most from the expected values (average absolute 

difference for E. coli distribution = 0.51) (Figure 2 and Supplementary Table 1). Results 

improved with increasing peptide signals (Supplementary Figures 11-13, and Supplementary 

Table 1), and the best results were obtained in the highest intensity tertile, as indicated by 

lowest variances (average standard deviation for E.Coli proteins distribution = 0.38) and 

deviations from the expected ratios (average absolute difference for E.Coli distribution = 

0.06). We observed marked differences in the lower abundance range between the software 

tools as indicated by systematic deviations from the expected values for low intensity signals 

in OpenSWATH, Spectronaut, and Skyline (Figure 2, Supplementary Figures 7 and 8). This 

indicated a potential issue with background subtraction leading to a systematic 

underestimation of abundance ratios for E. coli and yeast proteins. The observed deviations 

of the lower abundant proteins impaired the correct separation of the human and yeast low 

abundance proteins, indicating that it would not be possible to faithfully determine 2-fold 

expression changes in the lower intensity range. Similar results were obtained on the peptide 

level (Supplementary Figure 7). Of note, DIA-Umpire and SWATH 2.0 also directly reported 

quantification results at the protein level (“Built-in”). However, we found that the TOP3 

based approach to infer protein level quantification used in this study generally resulted in 

lower variances and better quantification accuracy for both SWATH 2.0 and DIA-Umpire 

than the built-in methods (Supplementary Figure 14). When evaluating the absolute 

quantification results provided by DIA-Umpire, we observed marked differences to values 

reported by the library-based tools (Supplementary Figure 15). The analysis of the fragments 

used for quantification revealed that fragment intensity rankings were different between 

DIA-Umpire and the library based tools (Supplementary Figure 16), resulting in the 
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selection of different fragments for quantification and thus explaining the observed 

differences.

Compared to DIA-Umpire, library-based software tools showed lower numbers of 

incomplete protein quantification cases (cases with at least one missing value among the six 

injections (three replicates of A and B samples) (Supplementary Figure 17). In the case of 

SWATH 2.0, no incomplete cases were observed in the first iteration data, as cross-annotated 

signals are not required to match the retention time of their corresponding identified seeds, 

which may lead to false-positive cross-annotations skewing the quantification values.

Label-free quantification performance: Second Iteration—All improved software 

tools evaluated in the second iteration of the study showed improved precision and/or 

accuracy of quantification results on both peptide and protein levels compared to their first 

iteration results (Figure 2 A-B, Table 1, Supplementary Figures 7 and 8, Supplementary 

Table 1). For a detailed analysis of the improvements, we focused on the reported 

quantification ratios of E. coli proteins at the lowest intensity tertile as the precision and 

accuracy of quantification are strongly dependent on the signal intensity24 (Figure 2 E, other 

species and tertiles shown in Supplementary Figures 11-13). OpenSWATH and Spectronaut 

improved quantification accuracy of the E. coli peptides and proteins due to an improved 

background subtraction. DIA-Umpire and SWATH 2.0 improved peptide quantification 

precision in all tertiles, as wrong quantification values were removed. Skyline generally 

improved peptide and protein quantification precision. Notably, all four independent datasets 

of HYE124 produced a very similar pattern of improvements in iteration 2, indicating that 

no overfitting was generated at the software tools improvement.

To validate the performance of the second iteration tools, we used them for the analysis of 

the HYE110 sample set, which provides more challenging ratios between the samples, as the 

signals are closer to the noise threshold in one of the samples. As expected, we observed that 

precision values of peptides and proteins of yeast and E. coli were better in HYE124 due to 

the higher ratio differences in HYE110 (Supplementary Figures 7 and 8). The higher ratio 

samples also produced more incomplete cases, i.e., proteins with fewer than six 

quantification values. For yeast and E. coli proteins, this rate increased to up to 90% 

(Supplementary Figure 17). The higher number of incomplete cases also resulted in more 

human proteins falsely reported to be present exclusively in one of the samples 

(Supplementary Figures 10 and 18). Spectronaut and OpenSWATH produced the lowest 

numbers of false reports, followed by Skyline and SWATH2.0 (Supplementary Figure 10), 

while DIA-Umpire reported the highest numbers. While cross-annotation of signals between 

runs may reduce this source of potentially false quantification results, stringent control is 

required, e.g. by retention time alignment, to avoid matching the wrong signals.

Integrated analysis of tools—In the HYE124 dataset, the library based tools identified 

in the iteration 2 between 35,489 and 42,517 peptides mapping to between 3,673 and 4,692 

proteins. Notably, we observed an exceptional overlap between these tools, as 93% of all 

identified peptides and 95% of proteins were identified by at least three out of the four 

library-based tools (Figure 3 A). The overlap of all five tools was 22,407 peptides and 3,064 

proteins (Figure 3 B). On the peptide level, the results provided by the library-based tools 
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covered 65% of the sequences provided by DIA-Umpire, which additionally identified 

12,748 sequences not found by the library-based approaches (Figure 3 B), in part due to 

slightly different search parameters. Only 288 sequences of those identified exclusively by 

DIA-Umpire were present in the assay library and may potentially be false negative cases for 

the library-based workflow. Notably, the overlap on protein level was remarkably higher 

(86%), similarly to the typical overlap between different DDA search engines25, indicating 

that DIA-Umpire may cover additional peptides not included in the assay library, e.g. singly 

charged peptide ions (726 peptides), which are usually not triggered for MS/MS in DDA 

experiments and thus not included in the consensus library. The number of peptides per 

protein was similar for all library-based tools (Supplementary Figure 19).

Notably, most proteins exclusively reported by DIA-Umpire (Figure 3 B) were in the lower 

intensity range (Figure 3 C) and identified by peptides, which were not included in the 

transition library used for this study. To exclude possible false positive identifications by 

DIA-Umpire, we reanalyzed the dataset using a dedicated library covering 6,826 of the 

9,813 human peptides identified exclusively by DIA-Umpire (Supplementary file 

DIAumpire_human_peptides_lib.txt). More than 99% of the 6,826 peptides in this library 

were detectable by at least two library-based tools (Supplementary Figure 20), which picked 

the same respective peaks as DIA-Umpire in 98% of the cases (Supplementary Figure 21). 

This orthogonally validated the peptides identified exclusively by DIA-Umpire and thereby 

confirmed that our initial library was not complete even as we generated the library from 

triplicate injections of the three species separately to reduce sample complexity. Library 

completeness might be further improved e.g. by Offgel-fractionation18,26.

The analysis of common peptides provides a unique opportunity to assess the correctness of 

the peak picking of each tool. Analyzing one of the injections, we found that all tools pick 

the same peak (based on retention time) in more than 98% of the cases. All library-based 

tools each had less than 0.3% of outliers, and DIA-Umpire has approximately 1%. This 

emphasizes the robustness of SWATH, as even orthogonal identification methods (library-

based vs. pseudo-spectra database search) agree in about 99% of the cases (Figure 4). 

Peptide intensities reported by library-based tools show a very high correlation (R^2: 0.93 – 

0.97). The observed differences between DIA-Umpire and any library-based tool (R^2: 0.73 

– 0.75) in the first iteration (Supplementary Figure 15) were reduced in the second iteration 

(R^2: 0.76 – 0.80) (Figure 4). These differences are likely due to the selection of different 

fragments used for quantification, as about 30% of the top two most intense fragments 

reported by DIA-Umpire were not included in the DDA library (Supplementary Figure 16). 

Since DIA-Umpire relies on correct matching of MS1 precursors with their fragments, even 

high intensity precursors may not be identified by DIA-Umpire due to interferences in the 

MS1 space (see Supplementary Figure 22). Notably, these differences did not negatively 

affect the relative quantification accuracy of DIA-Umpire (Figure 2).

Discussion

We present a complete methodology to benchmark the robustness of proteomic label-free 

quantification workflows, based on high-complexity benchmarking samples and the 

LFQbench software. In contrast to the SGS dataset18, the use of hybrid proteome 
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samples16,23 provides several thousands of proteins present at defined relative ratios, 

enabling an in-depth statistical evaluation of quantification across a dynamic range of 

several orders of magnitude16.

Several aspects need to be taken into account when comparing proteomics analysis results. 

A critical component of a software benchmark is the correct interpretation and optimization 

of the parameters of each software tool12, e.g. the handling of single hit proteins, which 

display a higher variance (Supplementary Figure 9). To ensure a consistent evaluation 

workflow, which can also be directly used by other groups, we developed LFQbench, an R-

package that includes all metrics and graphical interpretations agreed upon by all software 

developers.

The close collaboration with the developers and the two analysis iterations have not only 

provided objectivity to this study, but also resulted in the improvement of all the software 

tools, underlining the usefulness of LFQbench and our benchmarking data sets both for 

developers and end users of the different software tools. In the second iteration, all software 

tools provided highly accurate relative label-free quantification results (Supplementary Table 

1) and achieved a practically perfect separation of the human and yeast proteins (2-fold 

expression changes), even in the lowest intensity tertile. In the HYE124 dataset, SWATH-

MS provided high precision and accuracy of label-free quantification, and allowed to 

reproducibly quantify close to 5,000 proteins in this highly complex sample set. This level of 

performance is similar to other label-free quantification approaches16,23, and renders 

SWATH-MS a valid alternative to isotope-labeling based methods, as similar performance 

metrics can be achieved24. Future improvements in instrumentation regarding dynamic 

range, acquisition speed, and analyte separation (by higher resolution chromatography or the 

inclusion of ion mobility separation) are likely to further boost the performance of SWATH-

MS workflows, but will also depend on the availability of deep coverage assay libraries27. 

Here, discovery workflows such as DIA-Umpire may prove an important orthogonal source 

for the generation of assay libraries. The observed overlap of peptide and protein 

identifications provided by the four library-based software tools remarkably exceeded the 

overlap typically achieved for MS/MS identifications between different DDA search 

engines25,28,29. The differences between results provided by the library-based tools likely 

derive from differences in the algorithms used for signal extraction, e.g. using dynamic 

machine learning to improve identification of the correct peaks, retention time alignment 

(linear vs. non-linear) and cross-annotation of signals between runs. The strong convergence 

of the results obtained from the software tools after an optimization cycle indicates that 

SWATH proteomic results are objectively comparable, even if different software tools are 

used for their analysis.

In conclusion, our presented methodology provides a rich resource for future improvements 

of quantitative proteomics software tools, performance control of quantitative proteomics 

platforms, and also enables benchmarking of algorithms for peak detection interference 

removal and improved strategies for peptide to protein inference. The LFQbench software 

and the hybrid proteome samples16 allow to consistently evaluate label-free quantification 

workflows from any acquisition method or instrument platform.
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Online Methods

Sample preparation

Two samples A and B were prepared by following precisely the same steps as in a previous 

work16: Human cervix carcinoma cell line HeLa was purchased from the German Resource 

Centre for Biological Material (Braunschweig, Germany) and cultured as described31. Cells 

were verified to be mycoplasma-free using the VenorGEM mycoplasma detection kit 

(Sigma, Taufkirchen, Germany). A pure culture of the Saccharomyces cerevisiae bayanus, 

strain Lalvin EC-1118 was obtained from the Institut Oenologique de Champagne (Epernay, 

France). Yeast cells were grown in YPD media as described by Fonslow et al.32. Cell lysis 

and tryptic digestion using a modified filter-aided sample- preparation33 protocol were 

performed as previously described in detail31. Tryptic digest of Escherichia coli proteins 

(MassPREP standard) was purchased from Waters Corporation.

To generate the HYE124 hybrid proteome samples, tryptic peptides were combined in the 

following ratios: Sample A was composed of 65% w/w human, 30% w/w yeast, and 5% w/w 

E. coli proteins. Sample B was composed of 65% w/w human, 15% w/w yeast, and 20% 

w/w E. coli proteins (Figure 1). To generate the HYE110 hybrid proteome samples, tryptic 

peptides were combined in the following ratios: Sample A was composed of 67% w/w 

human, 30% w/w yeast, and 3% w/w E. coli proteins. Sample B was composed of 67% w/w 

human, 3% w/w yeast, and 30% w/w E. coli proteins (Supplementary Figure 1). For 

facilitating retention time alignments among samples, a retention time kit34 (iRT kit from 

Biognosys, GmbH) was spiked at a concentration of 1:20 v/v in all samples.

Mass spectrometric instrumentation and data acquisition

The LC-MS/MS data acquisition was performed either on (i) a “TTOF5600 system”: a 5600 

TripleTOF mass spectrometer (ABSciex, Concord, Ontario, Canada) interfaced with an 

Eksigent NanoLC Ultra 2D Plus HPLC system (Eksigent, Dublin, CA); or on (ii) a 

“TTOF6600 system”: a 6600 TripleTOF mass spectrometer (ABSciex, Concord, Ontario, 

Canada) interfaced with an Eksigent NanoLC Ultra 1D Plus HPLC system (Eksigent, 

Dublin, CA). For the measurements on the 5600 system, the peptides were separated on a 75 

μm-diameter, 20 cm-long fused silica emitter, packed with a Magic C18 AQ 3 µm resin 

(Michrom BioResources, Auburn, CA, USA). For the measurements on the 6600 system, the 

peptides were separated on a 75 μm-diameter, 40 cm-long fused silica emitter, packed with a 

Magic C18 AQ 1.9 µm resin (Michrom BioResources, Auburn, CA, USA). Both systems 

were operated with the same buffers (buffer A: 2% acetonitrile, 0.1% formic acid; buffer B: 

98% acetonitrile, 0.1% formic acid) and the same gradient: linear 2-30% B in 120 minutes, 

up to 90% B in 1 minute, isocratic at 90% B for 4 minutes, down to 2% B in 1 minute and 

isocratic at 2% B for 9 minutes.

For shotgun acquisition, 1 µL of the peptide digests for the three organisms (E Coli, Yeast 

and Human) were injected independently at 1 µg/µL in technical triplicate on the 6600 

system operated in shotgun/information dependent acquisition mode. In this mode, the MS1 

spectra were collected between 360-1460 m/z for 500 ms. The 20 most intense precursors 

with charge states 2-5 that exceeded 250 counts per second were selected for fragmentation, 
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and the corresponding fragmentation MS2 spectra were collected between 50-2000 m/z for 

150 ms. After the fragmentation event, the precursor ions were dynamically excluded from 

reselection for 20 s. The precursors were fragmented with the same collision energy 

equation 0.0625 * m/z -10.5 with a 15 eV collision energy spread for all the precursor 

charge states to mimic the fragmentation patterns occurring in SWATH MS mode.

For SWATH MS acquisition, 1 µL of the mixed peptide digests (Sample A or Sample B) was 

injected in technical triplicate on either the 5600 system or the 6600 system. Four window 

acquisition schemes were used: the original from the work of Gillet et al.4: 32 fixed 

(“32fixed”) window setup of 25 m/z effective precursor isolation, and a 64 variable 

(“64var”) window setup optimized on tryptic human cell lysate for equal repartition of the 

number of precursors that will be co-selected per swath. Those 2 setups were used for the 

HYE124 acquisition. In addition, acquisition schemes using 32 variable (“32var”) and 64 

fixed (“64fixed”) windows setups were performed for the HYE110 sample set to study the 

effect of fixed versus variable windows. All schemes included an additional 1 m/z window 

overlap on the lower side of the window. The nominal SWATH windows programmed in 

both acquisition schemes are provided at the Supplementary Table 7. The SWATH MS2 

spectra were collected in high-sensitivity mode from 50 to 2000 m/z, for 100 ms for the 32w 

setup, and for 50 ms for the 64w setup. Before each SWATH MS cycle an additional MS1 

survey scan in high-resolution mode was recorded for 150 ms, resulting in a total duty cycle 

of ~3.4 s. The collision energy used in SWATH mode was that applied to a doubly charged 

precursor centered in the middle of the isolation window calculated with the same collision 

energy equation mentioned above for the shotgun acquisition, and with a spread of 15 eV.

Shotgun data searching and spectral library generation

Profile-mode WIFF files from shotgun data acquisition were converted to mzXML files in 

centroided format using the qtofpeakpicker algorithm (provided with ProteoWizard/

msconvert version 3.0.6141) with the following options: --resolution=20000 --area=1 --

threshold=1 --smoothwidth=1.1. The centroided mzXML files were further converted to mgf 

files using MzXML2Search provided with TPP version 4.7.0. The duplicate shotgun files for 

each organism were queried each against a customized organism-specific database based on 

the SwissProt database release from 2014/02/14 and each appended with common 

contaminants, iRT peptide sequences and the corresponding pseudo-reversed sequence 

decoys.

The Comet35 (version 2014.02 rev. 0) database search was performed using the following 

parameters: semi-trypsin digest, up to 2 missed cleavages, static modifications of 57.021464 

m/z for cysteines, up to 3 variable modifications of 15.9949 m/z for methionine oxidations 

(maximal number of variable modifications = 5). The precursor peptide mass tolerance was 

set to 50 p.p.m. and the fragment bin tolerance set to 0.05 m/z. The Mascot36 (version 2.4.1) 

database search was performed using the following parameters: semi-tryptic digest, up to 2 

missed cleavages, static modifications of carbamidomethyl for cysteines, variable 

modifications of oxidation for methionine. The precursor peptide mass tolerance was set to 

+/-25 p.p.m. and the fragment bin tolerance set to +/-0.025 m/z. The identification search 

results were further processed using PeptipeProphet (with the options: -OAPpdlR -
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dreverse_) and the results of the search engines per run were combined for each organism 

using iProphet (TPP version 4.7.0). The search results were finally filtered at 1% protein 

false discovery rate (FDR) using Mayu37, which resulted in the following iProphet peptide 

probability cutoffs: 0.319349, 0.92054 and 0.995832 for E.Coli, yeast and human 

respectively. The MS/MS spectra passing this cutoff for each organism were compiled into 

three organism-specific redundant spectral libraries with SpectraST38 and the iRT values 

were computed using the linear iRT regression function embedded in spectrast (option: -

c_IRTspectrast_iRT.txt -c_IRR). A consensus library for each organism was finally 

generated with spectrast. Each organism-specific consensus spectral library was exported to 

separate assay lists (depending on whether the assay library was used to extract the 32 or 64 

fixed or variable SWATH data files, which have different fragment extraction exclusion 

windows) in TSV format complying to OpenSWATH or SWATH2.0 format using the 

spectrast2tsv.py script (msproteomicstools version msproteomicstools/master@7527c7b, 

available from https://github.com/msproteomicstools) using the following options: -l 

350,2000 -s y,b -x 1,2 -o 6 -n 6 -p 0.05 -d -e -w 32swaths.txt (respectively 64swaths fixed or 

variable .txt). The assay libraries for the three organisms were merged at this stage, curated 

for contaminant, iRT and decoy proteins and saved for downstream targeted SWATH 

extraction software tools. The consensus library (provided as Supplementary Material: 

transition library), which contained 44,294 peptides corresponding to 6,903 protein groups. 

A statistics summary counting number of transitions, peptides, and proteins is provided in 

Supplementary Table 8.

SWATH MS targeted data extraction

In the sample HYE124, for each tool evaluated, the SWATH files were searched in batches 

of 6: 3 technical replicate of sample A, and three replicate of sample B, for a given 

instrument (TTOF5600 system or TTOF6600 system) and for a given SWATH acquisition 

window scheme (32w or 64w), resulting in 4 result sets per tool and per iteration.

In the sample HYE110, for each tool evaluated, the SWATH files were searched in batches 

of 6: 3 technical replicate of sample A, and three replicate of sample B, for all four given 

SWATH acquisition window scheme (32 fixed windows, 32 variable windows, 64 fixed 

windows, or 64 variable windows), resulting in 4 result sets per tool.

The same retention time extraction window (10 minutes) and fragments mass extraction 

window (50 p.p.m. and 30 p.p.m. for the TripleTOF 5600 and the TripleTOF 6600 

respectively) were used in all software tools. Notably, Spectronaut estimates both parameters 

dynamically in function of the mass and elution time. Experienced users of Skyline may find 

at the Supplementary Figures 23 and 24 a benchmark performed with the recommended 

values for the m/z tolerance (100 p.p.m.).

OpenSWATH targeted data extraction—For OpenSWATH (version OpenMS/

develop@4bca6fc) analysis, the different OpenSWATH TSV assay libraries generated above 

were further converted to TraML39 using the tool ConvertTSVToTraML. Decoy assays were 

appended to the TraML file using the OpenSwathDecoyGenerator command (option: -

method pseudo-reverse -append -exclude_similar). Data analysis using the tool 
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OpenSwathWorkflow was performed on a computer cluster running CentOS release 6.7 

through the iPortal40 workflow manager. The SWATH WIFF files were first converted to 

profile mzXML using msconvert as previously described18. The targeted extraction 

parameters applied were: 50 ppm (or 30 ppm, see results) for the fragment ion extraction 

window and 600 seconds for the retention time extraction window. The background 

subtraction option was either not used (iteration 1) or used with the “original” option with a 

custom build of OpenMS (iteration 2). After the extraction, pyprophet47 (version 0.13.2) 

was run on the extraction results to compute the discriminant score using a subset of the 

scores (main: xx_swath_prelim_score others: library_corr yseries_score 

xcorr_coelution_weighted massdev_score norm_rt_score library_rmsd bseries_score 

intensity_score xcorr_coelution log_sn_score isotope_overlap_score 

massdev_score_weighted xcorr_shape_weighted isotope_correlation_score xcorr_shape) 

and ten-fold cross-validation for each dataset and to estimate the assay-level q-value (FDR). 

TRIC (Roest HL et al, in preparation) (version msproteomicstools/master@7527c7b), a 

cross-run realignment algorithm, was applied to the pyprophet results to correct for potential 

false peak group ranking in the original peptide identification stage. The default parameters 

with minor changes (realign_method: lowess, dscore_cutoff: 1, target_fdr: 0.01, 

max_rt_diff: 30, method: global_best_overall) were used.

SWATH2.0 targeted data extraction—For SWATH2.0 processing, all PeakView TSV 

assay libraries generated above were appended with iRT peptide assays (protein label [RT-

Cal protein]). The iRT peptide assays have been shifted to positive values by adding 62.5 to 

all values to prevent a known issue of SWATH2.0 with negative iRT values. The SWATH2.0 

extraction was performed on a personal computer running Windows 7, PeakView version 2.2 

and the SWATH2.0 plug-in “MS/MS(ALL) with SWATH™ Acquisition MicroApp 2.0 

Software”. The assay library and the WIFF files were directly loaded into the SWATH2.0, 

and processed with the parameters specified in the Supplementary Table 5. Peak extraction 

results were exported to Microsoft Excel files by using the option “Quantitation -> SWATH 

processing -> Export -> All”.

Skyline targeted data extraction—For Skyline processing, two Skyline document 

templates corresponding to the four acquisition schemes were generated. Each of these 

Skyline document templates includes a library (imported from the corresponding SWATH 

schema library from OpenSWATH) and a retention time predictor that contains the iRT 

assays of the calibration peptides. The targeted data extractions were performed on a 

personal computer running Windows 7 and the Skyline-daily version 3.1.1.8669. All 

parameters were then set as described in the Supplementary Table 5. For the iteration 1, 

WIFF files were directly imported, and for the iteration 2, WIFF files were converted to 

centroided mzML files by using the ABsciex MS Data Converter version 1.3 beta. After 

importing the injection files (either in WIFF or in mzML format), all detected peaks were 

reintegrated by using the mProphet peak scoring model (each dataset and iteration was 

trained independently), and the q-value annotation was added to each peak. The resulting 

weight values of each model are detailed in the Supplementary Table 5. Peak extraction 

results were exported by using a designed report (SWATHbenchmark report), appended in 

the Supplementary Material at ProteomeXchange.
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Spectronaut targeted data extraction—For Spectronaut processing, all OpenSWATH 
tsv assay libraries generated above could be used directly. The Spectronaut extraction was 

performed on a personal computer running Windows 7. Raw WIFF files were converted to 

HTRMS files with a special converter provided by Biognosys AG able to recognize the older 

Biognosys iRT retention kit used in our experiments. The HTRMS files are provided as 

Supplementary Material at ProteomeXchange. For the iteration 1, Spectronaut version 

7.0.8065.0.29754 (Nimoy) was used, and Spectronaut 7.0.8065.1.24792 (Nimoy) for the 

iteration 2. Files in HTRMS format were imported to Spectronaut, and processed with the 

parameters provided in Supplementary Table 5. In brief, a dynamic window for the XIC 

extraction window and a non linear iRT calibration strategy were used. The identification 

was performed by using the normal distribution estimator, including MS1 scoring and the 

dynamic score refinement. For the quantitation, the interference correction was activated, 

and a cross run normalization was performed by using the total peak area as normalization 

base. The profiling strategy was not activated. Peak extraction results were exported by 

using a designed report (included in the Supplementary Material at ProteomeXchange), 

which necessarily needs to include the following fields for further processing with 

LFQbench: EG.Qvalue, FG.NormalizedTotalPeakArea, EG.ProteinId, R.FileName, 

EG.ModifiedSequence, and FG.Charge. A significance filter of 0.01 was chosen.

DIA-Umpire analysis

The WIFF raw files of the HYE124 sample were first converted into mzML format by the 

AB MS Data Converter (AB Sciex version 1.3 beta) using the “centroid” option, and then 

further converted into mzXML format by msconvert.exe from the ProteoWizard package. 

The mzXML files were processed by the signal extraction (SE) module of DIA-Umpire22 

(v1.4) to generate pseudo MS/MS spectra in MGF format. For the HYE110 sample, WIFF 

raw files were directly converted in to mzXML format by msconvert.exe from the 

ProteoWizard package. The resulting mzXML files were processed by DIA-Umpire (v2.0). 

Both HYE124 and HYE110 samples were processed using same parameters listed in 

Supplementary Table 5. In brief, for detection of precursor ion signal, the following 

parameters were used: 30 p.p.m mass tolerance, charge state range from 1+ to 5+ for MS1 

precursor ions, 2+ to 4+ for MS2 unfragmented precursor ions. For detection of fragment 

ions, 40 p.p.m mass tolerance was used. The maximum retention time range was set to 1.5 

minutes. The minimum intensity threshold for each DIA acquisition scheme (i.e. all data 

acquired on the same instrument and using the same window setting) was set manually 

(Supplementary Table 5) and the automatic background detection was not used.

The generated pseudo MS/MS spectra were searched using X! Tandem41, Comet35 and 

MSGF+42 search engines using the following parameters - allow tryptic peptides only, up to 

two missed cleavages, and methionine oxidation as variable modification and cysteine 

carbamidomethylation as static modification. Note that X! Tandem by default adds the 

following variable modifications: -17.0265 Da (-NH3) or -18.0106 Da (-H2O) on N-terminal 

Q or E, -17.0265 Da (-NH3) on N-terminal cysteine, and N-terminal acetylation (42.0106 

Da). The precursor-ion mass tolerance and the fragment-ion mass tolerance were set to 30 

p.p.m. and 40 p.p.m., respectively. We used the same FASTA file used as for searching the 

DDA data. The fasta file contained corresponding reversed sequences, which were 
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considered as decoys for target-decoy analysis. The output files from the search engines 

were further analyzed by PeptideProphet43 and combined by iProphet44.

False discovery rate (FDR) of peptide ion identifications was estimated using target-decoy 

approach based on maximum iProphet probabilities for each peptide ion (peptide sequence, 

charge state, modification and modification site) individually for each SWATH-MS run. If 

the maximum iProphet probability of a peptide ion passed the desired FDR threshold, then 

all detections of same peptide ion across all files within the same data acquisition scheme 

were accepted. Protein inference was done by ProteinProphet43 independently for each 

SWATH-MS acquisition using iProphet results. A 1% protein FDR global (“master”) protein 

list for each individual SWATH-MS run was generated using the target-decoy approach45 

based on maximum peptide ion iProphet probability. The protein list for each individual 

SWATH-MS run was then determined by mapping its locally identified peptides (at 1% 

peptide ion FDR) to the master protein list for the corresponding data acquisitions scheme.

All peptide ions identified within 1% FDR were used to generate an internal spectral library 

for DIA-Umpire’s targeted re-extraction in each SWATH-MS run to reduce the number of 

missing quantifications across the dataset. For quantification analysis, protein-level 

quantification was performed using the default peptide and fragment selection procedure 

(Top6pep/Top6fra, Freq > 0.5), as described in the DIA-Umpire manuscript. In the first 

iteration of HYE124 sample quantification, all detected fragment ions were included for 

fragment selection procedure implemented in DIA-Umpire v1.4. In the second iteration of 

HYE124 result, fragment ions below 350 m/z were excluded from the fragment selection 

procedure and the quantification was performed by DIA-Umpire v2.0. For the HYE110 

quantification analysis, DIA-Umpire v2.0 was used with the addition of 350 m/z fragment 

filtering.

Software changes after first iteration

Both OpenSWATH and Spectronaut modified the respective background subtraction 

algorithms. Skyline adapted a different workflow by interrogating centroid data, which 

notably reduced the noise input. SWATH 2.0 disabled the cross-annotation and reporting of 

single-hit proteins DIA-Umpire excluded fragment ions below 350 m/z for quantification, 

and switched to a different raw data converter for centroiding, improving quantification 

precision.

Benchmark analysis with LFQbench

To provide a fair comparison of the quantification performance of the SWATH software 

tools tested, the developers of the respective software tools jointly established the data 

integration and evaluation criteria. First, the result exports from different software tools were 

processed by the FSWE module of the LFQbench package to generate homogenous peptide 

and protein quantification report files (function FSWE.generateReports). In this study, we 

established an FDR threshold of 1% for all software tool reports (report files from each 

software tool were whether previously filtered - Spectronaut and DIA-Umpire, or filtered by 

FSWE – OpenSWATH, SWATH 2.0, and Skyline). In the case of SWATH 2.0, the iteration 2 

has been performed by filtering results by FDR in FSWE, and thus the original file is the 
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same for both iterations. In addition to the built-in protein quantification reported from DIA-

Umpire and SWATH 2.0, provided peptide quantification data from each tool were used to 

quantify proteins using the TOP346,47 quantification model implemented in LFQbench and 

agreed among software developers in this work. TOP3 is a popular approach to estimate 

absolute protein quantities based on the average intensity of the three most intense peptides 

detected46.

The quantitative readings of different software packages were transformed to a reference 

range of values by linear scaling (function FSWE.scaleIntensities) (Supplementary Figure 

25). To determine scaling factors, we used peptide quantification readings of SWATH 2.0 

software as reference. We adapted the precursor reports produced by each tool by 

summarizing the peptide intensity as the sum of all precursors identified with the same 

peptide sequence and modifications. The scaling factors were applied to transform both 

corresponding peptide and protein quantification reports.

The software reports of each dataset (sample, instrument, swath windows setup) were 

processed separately. The homogenized quantification reports were collected in separate 

subfolders for each dataset in a file system structure as specified for the root folder for the 

subsequent LFQbench analysis. Using the core module of LFQbench, collected peptide and 

quantification reports of the four datasets were analyzed (function 

LFQbench.batchProcessRootFolder) and the result sets for all datasets and software tools 

were stored to a file for the subsequent creation of figures and tables provided in this study.

We repeated the analysis for single hit proteins (proteins identified by only one peptide) by 

using the parameter “singleHits = True” at the FSWE.generateReports function.

For the reproducibility of this analysis, all LFQbench analysis steps described in this section 

and used LFQbench parameters as well as the definition of the analyzed datasets were 

scripted in R-files (see Supplementary Material at ProteomeXchange: scripts).

Metrics—LFQbench reports a set of metrics values, including: identification rate (number 

of identified proteins for benchmark species), technical variance (the median CV for the 

background species), global accuracy (defined as the median deviation of log-ratios to the 

expected value), global precision of quantification (the standard deviation of log-ratios), and 

global species overlap (defined as the area under the ROC curve between a species pair). 

Additionally for this work, we have included the averaged standard deviations and averaged 

deviations from the expected value of data tertiles as corresponding local metrics 

(Supplementary Table 1), and tertile box plots (Figure 2 and Supplementary Figures 7-9, and 

11-13). To determine statistical significance between results provided by different iterations 

of the software tools, we performed a one-sided Wilcoxon rank sum tests based on the 

absolute deviations from the expected log2 values for each protein or peptide.

Peptide and Protein overlap analysis—Peptide and protein identifications were read 

from the LFQbench-compatible reports generated by FSWE module. For compatibility, all 

peptide modifications are converted to UniMod.
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Peak retention time and intensity match analysis—One of the injections 

(lgillet_I150211_008) of the TripleTOF 6600 – 64 windows dataset was selected to compare 

intensity and peak retention time values reported by each software tool. For determining if a 

software tool reports a different peak compared to other tools (Figure 4 upper panel), the 

standard deviations of the reported retention times of each peak (identified as peptide + 

precursor charge state) were calculated, considering only peaks reported for at least three 

software tools. If the standard deviation of a group of peaks was higher than 0.2 minutes, the 

reported peak (of one software tool) that deviated most from the average retention time was 

considered an outlier. To avoid ambiguous cases, in which more than one reported peak is 

deviated from the average, we removed from the standard deviation calculation the most 

deviated outlier, and checked if the new standard deviation was below the selected threshold 

(0.2 minutes). Intensity peaks were paired by using the intensity value reported by each tool 

(Figure 4 lower panel).

Analysis Reproducibility and Code Availability

A set of scripts that run LFQbench (LFQbench is available in: https://github.com/

IFIproteomics/LFQbench), and arrange the final figures of this work are provided at the 

ProteomeXchange. Given the set of software tool reports (folder provided in 

ProteomeXchange in a zipped file), only minimal changes (i.e. file paths, selecting some 

variable values,…) are necessary to reproduce all the analyses of this work.

The script process_hye_samples.R runs LFQbench analyses for all datasets studied in this 

manuscript (four datasets of HYE124 – including 2 iterations each – and four datasets of 

HYE110), and produces the Supplementary Figures 17 and 25. After the execution of 

process_hye_samples.R, the script generate_figures.R reproduces (or produces the necessary 

data) for most of the figures and tables of the manuscript (Figure 2, Table 1, Supplementary 

Tables 1-3, 6, and 9, Supplementary Figures 5, 7-14, 17, 18, and 22). For analyses, which 

require to cross data from multiple datasets or software tools the following scripts are 

provided. The script Int.Correlations.TechReplicates.and.Datasets.R analyses intensity 

correlations of technical replicates and datasets (Supplementary Table 4, and Supplementary 

Figures 4 and 6). The script pair.RTs.and.Intensities.R displays the intensity and retention 

time correlations among the different software tools (Figure 4 and Supplementary Figures 15 

and 21). For reproducing peptide and protein overlap Venn diagrams, the reader can run the 

scripts peptideOverlap.R (Supplementary Figure 20), peptideOverlapTertiles.R 
(Supplementary Figure 22), and proteinOverlap.R (Figure 3). The comparison of the signal 

to noise ratios obtained with the different swath isolation modes (32 fixed windows fixed, 32 

variable windows, 64 fixed windows, and 64 variable windows) is run by the script 

SignalNoiseRatios.R (Supplementary Figure 3). The script significance.tests.R produces the 

significance tests for the Supplementary Table 1. The R markdown file 

ionlibrary_statistics.Rmd generates the DDA ion library statistics shown in Supplementary 

Table 8, and the comparison between the DDA ion library and the fragments used by DIA-

Umpire (Supplementary Figure 16) is performed by 

match_fragments_DIAumpire_DDAlibrary.R. Finally, the script ExperimentSimulation.R 
performs several simulations of LFQ experiments and performs the corresponding 

LFQanalysis (Supplementary Figure 2).
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LFQbench software

LFQbench is an open source R library for the automated evaluation of label-free quantitation 

based on the interpretation of the quantitative analysis results of hybrid proteome sample set 

data16.

Input data format—To deal with differences in result reporting formats among different 

data analysis solutions, we defined a simple data input format. For evaluation with 

LFQbench, the input data has to be converted to a delimiter separated (e.g. tabulator 

separated data as .tsv files) having column names in the first row. First column must contain 

identification names of quantified proteins or peptides. One of the other columns must be 

named “species” and must contain the species names as plain text e.g. HUMAN, YEAST, 

ECOLI, PIG, etc. of the quantified protein or peptide. All other columns should contain 

quantitation readings in different experiment runs in the order of samples and in equal 

numbers of replicate experiments for each sample (e.g. A1, A2, …, An, B1, B2, …, Bn).

File format conversion—The FSWE (Format SoftWare Exports) module homogenizes 

the results exports from different software tools, and applies a peptide-protein quantitation 

model. This module accepts plain text format reports in both long and wide formats, and it 

can be easily adapted for reading any kind of quantitation report provided in plain text 

format by all software tools. For each file format, the following parameters must be 

configured: value name for the quantitative value (quantitative.var), protein name 

(protein.var) (protein names must include a species tag), injection filename (filename.var), 
sequence including modifications (sequence.mod.var), precursor charge state (charge.var), 
string to report missing values (nastrings), the input format (input_format, options: “long”, 

“wide”). Additionally, Q-value column (qvalue.var) and a threshold (q_filter_threshold) may 

be reported for filtering by Q-values. LFQbench provides predefined settings for a set of 

software tools namely DIA-Umpire, OpenSWATH, SWATH 2.0 (PeakView), Skyline and 

Spectronaut including parameter schemas for the built-in protein quantitation in DIA-

Umpire and SWATH 2.0. The interface function FSWE.addSoftwareConfiguration allows an 

easy definition of further parameter schemas if needed. The species tags, experiments, 

samples and injection names must be specified before converting software reports. The 

interface function FSWE.generateReports produces two output files for each software tool 

report: a peptide report and a protein report. The peptide report sums the quantitative values 

(quantitative.var) of the different precursor charge states (charge.var) reported for each 

peptide (sequence.mod.var). It converts reported modifications to the UniMod format, then it 

removes duplicated precursor extractions (based on sequence.mod.var and charge.var), it 
filters the data by a Q-value threshold (q_filter_threshold), and it removes precursors labeled 

as decoy (decoy.tag), and peptides shared between species. The protein report estimates a 

quantitation value for each protein group (protein.var) by using a TOP3 approach: the three 

most intense peptide quantitative values of each individual run are averaged (a minimum of 

two peptides is required). Produced peptide and protein reports can be directly used in the 

main LFQbench module. FSWE filters results at the protein level, only proteins having 

quantification values in at least two technical replicates in at least one of the samples are 

considered for further analysis. If a quantification value is absent in one or two technical 
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replicates, LFQbench calculates the average of the reported values. If a quantification value 

is missing in all three replicates this leads to an invalid quantification ratio.

Intensity scaling—Software tools may report quantitation values in different ways. To 

enable a direct comparison between different software tools, peptide and protein reports can 

be scaled to a reference using the interface function FSWE.scaleIntensities. The function 

scales quantitation values of each input file in the specified folder by using a linear 

regression through the origin of the data within the 98th percentile of the peptide 

quantitation values of each software tool to the peptide quantitation values of the specified 

reference software.

LFQbench analysis

For the main analysis, LFQbench reads quantitative values from a valid input file, process 

them in multiple steps and produces a result set object which summarizes the input data and 

contains statistics and evaluation metrics based on the evaluated data. A first process checks 

input data validity (see Input data format section). The second step removes from the dataset 

quantitative amounts below a user-defined threshold. Next, missing value and identification 

statistics are calculated. At the next stage, peptides or protein amounts are optionally 

converted to relative values by transforming the original quantitative values to parts per 

million of the total amount in individual experiment runs. For the evaluation of technical 

reproducibility, LFQbench calculates dispersion of quantitative values as coefficients of 

variation for each identified peptide or protein among technical replicates of each sample. 

After assessing the technical variance, quantitative values in replicate runs are used to 

calculate sample average amounts for each peptide or protein. To generate a basis for the 

evaluation of the relative quantitation performance, logarithmic (log2) ratios of sample 

average amounts are calculated for each identification and each sample pair in the present 

dataset (e.g. log2(A/B)). LFQbench estimates the validity range of log-ratios as a maximum 

difference of a user controlled factor (default 5) times the standard deviation from the 

average log-ratio value for each species. Outlier log-ratios that are out of validity range are 

dropped and remaining log-ratios are shifted by the median log-ratio of the predefined 

background species to center the data (Supplementary Table 9).

Finally, global and local metrics for the evaluation of precision and accuracy of 

quantification, and species separation ability are calculated and stored in the result set. User 

can explore calculated result sets for the processed data and evaluation metrics directly in an 

R environment or visualize results and export identification and quantification metrics using 

LFQbench functions:

- LFQbench.getMetrics

- LFQbench.showMetrics

- LFQbench.showDistributionDensityPlot

- LFQbench.showLogRatioBoxPlot

- LFQbench.showScatterAndBoxPlot
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- LFQbench.showScatterAndDensityPlot

- LFQbench.showScatterPlot.

Batch analysis

For a combined evaluation of multiple input files, the main LFQbench analysis can be run in 

batch mode using the interface function LFQbench.batchProcessRootFolder. In batch 

mode, LFQbench discovers the input files from a subfolder of a data root folder structure, 

processes them and produces corresponding result sets. The calculated result sets are 

automatically visualized, and statistics as well as identification and quantification metrics 

are exported to files.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We want to thank Ruben Spohrer for his excellent sample preparation, and Lyle Burton, Adam Lau, and Gordana 
Ivosev for their support with SWATH 2.0. P.N. and S.T. are supported by grants from BMBF (Express2Present 
0316179C), the DFG (ST599/1-1) and Mainz University (Research Center for Immunotherapy (FZI)). H.L.R. is 
supported by SNF grant P2EZP3_162268. Y.P-R. is supported by the BBSRC ‘PROCESS’ grant [BB/K01997X/1]. 
A.I.N is supported by U.S. National Institutes of Health grant no. 5R01GM94231. R.A. was supported by ERC 
AdG #233226 (Proteomics v3.0) and ERC -2014-AdG # 670821 (Proteomicxs 4D), by the PhosphonetX project of 
SystemsX.ch and by the Swiss National Science Foundation grant #3100A_166435.

References

1. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003; 422:198–207. 
[PubMed: 12634793] 

2. Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat Biotechnol. 2010; 28:695–709. 
[PubMed: 20622844] 

3. Distler U, Kuharev J, Tenzer S. Biomedical applications of ion mobility-enhanced data-independent 
acquisition-based label-free quantitative proteomics. Expert Rev Proteomics. 2014; 11:675–684. 
[PubMed: 25327648] 

4. Gillet LC, et al. Targeted data extraction of the MS/MS spectra generated by data-independent 
acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 
2012; 11:O111.016717.

5. Geromanos SJ, Hughes C, Ciavarini S, Vissers JPC, Langridge JI. Using ion purity scores for 
enhancing quantitative accuracy and precision in complex proteomics samples. Anal Bioanal Chem. 
2012; 404:1127–1139. [PubMed: 22811061] 

6. Geiger T, Cox J, Mann M. Proteomics on an Orbitrap benchtop mass spectrometer using all-ion 
fragmentation. Mol Cell Proteomics. 2010; 9:2252–2261. [PubMed: 20610777] 

7. Liu H, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein 
abundance in shotgun proteomics. Anal Chem. 2004; 76:4193–4201. [PubMed: 15253663] 

8. Li G-Z, et al. Database searching and accounting of multiplexed precursor and product ion spectra 
from the data independent analysis of simple and complex peptide mixtures. Proteomics. 2009; 
9:1696–1719. [PubMed: 19294629] 

9. Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun 
proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 
2011; 10:1785–1793. [PubMed: 21309581] 

10. Gatto L, et al. Testing and Validation of Computational Methods for Mass Spectrometry. J 
Proteome Res. 2015; doi: 10.1021/acs.jproteome.5b00852

Navarro et al. Page 19

Nat Biotechnol. Author manuscript; available in PMC 2017 April 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



11. Dufresne, Craig; H, D.; I, AR.; A, K.; B, M.; P, B.; R, K.; R, P.; S, B.; S, S.; C, CM. ABRF 
Research Group Development and Characterization of a Proteomics Normalization Standard 
Consisting of 1,000 Stable Isotope Labeled Peptides. Journal of Biomolecular Techniques : JBT. 
2014; 25:S1.

12. Yates JR, et al. Toward objective evaluation of proteomic algorithms. Nat Methods. 2012; 9:455–
456. [PubMed: 22543378] 

13. Leprevost FDV, Barbosa VC, Francisco EL, Perez-Riverol Y, Carvalho PC. On best practices in the 
development of bioinformatics software. Front Genet. 2014; 5:199. [PubMed: 25071829] 

14. Pak H, et al. Clustering and filtering tandem mass spectra acquired in data-independent mode. J 
Am Soc Mass Spectrom. 2013; 24:1862–1871. [PubMed: 24006250] 

15. The difficulty of a fair comparison. Nat Meth. 2015; 12:273–273.

16. Kuharev J, Navarro P, Distler U, Jahn O, Tenzer S. In-depth evaluation of software tools for data-
independent acquisition based label-free quantification. Proteomics. 2015; 15:3140–3151. 
[PubMed: 25545627] 

17. Sajic T, Liu Y, Aebersold R. Using data-independent, high-resolution mass spectrometry in protein 
biomarker research: perspectives and clinical applications. Proteomics Clin Appl. 2015; 9:307–
321. [PubMed: 25504613] 

18. Röst HL, et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition 
MS data. Nat Biotechnol. 2014; 32:219–223. [PubMed: 24727770] 

19. MacLean B, et al. Skyline: an open source document editor for creating and analyzing targeted 
proteomics experiments. Bioinformatics. 2010; 26:966–968. [PubMed: 20147306] 

20. Bruderer R, et al. Extending the Limits of Quantitative Proteome Profiling with Data-Independent 
Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues. 
Mol Cell Proteomics. 2015; 14:1400–1410. [PubMed: 25724911] 

21. Reiter L, et al. mProphet: automated data processing and statistical validation for large-scale SRM 
experiments. Nat Methods. 2011; 8:430–435. [PubMed: 21423193] 

22. Tsou C-C, et al. DIA-Umpire: comprehensive computational framework for data-independent 
acquisition proteomics. Nat Methods. 2015; 12:258–64. 7 p following 264. [PubMed: 25599550] 

23. Cox J, et al. MaxLFQ allows accurate proteome-wide label-free quantification by delayed 
normalization and maximal peptide ratio extraction. Mol Cell Proteomics. 2014; doi: 10.1074/
mcp.M113.031591

24. Navarro P, et al. General Statistical Framework for Quantitative Proteomics by Stable Isotope 
Labeling. J Proteome Res. 2014; doi: 10.1021/pr4006958

25. Bell AW, et al. A HUPO test sample study reveals common problems in mass spectrometry-based 
proteomics. Nat Methods. 2009; 6:423–430. [PubMed: 19448641] 

26. Schubert OT, et al. Building high-quality assay libraries for targeted analysis of SWATH MS data. 
Nat Protocols. 2015; 10:426–441. [PubMed: 25675208] 

27. Rosenberger G, et al. A repository of assays to quantify 10,000 human proteins by SWATH-MS. 
Sci Data. 2014; 1:140031. [PubMed: 25977788] 

28. Shteynberg D, Nesvizhskii AI, Moritz RL, Deutsch EW. Combining results of multiple search 
engines in proteomics. Mol Cell Proteomics. 2013; 12:2383–2393. [PubMed: 23720762] 

29. Yuan Z-F, Lin S, Molden RC, Garcia BA. Evaluation of proteomic search engines for the analysis 
of histone modifications. J Proteome Res. 2014; 13:4470–4478. [PubMed: 25167464] 

30. Vizcaíno JA, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status 
in 2013. Nucleic Acids Research. 2013; 41:D1063–9. [PubMed: 23203882] 

31. Distler U, et al. Drift time-specific collision energies enable deep-coverage data-independent 
acquisition proteomics. Nat Methods. 2014; 11:167–170. [PubMed: 24336358] 

32. Fonslow BR, et al. Digestion and depletion of abundant proteins improves proteomic coverage. Nat 
Methods. 2013; 10:54–56. [PubMed: 23160281] 

33. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for 
proteome analysis. Nat Methods. 2009; 6:359–362. [PubMed: 19377485] 

34. Escher C, et al. Using iRT, a normalized retention time for more targeted measurement of peptides. 
Proteomics. 2012; 12:1111–1121. [PubMed: 22577012] 

Navarro et al. Page 20

Nat Biotechnol. Author manuscript; available in PMC 2017 April 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



35. Eng JK, Jahan TA, Hoopmann MR. Comet: An open-source MS/MS sequence database search 
tool. Proteomics. 2012; 13:22–24. [PubMed: 23148064] 

36. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by 
searching sequence databases using mass spectrometry data. ELECTROPHORESIS. 1999; 
20:3551–3567. [PubMed: 10612281] 

37. Reiter L, et al. Protein identification false discovery rates for very large proteomics data sets 
generated by tandem mass spectrometry. Mol Cell Proteomics. 2009; 8:2405–2417. [PubMed: 
19608599] 

38. Lam H, et al. Development and validation of a spectral library searching method for peptide 
identification from MS/MS. Proteomics. 2007; 7:655–667. [PubMed: 17295354] 

39. Deutsch EW, et al. TraML--a standard format for exchange of selected reaction monitoring 
transition lists. Mol Cell Proteomics. 2012; 11 R111.015040. 

40. Kunszt P, et al. iPortal: the swiss grid proteomics portal: Requirements and new features based on 
experience and usability considerations. Concurrency Computat: Pract Exper. 2014; 27:433–445.

41. F D, Beavis RC. A Method for Assessing the Statistical Significance of Mass Spectrometry-Based 
Protein Identifications Using General Scoring Schemes. Anal Chem. 2003

42. Kim S, Pevzner PA. MS-GF+ makes progress towards a universal database search tool for 
proteomics. Nat Commun. 2014; 5 SP:5277. [PubMed: 25358478] 

43. Nesvizhskii AI, Keller A, Kolker E. A Statistical Model for Identifying Proteins by Tandem Mass 
Spectrometry - Analytical Chemistry (ACS Publications). Analytical …. 2003

44. Shteynberg D, et al. iProphet: multi-level integrative analysis of shotgun proteomic data improves 
peptide and protein identification rates and error estimates. Mol Cell Proteomics. 2011; 10 
M111.007690. 

45. Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein 
identifications by mass spectrometry. Nat Methods. 2007; 4:207–214. [PubMed: 17327847] 

46. Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ. Absolute quantification of proteins 
by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006; 5:144–156. [PubMed: 
16219938] 

47. Ning K, Fermin D, Nesvizhskii AI. Comparative analysis of different label-free mass spectrometry 
based protein abundance estimates and their correlation with RNA-Seq gene expression data. J 
Proteome Res. 2012; 11:2261–2271. [PubMed: 22329341] 

Navarro et al. Page 21

Nat Biotechnol. Author manuscript; available in PMC 2017 April 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Editorial summary

LFQbench, a software tool to assess the quality of label-free quantitative proteomics 

analyses, enables developers to benchmark and improve analytic methods
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Figure 1. Study workflow.
Two proteome-hybrid samples A and B were prepared containing known quantities of 

peptide digestions of human, yeast, and E.Coli organisms. The samples were analyzed in 

three technical replicates in SWATH-MS acquisition mode on two different MS instrument 

platforms (TripleTOF 5600 and TripleTOF 6600) with/using two different swath windows 

setups (32 fixed size windows and 64 variable size windows). This resulted in four 

benchmarking datasets. The datasets were analyzed in five software tools: OpenSWATH, 

SWATH 2.0, Skyline, Spectronaut, and DIA-Umpire. Benchmark analyses of each dataset 

and software tool were performed based on the output reports generated by the newly 

developed benchmarking software LFQbench.
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Figure 2. Protein level LFQbench benchmark results.
After parameter optimization in a first iteration of analyses, intensities reported by each 

software tool were fitted to PeakView intensity scale using a linear model fixed in the origin 

(Supplementary Figure 25). Intensities of multiply charged precursors were summed up, and 

averaged across all technical replicates of each sample. Protein quantities were estimated in 

each technical replicate by the average of the three most intense peptides reported for each 

protein. Single hit proteins (a single peptide detected in a protein) were discarded. In the 

present figure only data derived from TripleTOF 6600 with the 64 swath window setup are 
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displayed. Corresponding data for the other instrument and acquisition setups are shown in 

Supplementary Figure 8. (a) Log-transformed ratios (log2(A/B)) of proteins (human proteins 

in green, yeast proteins in orange, and E.Coli proteins in purple) were plotted for each 

benchmarked software tool over the log-transformed intensity of sample B for the first and 

second iteration (sample size n between 3,795 and 4,692 proteins). Dashed colored lines 

represent the expected log2(A/B) values for human, yeast, and E.Coli proteins. Black dashed 

lines represent the local trend along the x-axis of experimental log-transformed ratios of 

each population (human, yeast, and E.Coli). For a better understanding of these plots, see 

plots generated by simulated data (Supplementary Figure 2). (b) (log2(A/B)) of the averages 

between technical replicates of A and B for E.coli proteins in the lowest intensity tertile. 

Boxes represent 25% and 75% percentiles, whiskers cover data points between 1% and 99% 

percentiles. Accuracy could be significantly improved in the second iteration for 

OpenSWATH, SWATH 2.0, Skyline, and Spectronaut [p < 0.05; One-sided Wilcoxon rank 

sum tests]. Precision improved significantly in the second iteration for OpenSWATH, 

Skyline, and Spectronaut in all datasets of HYE124 [p < 0.05 in double-sided F-tests 

performed for each individual species].
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Figure 3. Integrated analysis of the five software tools.
(a) Overlap of quantified peptides and proteins for library-based tools. The font size of each 

element is proportional to the number of peptides or proteins displayed. (b) Overlap of 

quantified peptides and proteins by all software tools. The font size of each element is 

proportional to the number of peptides or proteins displayed. An asterisk indicates protein/

peptide numbers below ten. (c) Protein abundance distribution of peptides and proteins 

detected by DIA-Umpire. Red: peptides or proteins shared with other software tools. 

Turquoise: peptides or proteins detected exclusively by DIA-Umpire.
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Figure 4. Retention time differences and correlation of reported peak intensities between all 
software tools for the respective matching precursors.
Retention time outliers (upper right panels) are plotted in the color of the outlier software 

tool (see color legend in the diagonal panels). Diagonal panels show the total number and 

percentage (to the total number of common detected peptides) of outliers of each respective 

software tool. Outliers have been defined as producing a standard deviation of the peak 

retention time greater than 0.2 minutes relative to all other software tools detecting that 

precursor, after removing ambiguous cases, in which more than one software tool produce a 

greater standard deviation in the peak retention time. The correlation of reported peak 
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intensities is displayed at the lower left panels. The retention time outliers are also marked in 

the respective correlation plots.
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