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Deficiencies in vitamin B12 and glutathione (GSH) are associated with a number

of diseases including type 2 diabetes mellitus. We tested newly diagnosed Indian

diabetic patients for correlation between their vitamin B12 and GSH, and found it to

be weak. Here we seek to examine the theoretical dependence of GSH on vitamin

B12 with a mathematical model of 1-carbon metabolism due to Reed and co-workers.

We study the methionine cycle of the Reed-Nijhout model by developing a simple

“stylized model” that captures its essential topology and whose kinetics are analytically

tractable. The analysis shows—somewhat counter-intuitively—that the flux responsible

for the homeostasis of homocysteine is, in fact, peripheral to the methionine cycle.

Elevation of homocysteine arises from reduced activity of methionine synthase, a

vitamin B12-dependent enzyme, however, this does not increase GSH biosynthesis. The

model suggests that the lack of vitamin B12–GSH correlation is explained by suppression

of activity in the trans-sulfuration pathway that limits the synthesis of cysteine and GSH

from homocysteine. We hypothesize this “cysteine-block” is an essential consequence

of vitamin B12 deficiency. It can be clinically relevant to appreciate that these secondary

effects of vitamin B12 deficiency could be central to its pathophysiology.

Keywords: vitamin B12 deficiency, hyperhomocysteinemia, type-2 diabetes, glutathione, cysteine-block

INTRODUCTION

Vitamin B12 (cobalamin) deficiency is a major health concern worldwide (Stabler and Allen, 2004;
Stabler, 2013). Vegans, and to a lesser extent lactoovovegetarians and lactovegetarians, are at risk
for developing cobalamin deficiency (Herrmann et al., 2003). Several studies have argued that
vegetarianism is a possible reason for a prevalent vitamin B12 deficiency among Indians (Refsum
et al., 2001; Antony, 2003; Stabler and Allen, 2004). Another disease, type 2 diabetes mellitus, is on
the rise (Brownlee, 2005; Houstis et al., 2006; Pi et al., 2007; Hoehn et al., 2009; Leloup et al., 2009;
Fisher-Wellman and Neufer, 2012; Acharya et al., 2014; Watson, 2014), with some of the fastest
rates of growth in India and southeast Asia, where a considerable proportion of the population
is vegetarian. This has sparked the speculation that vegetarianism may not only lead to vitamin
B12 deficiency but also exacerbate diabetes in these parts. For example, in the Pune Maternal
Nutrition Study, Yajnik et al. (2008) show that mothers with a combination of high folate and
low vitamin B12 concentrations had children with high insulin resistance, and therefore at risk for
developing diabetes later in life. The growing incidence of diabetes among Indians, as in the world,
is a relatively recent phenomenon and is probably the result of lifestyle changes associated with
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over-nutrition. It is intriguing to ask if vegetarianism and the
prevalence of vitamin B12 deficiency in Indians makes them
particularly susceptible to the environmental insults that lead to
diabetes.

One possible candidate for such a link is oxidative
stress. Oxidative stress has long been associated with diabetic
complications, but has only recently received attention as a
possible reason for the development of diabetes (Houstis et al.,
2006; Hoehn et al., 2009;Watson, 2014).We have recently argued
that the extent of oxidative stress determines the severity with
which diabetes presents itself (Kulkarni et al., 2014a,b). We have
found that glutathione (GSH), which is a key cellular antioxidant,
is a significant reporter of oxidative stress in diabetic patients
and control subjects. We hypothesize the following: It is possible
that vitamin B12 deficiency may be a major factor responsible
for impaired GSH levels. If this stressed antioxidant defense
network then succumbs to further oxidative pressure arising

FIGURE 1 | The Reed-Nijhout model of 1-carbon and glutathione metabolism reproduced from Reed et al. (2008). The methionine cycle, highlighted in the

green box, is comprised of the metabolites homocysteine (Hcy), methionine (Met), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH). The effect of

vitamin B12 in the model is simulated by varying the reaction velocity of methionine synthase (MS), that is, VMSmax . Apart from the remethylation to Met, Hcy also drives

the synthesis of cystathionine via cystathionine β-synthase (CBS). Note that while the flux from Hcy to Met is unidirectional in the model, flux exchange between Hcy

and SAH is bidirectional. Hcy is also upstream of glutathione, GSH and GSSG.

from, for example, the ingestion nutrients in excess or chronic
inactivity, that in turn may contribute to the development of
diabetes.

Cobalamins have been the subject of considerable recent
investigation in the context of oxidative stress (Jacobsen,
2000; Hondorp and Matthews, 2004; Albu et al., 2012;
Giustarini et al., 2014). Vitamin B12 is a co-enzyme for
5-methyltetrahydrofolate-homocysteine methyltransferase, also
known as methionine synthase (MS). MS is responsible for the
regeneration of methionine (Met) from homocysteine (Hcy)
in the methionine cycle (see Figure 1). Vitamin B12 also acts
as a co-factor in the conversion of methylmalonyl-CoA into
succinyl-CoA by methylmalonyl-CoA mutase. Even a modest
reduction in Vitamin B12 status will cause elevation of plasma
homocysteine (Scott, 1999; Refsum et al., 2001). Thus, increased
homocysteine levels (hyperhomocysteinemia), and increased
methylmalonic acid (MMA) levels are symptoms of possible
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vitamin B12 deficiency. Total serum Hcy is therefore widely used
to test for vitamin B12 deficiency. The test, however, is known to
be limited in its specificity to detect cobalamin deficiency because
Hcy levels are also elevated by other conditions. (Abbreviations
used in this paper along with their complete names are listed in
Glossary.)

An important theme in interpreting vitamin B12 deficiency
is the “remethylation block hypothesis”: Vitamin B12
deficiency results in hyperhomocysteinemia because Hcy
remethylation is “blocked” (Selhub et al., 2007). Mutations
in the MTR gene, which encodes MS, could also lead to
hyperhomocysteinemia (Watkins et al., 2002). A polymorphism
in the methionine synthase reductase (MTRR) enzyme,
responsible for maintaining adequate levels of cob(III)alamin, is
known contribute to a moderate increase in Hcy levels (Gaughan
et al., 2001). Individuals with a common mutation in
methylenetetrahydrofolate reductase (MTHFR) could also
have significantly elevated plasma homocysteine levels (Frosst
et al., 1995). In particular, folate deficiency could also be a factor
behind elevated Hcy levels (Kang et al., 1987; Chu and Hall,
1988; Stabler et al., 1993). Normal levels of both methylmalonic
acid and total homocysteine almost certainly rule out clinically
significant cobalamin deficiency (Savage et al., 1994).

However, a further examination of this hypothesis, for
example using the topology of the metabolic network in Figure 1,
shows there might be difficulties with this interpretation. For one,
Hcy can be shuttled away to cystathionine, hence, in principle,
a block in Hcy remethylation is not immediately a sufficient
condition for Hcy elevation. Secondly, Hcy is also important
for the synthesis of cysteine via the trans-sulfuration pathway,
which leads to the synthesis of glutathione. In fact, it has been
shown that in human liver cells as much as 50% of the cysteine
in glutathione is derived from Hcy (Mosharov et al., 2000).
The paradox of the remethylation block theory is thus that
hyperhomocysteinemia ought to be protective toward GSH, or in
other words, that vitamin B12 deficiency actually has antioxidant
benefit!

These arguments demonstrate that models of the methionine
cycle need to be examined in greater detail to determine if
(i) GSH does indeed accumulate under vitamin B12 deficiency,
(ii) if it does, how does vitamin B12—deficiency induced
hyperhomocysteinemia affect GSH levels. It is useful to examine
these questions not only from experiments but also from
theoretical points of view; since this physiology is complex,
mathematical models can play a significant part in unraveling the
interactions.

Reed et al. have developed a detailed computational model
of 1-carbon metabolism in Reed et al. (2004), Nijhout et al.
(2004), Reed et al. (2006), and Deplancke and Gaskins (2002).
We are using a computational model of 1-carbon metabolism
and glutathione synthesis due to Reed et al. (2008). In Reed
et al. (2006; See Tables 1, 2) they show that simulating a vitamin
B12 deficiency by decreasing MS activity to 10% of normal did
not lead to a significant change in Hcy. This suggests that the
relationships between vitamin B12, Hcy, and GSH may be more
complex than is suggested by a remethylation block hypothesis
alone.

TABLE 1 | Kinetic parameters in the reduced model.

VbMetcmax 913.4 kbet
BHMT

100.0

VMSmax 500 kMAT1max 41.0

VBHMTmax 2160 kMAT1
i

2140.0

VMAT1max 260 kMAT3max 300.0

VMAT3max 220 kMAT3
i

4030.0

VGNMTmax 260 ksam
GNMT

63.0

VDNMTmax 180 kGNMT
i

18.0

VSAHH
f

320 kDNMTmax 1.4

VSAHHr 4530 kDNMT
i

1.4

VCBSmax 420000 ksah
SAHH

6.5

kbmetc 150 k
hcy
SAHH

150.0

k5mf
MS

25.0 k
hcy
CBS

1000.0

k
hcy
MS

1.0 kser
CBS

2000.0

k
hcy
BHMT

12.0

Parameters used in constructing the reduced model are as in Reed et al. (2008). Time is

in hours, concentrations are in µM.

TABLE 2 | Kinetic parameters in the reduced model.

Betaine 50

Blood methionine 30

Cytosolic serine 605

Cytosolic glycine 1300

Cytosolic glutathione disulfide 60

The table shows the values of the constants we assigned to each of the metabolites that

were originally variables in the Reed-Nijhout model. Concentrations are in µM.

Here we examine vitamin B12 and GSH measured from
newly diagnosed Indian diabetic patients to study any correlation
between these variables. In addition, we explore the relationship
between vitamin B12, Hcy, and GSH in greater detail using the
Reed-Nijhout model. Further, we analyze the methionine cycle
sub-network in the Reed-Nijhout model in order to interpret
experimental data in light of model predictions.

MATERIALS AND METHODS

Experimental Methods
Fasting blood samples were collected from fifty non-diabetic
subjects and fifty-four diabetic patients at baseline and at follow-
up visits after 4 and 8 weeks of anti-diabetic treatment, as
described previously in Acharya et al. (2014). Plasma was
separated from blood samples and a colistin sulfate-resistant
strain of L. leichmanii was used to measure plasma vitamin B12.
For further details of the protocol please see Katre et al. (2010).

The study protocol was approved by the Institutional Ethical
Committee, KEMHospital and Research Centre, Pune. Informed
consent was obtained in writing from all individuals after
explaining the purpose and nature of the study.

The Reed-Nijhout Model of 1-Carbon
Metabolism
Here we use a computational model of 1-carbon metabolism
and glutathione synthesis due to Reed et al. (2008). The version
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FIGURE 2 | The reduced methionine cycle model and the stylized model. (A) The methionine cycle extracted from the full Reed-Nijhout model. The metabolites

Met, SAM, SAH, and Hcy are variables in the model. The ellipses denote the enzymes for a reaction (flux directionality is indicated by arrows). The substrates blood

methionine, GSSG, BET, Gly, and Ser (filled maroon boxes) are variables in the Reed-Nijhout model, and are taken constant in the reduced model. c5mf has been fit

as a phenomenological function of VMSmax in the reduced model (shown in a blue box); see text. (B) A stylized model, built to capture the essential topology of the

reduced model. The fluxes of the reduced model are simplified further in the stylized model.

of the Reed-Nijhout model we use was encoded by Lukas
Endler (available for download on the European Bioinformatics
Institute’s models database Endler, 2008). The full equations and
parameters of the Reed-Nijhoutmodel we work with in this paper
are described in the Supplementary Material of Reed et al. (2008).

We use XPPAUT (Ermentrout, 2002) for model simulations
and MATLAB (Guide, 1998) for the analysis of our data.

The Reduced Methionine Cycle Model
We construct a reduced methionine cycle model by carefully
excising the methionine cycle sub-network from the
comprehensive Reed-Nijhout model (see Data Sheet 1 for
full details). The reduced model (Figure 2A) is crucial in
that it contains all of the components that are relevant to the
dynamics of the methionine cycle even when excised from the
full network. We use it to examine the essential topology and
kinetics responsible for Hcy homeostasis.

The Stylized Methionine Cycle Motif
Despite the significant reduction in size, the reduced model is not
analytically tractable. To analyze the reduced methionine cycle
further, we built a simplified methionine cyclemotif (Figure 2B):
An even simpler, stylized model that reflects the topology of the
reduced model. We replaced the complex equations of enzyme-
mediated fluxes of the reduced model (Figure 2A) with simple

mass action kinetics in the stylized model (Figure 2B). See Data
Sheet 1 for full details.

The mass action equations for the stylized model (Figure 2B)
are:

d hcy

dt
= k5 sah− (k0 + k2 + k−5) hcy, (1)

d met

dt
= k1 + k0 hcy− (k−1 + k3) met, (2)

d sam

dt
= k3 met − k4 sam, (3)

d sah

dt
= k4 sam− k5 sah+ k−5 hcy. (4)

The steady states of the metabolites are:

hcy∗ =
k1 k3

k3 k2 + k0 k−1 + k2 k−1
(5)

met∗ =
k1 (k0 + k2)

k3 k2 + k0 k−1 + k2 k−1
(6)

sam∗
=

k1 k3(k0 + k2)

k4 (k3 k2 + k0 k−1 + k2 k−1)
(7)

sah∗ =
k1 k3 (k0 + k−5 + k2)

k5 (k3 k2 + k0 k−1 + k2 k−1)
(8)
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FIGURE 3 | GSH and vitamin B12 are weakly correlated in diabetes. Linear regression between blood GSH and vitamin B12 for non-diabetic control subjects

(A,B) and diabetic patients (C,D). Individuals with serum vitamin B12 <148 pM are considered vitamin B12–deficient (Selhub et al., 2007). Thus, (A,C) represent

vitamin B12 deficiency. A GSH value of 450 µM is taken as a cut-off of oxidative stress. Notice that diabetic patients largely have GSH less than 450 µM, while control

subjects have GSH greater than 450 µM. Regression statistics are indicated on the graphs directly; in the regression equations G stands for Glutathione levels in µM

and B stands for vitamin B12 concentration in pM. Data is adapted from Acharya et al. (2014).

These steady states are used to gain insight into the topology of
the methionine cycle.

RESULTS

Experimental Results
Vitamin B12 and GSH are Uncorrelated in Type 2

Diabetic Patients
We analyzed vitamin B12 levels and blood GSH concentrations
in Indian diabetic patients and control subjects. This data
was collected as part of a clinical study conducted by us,
described in Acharya et al. (2014). Briefly, we followed newly
diagnosed diabetic patients over the first 8 weeks of their
starting anti-diabetic therapy. We collected a wide variety of
blood parameters, including GSH and other oxidative stress bio-
markers, at the beginning of treatment, and at 4 and 8 weeks
subsequently.

Following Selhub et al. (2007), we took a serum level of
148 pM as the threshold of diagnosis for vitamin B12 deficiency.
While serum concentration of vitamin B12 generally reflects

systemic vitamin B12 concentration, this test is not entirely
specific, because other conditions, notably folate deficiency,
may interfere with its interpretation. That is, low serum
levels also need not immediately imply vitamin B12 deficiency.
Nonetheless, 148 pM is taken as the threshold of diagnosis for
vitamin B12 deficiency in epidemiological studies. We considered
blood GSH level of 450 µM as the cut-off for oxidative
stress (Vijayalingam et al., 1996; Acharya et al., 2014), which
we have found serves to distinguish between diabetic and non-
diabetic subjects fairly well.

Figure 3 shows the results of a regression analysis of diabetic
patients and control subjects, segregated into four groups based
on vitamin B12 deficiency and oxidative stress. We find weak
correlation between blood GSH and vitamin B12 in all the four
groups. Surprisingly, there is weak correlation between blood
GSH and vitamin B12 levels even in diabetic patients (both
vitamin B12 deficient and otherwise). These results suggest that
while oxidative stress (GSH) is a strong indicator of the diabetic
status vitamin B12 deficiency, on the other hand, has little to do
with either GSH or diabetes.
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Model Results
The Reed-Nijhout Model Predicts GSH is Protected

Against vitamin B12 Deficiency
We studied the the effect of vitamin B12 on glutathione
(GSH) using the Reed-Nijhout computational model of 1-carbon
metabolism. The normal physiological value (Banerjee et al.,
1990, 1997) of the reaction velocity of methionine synthase
is VMS

max = 500 µM/hr. We varied VMS
max over three orders of

magnitude, a very large range that includes the observed vitamin
B12 deficiency, and studied the corresponding effect on GSH
concentration. Figure 5 shows that the effect of vitamin B12 on
GSH is very weak in the model: Changes inVMS

max do not percolate
systematically to changes in GSH.

Poor correlation between vitamin B12 and GSH in the
experimental data is consistent with the model prediction above.
This begs the question: Why do computations show that GSH
relatively independent of VMS

max in the model, despite glutathione
being downstream of MS activity? Although vitamin B12 is
upstream of GSH in 1-carbon metabolism, the topology depicted
in Figure 1 alone is not sufficient to anticipate how changes in
VMS
max will influence GSH. If decreases in VMS

max had resulted in
lowered GSH, we might have argued that decreased GSH and
increased oxidative stress in diabetes may be the result of a
vitamin B12 deficiency. On the other hand, the re-remethylation
block hypothesis argues the opposite, that decreases in VMS

max are
responsible for increased Hcy, and presumably GSH. The Reed-
Nijhout model shows neither is true: It predicts that GSH varies
largely independent of changes in vitamin B12. This behavior
is unexpected. Below we investigate the model further to better
isolate the essential component of the dynamics responsible for
this feature.

Hcy Maintains Homeostasis Relative to
VMS
max Variation in the Model

If GSH is independent of MS activity in the metabolic
network (Figures 1, 5B), this implies that the intervening

metabolites must influence this relationship significantly. We
therefore systematically examined all intermediates upstream
of GSH: cysteine, cystathionine, Hcy, Met, SAM, and SAH
in the model while varying VMS

max. Figure 4 shows that
the effect of changes in VMS

m are suppressed within the
methionine cycle, at Hcy in particular. Hcy, Cys and Cyt
vary by less than 15% over 3 orders of magnitude of VMS

max,
while Met, SAM and SAH are seen to vary significantly
more.

It appears therefore that Hcy acts as a buffer to changes
in vitamin B12, which in turn allows for GSH to be relatively
independent of vitamin B12. This “homeostatic” behavior of
Hcy is intriguing: It runs counter to the clinical observation
that vitamin B12 deficiency results in hyperhomocysteinemia.
Moreover, the remethylation block hypothesis implies that Hcy
ought to have increased significantly with lowered VMS

max, which is
belied by the model simulations.

Since changes in VMS
max are suppressed at the level of Hcy,

examining the methionine cycle in greater detail holds the key
to understanding the discrepancy between the predictions of the
remethylation block hypothesis and the Reed-Nijhout model. In
the following section we analyze the Reed-Nijhout model, in
particular to ask:What features of the topology and the kinetics of
the methionine cycle are responsible for Hcy homeostasis relative
to VMS

max?

A Stylized Model Shows a Weak
Methionine Efflux is Responsible for Hcy
Homeostasis
We are interested in the dependence of hcy∗ on the parameter
k0, which in the stylized model (described in Data Sheet 1) is
representative of MS in the methionine cycle:

d hcy∗

dk0
= −

k1 k3 k−1

(k3 k2 + k0 k−1 + k2 k−1)2
. (9)

FIGURE 4 | Hcy buffers changes in vitamin B12. Percentage variation in the steady state values of (A): species upstream of GSH leading up to Hcy, viz., cysteine

(Cys), cystathionine (Cyt); (B): species upstream of Hcy, viz., Met, SAM, and SAH. The variations are calculated with respect to steady state value of each specie at

VMSmax = 500 in the Reed-Nijhout model. It can be observed that the species shown in the figure on the right-hand side vary significantly whereas the species on the

left-hand side vary by only about 15% displaying buffering against changes in VMSmax .
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The steady-state of Hcy, Equation (5) is

hcy∗ =
k1 k3

k3 k2 + k0 k−1 + k2 k−1
. (10)

The sensitivity of hcy∗ to changes in k0 is dependent on the values
of k1, k3 and k−1; were either of these three parameters zero, hcy∗

would be independent of changes in k0. However, k1 = 0 or
k3 = 0 would result in hcy∗ being identically zero, Equation (5).
This implies that the sensitivity of Hcy steady-states to changes
in k0 is dependent on the value of the parameter k−1. k−1 in
the stylized model is representative of the rate constant, koutmet

met ,
which regulates the efflux of methionine from cytosol into blood.
This leads us to hypothesize that the sensitivity of Hcy to changes
in VMS

max is dependent on the strength of the methionine efflux via
koutmet
met .
We tested the above hypothesis first in the reduced model and

then in the full Reed-Nijhout model (For details please see Data
Sheet 1). This behavior continues to hold in the full model: Only
when the Met→blood flux parameter, koutmet

met , is set to a value
higher than normal, can the Hcy be seen to vary significantly with
changes in VMS

max.
Thus, the analysis of the stylized model reveals that k−1 acts

as a control over k0, that is, how strongly VMS
max influences Hcy

build up. We conclude that the essential reason Hcy maintains
homeostasis over such a large range of VMS

max is a relatively low
value of koutmet

met in the model. In other words, a weak methionine
efflux is responsible for maintaining Hcy homeostasis in the
model regardless of the availability of vitamin B12.

Cysteine-Block Prevents
Hyperhomocysteinemia from Elevating
GSH
Next we sought to resolve the paradox: If vitamin B12 deficiency
leads to hyperhomocysteinemia, why does GHS not also rise
simultaneously?

We simulated hyperhomocysteinemia artificially (that is, we
treated it as a parameter in the simulations), increasing Hcy levels
to around 400% of the physiological reference value. This lead to
a 200% rise in the cytosolic GSH levels (Figure 6A). However,
when hyperhomocysteinemia was simulated and a cysteine-
block applied (Figure 6B), it prevented a significant elevation in
cytosolic GSH levels: GSH levels deviate by only about 10% from
the steady-state at nominal values of VMS

max and VCBS
max .

This observation leads us to conclude that vitamin
B12 deficiency must have a secondary effect of inhibiting
CBS activity, which in turn inhibits the flux of Hcy converting
into cystathionine and protects GSH from changes in Hcy.

DISCUSSION

In this paper we sought to examine the relationship between
vitamin B12 deficiency and glutathione (GSH) levels in
diabetes from a theoretical standpoint. In particular, vitamin
B12 influences the methionine cycle, of which methionine and
homocysteine are major components; Hcy, in turn, influences
cysteine via the trans-sulfuration pathway and GSH synthesis

downstream. Clinically, hyperhomocysteinemia is associated
with—and in fact, used to assess—vitamin B12 deficiency.
Since cobalamin is a co-factor of methionine synthase, vitamin
B12 deficiency manifests in a decreased methylation of Hcy
to Met, which leads to elevated Hcy. This explanation is no
doubt parsimonious, but difficulties arise in trying to reconcile
hyperhomocysteinemia with GSH levels: Hcy is directly upstream
of cysteine, therefore vitamin B12 deficiency ought to boost GSH
synthesis!

We tested this prediction in diabetic patients and found
that GSH levels are uncorrelated to vitamin B12 deficiency. We
therefore turned to a detailed computational model of 1-carbon
metabolism to revisit the remethylation-block hypothesis and
investigate the lack of correlation between vitamin B12 deficiency
and GSH.

The major insight from mathematical modeling is this: Hcy–
Met–SAM–SAH is a cycle, and as such, the Hcy steady state is
influenced not only by the Hcy→Met flux (including cobalamin)
but also entry and exit fluxes of the cycle. Other authors have
previously described similar ideas. For example, Liu (2005)
showed that for a cyclic network the steady state does not depend
on the Michaelis-Menten constants of most enzymes in the cycle,
only on the branching points; reversibility can influence these
“kinetic constraint conditions,” as can enzyme regulation. The
network we describe does not appear to fall immediately within
one of the classes described there, but our results are similar
in spirit. There are essentially two exit fluxes of the methionine
cycle: One is the exchange of methionine with blood, the other is
the flux of homocysteine to cysteine. To ask what determines the
resting concentration of Hcy it is necessary to take into account
not only cobalamin (in)sufficiency but also the state of these
fluxes. The steady-state concentration of Hcy is determined not
only by the Hcy→Met flux but also, amongst other things, on the
exit flux of Met to the blood.

The Reed model, as it stands, shows the cycle is in a mode in
which the leak flux of Met to the blood is weak. The consequence
of this is that Hcy maintains its level homeostatically, largely
insensitive to changes in MS activity (Figure 4). To see this
from the stylized model, note that Hcy flux is regulated by the
product k0 × k−1, where k0 determines the Hcy→Met flux and
k−1 the Met→blood flux; if k−1 is negligible k0 falls out of the
picture, that is, steady-state Hcy is invariant relative to changes in
vitamin B12. Hcy homeostasis can potentially explain why GSH
is unaffected by vitamin B12 deficiency. However, it also raises
the question why then is hyperhomocysteinemia commonly seen
to occur with vitamin B12 deficiency. In fact, empirical evidence
would seem to point to a potential weakness of the Reed-Nijhout
model, that it ought to be modified to incorporate a higher
Met→blood leak.

We use the Reed-Nijhout model further to confirm that if
the trans-sulfuration pathway is blocked—a “cysteine-block,” as
it were—GSH does not rise even if Hcy is elevated (Figure 5B).
Our major insight from examining the vitamin B12–GSH data
in conjunction with the Reed-Nijhout model is that cysteine-
block explains why GSH does not increase as a result of
vitamin B12 deficiency induced hyperhomocysteinemia. We thus
hypothesize that vitamin B12 deficiency may have a secondary,
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FIGURE 5 | Cysteine-block leads to hyperhomocysteinemia but prevents elevation of GSH levels. The steady state concentrations of blood GSH and

homocysteine vary with VMSmax and CBS inhibition. The steady state values of blood GSH and Hcy when VMSmax = 500 µM/Hr and VCBSmax = 420,000 µM/Hr are taken as

the reference for computing % changes. (A) Cysteine-block leads to elevated homocysteine levels; the lower the CBS activity the higher the Hcy steady state

concentrations. Hcy increases as much as 160% at 60% inhibition of VCBSmax (B) Blood GSH varies by only 2% despite VMSmax being varied over three orders of

magnitude. At 60% inhibition of VCBSmax , GSH varies little. Compare to Figure 6A which shows that in the absence of cysteine-block, GSH goes up considerably with

elevation in Hcy. Note that a normal diurnal variation in blood GSH is about 15%.

FIGURE 6 | Effects of hyperhomocysteinemia on GSH. (A) Steady state values of cytosolic GSH are seen to rise by over 200% as Hcy value is turned up as a

parameter. (B) Cytosolic GSH values are seen to change by insignificant amounts—within a range of 10% from the standard value at VMSmax = 500—with increasing

inhibition in CBS. Together with the observation that inhibition of CBS activity leads to hyperhomocysteinemia, we note that cysteine-block does not simultaneously

increase GSH levels.

indirect effect, one which inhibits the conversion of cystathionine
to cysteine.

There is evidence in support of the cysteine-block hypothesis.
For one, hyperhomocysteinemia has been known to be associated
with insufficient stimulation of CBS activity (Selhub et al., 2007).
SAM allosterically activates mammalian CBS 2.5-5 fold (Janosik
et al., 2001), stimulating its turnover rate rather than its binding
to substrate. In vitamin B12 deficiency, methionine block implies
that SAM (driven by Met) is lowered as well and hence it is
plausible CBS is less effective. In other words, the allosteric
regulation of CBS by SAM may be responsible for the cysteine-
block we postulate. These long-range interactions are present in
the Reed-Nijhout (and reduced) models (see also Nijhout et al.,
2006 for an investigation of long-range allosteric interactions
between the folate and methionine cycles). Allosteric terms in
the model play a role largely in “stabilizing” the steady-state
concentrations of the methionine cycle substrates, especially
SAM, in the face of large fluctuations in the methionine input. An
interesting future direction would be to study how the allosteric
regulation of CBS by SAM can be altered in the model to

address cysteine-block. Finally, we chose not to include allosteric
regulation explicitly in the stylized model for simplicity; it would
also be interesting to ask what motif would be a simplified
representation of this feature.

Other aspects of the model that are worth exploring
further are the effects of compartmentalization on vitamin
B12–Hcy–GSH metabolism, in particular, the export of Hcy
directly into the blood. In fact, an alternative explanation
of hyperhomocysteinemia without a concomitant increase in
GSH is as follows: Excess homocysteine is exported out of
the cells to avoid toxicity, and this manifests clinically as
hyperhomocysteinemia. Homocysteine transport into systemic
circulation enables a normal Hcy flux through the trans-
sulfuration pathway, which would explain normal GSH levels
in our cohort of vitamin B12 deficient patients. The current
mathematical model does not incorporate Hcy export; therefore,
further investigation is needed to establish its contribution to
overall GSH homeostasis.

Further, the enzyme CBS utilizes Vitamin B6 as a co-
factor in the conversion of Hcy to cystathionine. It is even
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plausible that some of the effects typically ascribed to vitamin
B12 deficiency are, in fact, related to a vitamin B6 deficiency.
It could be useful to distinguish between cysteine-block that
arises from a deficiency of vitamin B12 or vitamin B6. In
the present study we did not directly measure Hcy in the
subjects. A promising direction for further study is to investigate
clinically to what extent is hyperhomocysteinemia is dependent
on cysteine-block. We thus believe the reinterpretation of
the physiology of vitamin B12 deficiency that accounts for
cysteine-block has several implications for clinical studies and
drug discovery.

Finally, we comment on the interrelatedness of vegetarianism,
vitamin B12 deficiency and diabetes. Had poor vitamin B12 levels
been the reason for susceptibility to diabetes, we would have
expected GSH levels to be poor in diabetic patients with vitamin
B12 deficiency. However, both experimental data and modeling
belie this: GSH is rather unaffected by vitamin B12 levels. Here
it is also useful to note that vegetarianism, and any concomitant
vitamin B12 deficiency, have presumably been around for several
centuries in the Indian subcontinent, while the growth of diabetes
is relatively recent in the last few decades. This is thus additional
circumstantial evidence that while vitamin B12 deficiency is
strongly associated with vegetarianism, neither is likely to be the
major reason for the increased incidence of diabetes. On the other
hand, our results could be important to the pharmacology of
vitamin B12 supplementation, and its interaction with cellular
antioxidant defense pathways.
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GLOSSARY

The complete names of the enzymes and variables indicated by
abbreviations in this paper are as follows:

Enzyme names, their acronyms and Enzyme Commission (EC) numbers.

MAT1 Methionine adenosyl transferase I EC 2.5.1.6

MAT3 Methionine adenosyl transferase III EC 2.5.1.6 (iso-enzyme of

MAT1)

GNMT Glycine N-methyltransferase EC 2.1.1.20

DNMT DNA-methyltransferase 2.1.1.37

SAAH S-adenosylhomocysteine hydrolase 3.3.1.1

MS Methionine synthase 2.1.1.13

BHMT Betaine-homocysteine methyltransferase 2.1.1.5

CBS Cystathione β-synthase 4.2.1.22

Variable names and acronyms.

Met Methionine

SAM S-adenosylmethionine

SAH S-adenosylhomocysteine

Hcy Homocysteine

cyt Cystathionine

GSH Glutathione

c5mf Cytosolic 5-methyletetrahydrofolate
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