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probing and driving of spin and 
charge states in double quantum 
dot under the quench
N. s. Maslova1, p. I. Arseyev2,3 & V. N. Mantsevich4

We have analyzed theoretically quenched dynamics of correlated double quantum dot (DQD) due to the 
switching “on” and “off” coupling to reservoirs. The possibility for controllable manipulation of charge 
and spin states in the double quantum dot was revealed and discussed. the proposed experimental 
scheme allows to prepare in DQD maximally entangled pure triplet state and to drive it to another 
entangled singlet state by tuning both applied bias and gate voltage. It was also demonstrated that the 
symmetry properties of the total system (double quantum dot coupled to electron reservoirs) allow to 
resolve the initially prepared two-electron states by detecting non-stationary spin-polarized currents 
flowing in both reservoirs and controlling the residual charge.

Recently the potential of quantum information processing and quantum computation results in numerous pro-
posals of specific material systems for creation and manipulation under spin and charged states in solids1,2. One 
of the key problems in this area is a development of efficient methods of preparation and detection of many 
electron states with different spin value and orientation3–9. Such states are considered to play an important role 
in modern nanoelectronic devices, for example, spin pumps10–13 and turnstiles14,15, spin interference devices16, 
quantum dot spin cellular automata17–19 and devices for the qubit information20,21. Among the most promising 
candidates for preparation of several electron states with different spin configurations are coupled quantum dots 
(QDs) - “artificial molecules”. The possibility of QDs integration in a small size quantum circuits deals with careful 
analysis of relaxation processes and non-stationary effects influence on the electron transport through the dots 
system22–31. Moreover, electronic transport in such systems is strongly influenced by the inter-particle interac-
tion (Coulomb correlations, electron-phonon interaction, the ratio between the QDs coupling and interaction 
with the reservoir)32–35. Electron transport peculiarities through nanoscale systems also depend on the system 
symmetry properties, geometry of the experimental setup and the way of switching to reservoir36,37. As it was 
shown in36,37, spatial symmetry strongly affects the current properties both in stationary and non-stationary cases. 
Correct interpretation of quantum effects in nanoscale systems provides an opportunity to use them as a basis for 
high speed electronic and logic devices38,39. Consequently, the problem of charge and spin kinetics in correlated 
low-dimensional systems due to the coupling with reservoir is really vital. For proper treatment of such states, 
non-stationary currents flowing through QDs systems should be analyzed40. Moreover, non-stationary charac-
teristics provide more information about the properties of nanoscale systems comparing to the stationary ones.

Recently a possible physical implementation of parity measurements for electron spins in quantum dots 
was proposed41–43. Proposed schemes should enable free-qubit measurement based quantum computation. 
Unfortunately detailed analysis of charge and spin states kinetics and controllable switching between different 
charge and spin configurations in the correlated quantum dots systems has not been performed up to now.

In the present paper we propose a detailed theoretical analysis of the correlated double quantum dot - elec-
tronic reservoirs system controllable transfer through intermediate charge and spin configurations from initially 
prepared (entangled or un-entangled) to final state. Experimental scheme which allows to prepare maximally 
entangled pure triplet state T0 and to drive the system to another entangled singlet state S0 by applied bias and 
gate voltage tuning is discussed. It is demonstrated that the symmetry properties of the total system (double 
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quantum dot - electronic reservoirs) allow to resolve the initially prepared two-electron states by detection of 
non-stationary spin-polarized currents in both reservoirs and control under the residual charge.

theoretical Model
We consider correlated lateral double quantum dot (DQD) coupled to the electron reservoirs (leads) by tunnel 
barriers (see Fig. 1). The transmission of each tunnel barrier is controlled individually by the voltages on gates g1 
and g2. Strong interdot coupling and weak coupling with the leads occurs. We will not consider vertical double 
quantum dot structure as in this case characteristics of tunnel barriers are determined by the growth procedure 
and, consequently, could not be tuned in experiment. The Hamiltonian ĤD, describing interacting quantum dots 
reads
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where εl (l = 1, 2) are the spin-degenerate single-electron energy levels and Ul is the on-site Coulomb repulsion 
for the quantum dots double occupation. Creation/annihilation of an electron with spin σ = ±1 within the dot is 
denoted by operators σ σ

+ˆ ˆa a/l l  and σn̂ll  is the corresponding occupation number operator. Coupling between the 
dots is described by tunneling transfer amplitude T which is considered to be independent on momentum and 
spin.

Reservoirs (leads) are modeled by the Hamiltonian:
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where operator σ σ
+ˆ ˆa a/k p k p( ) ( )  creates/annihilates an electron with spin σ and momentum k(p) in the lead. Coupling 

between the dots and reservoir (lead) I is described by the Hamiltonian:

∑= +
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σ σ σ σ
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and interaction with the reservoir (lead) II is given by the Hamiltonian:

∑= + .
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σ σ σ σ
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Tunneling transfer amplitudes between continuous spectrum states in the leads and double quantum dot 
states TDLi

 (i = I, II) are independent on momentum and spin. When coupling between QDs exceeds the value of 

Figure 1. Sketch of the scheme applicable for spin configurations tuning in the correlated double quantum dot 
(dots are marked by the numbers 1 and 2) localized between the macroscopic leads (reservoirs) I and II. Lead 
I is symmetrically coupled to the quantum dots system, contrary lead II is coupled directly to only one of the 
dots. Tunneling transitions between the double quantum dot and the leads could be controlled by means of gate 
voltages Vg1(2) on gates g1 and g2 and bias voltages eV1(2), which are applied directly to the leads. Single electron 
states with energies εS(a) could be excited by means of external laser pulse with frequency ωext.
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interaction with the reservoirs, one could use the basis of exact eigenfunctions and eigenvalues of coupled QDs 
without interaction with the leads. In this case all energies of single- and multi-electron states are well known.

Two single electron states basis functions |0↑〉|00〉 and |00〉|0↑〉 correspond to the presence of a single electron 
with a given spin in each quantum dot. Single electron states wave function reads

ψ μ ν= ⋅ ↑ + ⋅ ↑σ 0 00 00 0 , (5)i i i

where coefficients μi and νi are the eigenvectors of the Hamiltonian (1) matrix in the introduced single electron 
basis. Here index i = S, a and the following ratios between the wave function coefficients occur: for the S-state 
μi = νi and for the a-state μi = −νi. For each spin σ = +, − one could define single electron states as S± and a± 
correspondingly. S± are spatially symmetric single electron states with a given spin direction and a± correspond 
to the spatially asymmetric single electron states.

Six two electron states could exist in the DQD system. Among basis functions one could select two functions 
for the states with the same spin of electrons in each dot T+ = |↑0〉|↑0〉 and T− = |↓0〉|↓0〉. States T+ and T− could 
be formed only by electrons localized in the different dots. Four basis functions for two electron states with the 
opposite spins are |↑↓〉|00〉; |00〉|↑↓〉; |↓0〉|0↑〉; |0↑〉|↓0〉. Basis functions |↑↓〉|00〉; |00〉|↑↓〉 correspond to electrons 
localized in the same quantum dot - the first one or the second one and functions |↓0〉|0↑〉; |0↑〉|↓0〉 describe 
electrons localized in different dots. Two electron wave function for the state with opposite spins has the form:

ψ α β γ δ= ⋅ ↑↓ + ⋅ ↓ ↑ + ⋅ ↑ ↓ + ⋅ ↑↓σ σ− 00 0 0 0 0 00 , (6)j j j j j

where coefficients αj, βj, γj, δj are the eigenvectors of the Hamiltonian (1) matrix in the introduced basis for the 
opposite spin two electron states. These are low energy singlet S0 and triplet T0 states and excited singlet (S0*) and 
triplet states (T0*).

Two three electron states basis functions are |↑↓〉|↑0〉 and |↑0〉|↑↓〉. These functions correspond to the one 
dot fully occupied by two electrons with opposite spins and only single electron with a given spin in another dot. 
Corresponding wave function could be written as:

ψ = ⋅ ↑↓ ↑ + ⋅ ↑ ↑↓

= ±

σσ σ− p q
m

0 0
1, (7)

m m m

where coefficients pm, qm are determined by the eigenvectors of the Hamiltonian (1) matrix written in the intro-
duced basis for three electron states.

Finally, single four-electron state exists in the system (both quantum dots are fully occupied) with the wave 
function

ψ = ↑↓ ↑↓ . (8)n

Kinetics of double quantum dot system could be analyzed by means of the pseudo-particles formalism44,45, 
which involves pseudo-particles for each eigenstate of the system. This directly means that the electron operator 

σ
+âl  (l = 1, 2) is a combination of pseudo-particle operators:
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where σ σ

+ˆ ˆf f( ) and ψ ψσ σ
+ˆ ˆ( ) are pseudo-fermion creation (annihilation) operators for electron states with one and 

three electrons correspondingly. 
+ˆ ˆb b( ), 

σ σ+ˆ ˆd d( ) and ϕ ϕ+ˆ ˆ( ) are slave boson operators, corresponding to states 
without electrons, with two electrons or four electrons. Operators ψ σ−

+
m̂  describe a system configuration with 

three electrons. Quantities σXi
l, σ σ−Y ji

l, σσYi
l, σσ σ−Zmj

l, σ σ σ− −Zm
l and Πσ σ σ− −

m
l are matrix elements of the creation 

operators σ
+âl  between the states with n and n + 1 electrons13.

Such representation requires the constraint on the possible physical states of the system

∑ ∑ ∑+ + + + = .
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There exists another well known method to analyze the properties of atomic-size devices based on 
Hubbard operators, which was applied to investigate electron transport through correlated QDs46,47. However, 
pseudo-particle approach seems to be more convenient in some cases as it allows to generalyze Keldysh diagram 
technique with full account of constraint on the pseudo-particle total occupation48. The rules for constructing 
diagrams for Hubbard operators seems more cumbersome due to the non-trivial commutation relations for these 
operators.

Coulomb interaction leads to the presence of a gap between the excited double-occupied electron states as well 
as three- and four-particle states and single- and low energy two-electron states. Consequently, all terms contain-
ing operators ϕ+ˆ  and ψ σ−

+
m̂  in expressions (8 and 9) could be omitted. Equations for the pseudo-particle occupa-

tion numbers σni , σ σ−nj , σσnj  and nb could be derived by averaging equations of motion for the operators and by 
decoupling the electrons occupation numbers in the double quantum dot system from the reservoir occupation 
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numbers49,50. So, considering the constraint on the possible physical states, the following non-stationary system 
of equations for the pseudo-particle occupation numbers could be written:
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In the case of symmetric coupling between QDs system and the reservoir (lead) I kinetic coefficients are
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In the situation when coupling with the reservoir (lead) II occurs (reservoir II is coupled only with QD 2):
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where index i = a, s (asymmetric, symmetric single electron state) and the relaxation rate γ πν= TI II DLI II( ) 0 ( )
2  (ν0 is 

the electron density of states in the reservoir). Functions Φ σ−k
jiX  and Φ σk

iX  depend on reservoir properties and have 
the form:

∫

∫

π
ε ε

ε ε ε ε

π
ε ε

ε ε ε ε

Φ = ⋅ ×









 − + −

−
− − −











Φ = ⋅ ×








 + −

−
− −










σ
σ

σσ λ σσ λ

σ
σ

λ λ

−
′ ′

σ σ σ σ− −i d f
E E

i d f

1
2

( ) 1 1 ,

1
2

( ) 1 1

k
jiX

k k
X

k

j i
i

k j i
i

k

k
iX

k k
X

k

i
i

k i
i

k

2 2

2 2

ji
X

ji
X

i
X

i
X

where X = I, II and εσf ( )k
X

k  is the Fermi distribution function of electrons in the reservoirs (leads). The system of 
kinetic equations (11) should be solved with the initial conditions for each reservoir pseudo-particle occupation 
number. For symmetric coupling to the reservoir I (λ = 0a

I ), system of equations (11) could be solved as two 
independent systems of equations. One of them contains equations for the occupation numbers nT 0 and ±na  and 
another one describes dynamics of the occupation numbers ±nT , nS0, ±nS  and nb. It is also reasonable to group the 
initial conditions for each system and determine them as M(0) and L(0). Due to the constraint on the possible 
physical states one has M(0) + L(0) = 1. Consequently, the corresponding initial conditions are

= +
= + + + .

±

± ±

M n n
L n n n n

(0) (0) 2 (0),
(0) 2 (0) (0) 2 (0) (0) (14)

T a

T S S b

0

0

In the case of identical QDs and initial two-electron state (which can be also a mixed state), the pseudo-particle 
occupation numbers time evolution could be obtained from Eq. (11):

= + − ⋅ λ− ξn t n n n e( ) [ (0) ] , (15)i i
st

i i
st tI

where i = T0, S0, a±, S±, T±, b and ξ = T0 for i = T0, a±. Parameter ξ = S0 for i = S0, S±, T±, b.
Relaxation rate

λ γ= ⋅





−

Φ 




σ− I4 1

2 (16)
T
I

I
k
T a

0

0

determines time evolution of occupation numbers in the two electron triplet state T0 and asymmetric single 
electron state a. Relaxation rate
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λ γ α β= ⋅ | + | ⋅
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describes time evolution of occupation numbers in the two electron singlet state S0. Stationary values of partial 
pseudo-particles occupation numbers are:
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where functions Φ σ−k
ji  and Φ σk

i  in Eqs (18–19) correspond to the reservoir (lead) I.
The regime of weak coupling between double quantum dot system and reservoirs ε ε

γ

| − |
( )1S a F( )  and par-

ticular position of the Fermi level in the lead I between the single-electron states with energies (εS < EF and 
εa > EF) means that the values of the reservoir functions Φ σk

S  and Φ σ−k
T a0

 are very close to unity, while the values of 
the functions Φ σ−

± ±

k
T S , Φ σk

a  asymptotically approach to zero (see Eq. 14). The stationary state pseudo-particle occu-
pation numbers are determined by the reservoir occupation functions Φ σ−k

S S0
 and Φk

T a0
, which depend on the 

energies ε−ES S0  and ε−ET a0  correspondingly. So, the triplet state T0 doesn’t decay for any value of Coulomb 
interaction, as the decay process is governed by the function Φ σ−k

T a0
, which is equal to unity. For condition 

ε ε− < < −±E E ES S F T T S( )0 0  and small relaxation rate γI occupation numbers nS0 could be also close to unity. 
The situation differs when the Fermi level lies far below the single electron states εS(a). Then, stationary occupation 
of the triplet state T0 turns to zero [see Eqs (18–19)] and the stationary occupation of single electron states ±n

a
st  

turns to 1
2

. So, the residual charge e remains in the quantum dots system.
This situation changes when only one of the quantum dots (2) is coupled to the reservoir II. In this case 

sequential coupling of QDs system to reservoir occurs. Consequently, there are no symmetry governed selection 
rules for electron transitions from localized states in the QDs system to the reservoir II. So, for the Fermi level sit-
uated far below all the transfer energies between the QDs states with n and n ± 1 electrons (reservoir is “empty”) 
all the stationary values of the pseudo-particle occupation numbers except nb turns to zero, nb turns to unity.

Main Results and Discussion
Controllable manipulation of electron states in the correlated double quantum dots. We would 
like to analyzed the situation when reservoir I is symmetrically coupled to the double quantum dot and the res-
ervoir II is interacting only with the dot 2. DQD is separated from the leads by potential barriers whose heights 
could be varied via gate electrodes. There is no need to control the barriers heights with high precision, the only 
need is to switch “on” or “off ” tunneling between the DQD and the reservoirs. Results, obtained in the previous 
section open a possibility to propose the scheme for the controllable spin and charge manipulation in the cor-
related DQD by means of applied bias voltage and gate voltage changing. On the first stage interaction between 
the dots and the reservoirs is switched “off ”. Strong coupling between the dots results in the quantum mechanical 
coupling between the electron states in the dots and in this case single electron states energies are

ε
ε ε ε ε

=
+

±
−

+ .T
2

( )
4 (20)a s( )

1 2 1 2
2

2

Single electron state with the energy εa should be initially excited, for example, by the external laser pulse. The 
symmetric coupling to the reservoir I is switched “on” at particular time moment by lowering the potential barrier 
by means of the gate voltage Vg1. Simultaneously the gate voltage Vg2 has the value which uncouples quantum dots 
from the reservoir II. Tuning bias voltage applied to the reservoir I one could drive the position of the reservoir 
Fermi level. If the reservoir I Fermi level EF is localized between the single electron energy states εS and εa filling 
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of the triplet state T0 becomes close to unity (see Fig. 2). Further tunneling between the reservoir I and DQD is 
switched “off ” by means of the gate voltage Vg1 and interaction with the “empty” reservoir II is switched “on” by 
means of the tunnel barrier lowering by changing the gate voltage Vg2 (filling of the reservoirs can be tuned by 
applied bias values eVi). It means that the occupation of the triplet state T0 turns to zero and all other electron 
states become empty. So, in the pseudo particle representation the only occupied stationary state is nb = 1. The last 
step of the scheme deals with switching “off ” interaction with the reservoir II by increasing the barrier by means 
of the gate voltage Vg2 and switching “on” interaction with the reservoir I by means of the gate voltage Vg1. This 
could result in formation of the occupied singlet S0 state for particular value of the applied bias eV1 (see Fig. 3). 
Filling of the S± states occurs due to the energies ε ±S  localization below the Fermi level of the lead I (ε <± ES F1

). 
The fulfillment of this condition is controlled by the bias voltage eV1. Singlet S0 state fills due to the fulfillment of 
the following relation between the energies in the system: ε− <E ES S F0

1
. This ratio is valid if ε + − <T ET

U F0
l

2

1
. 

So, occupation of singlet states S0 and S± increases simultaneously, but occupation of S0 state usually exceeds 
occupation of S± states. The triplet states T± occupation doesn’t increase because the difference between the ener-
gies of the triplet states T± and singlet states S± exceeds the value of Fermi energy ( − >± ±E E ET S F1

) and there 
are no electrons with proper energies in the reservoir.

We would like to mention that the triplet states T0, T± do not fill during the system time evolution and the 
singlet state S0 reveals growth of the occupation because for the chosen value of bias voltage in the leads (see 
Fig. 4) the following relations between the energies in the system occur: ε− >±E ET T S F,0

1
 and ε− <E ES S F0

1
. 

This relations mean the absence of conduction electrons in the lead I with the energies close to ε−±ET T S,0 ; con-
trary there exist electrons with energies in the vicinity of ε−ES S0  in the lead I. Conduction electrons states with 
the energies ε−±ET S are nearly empty as Fermi level is localized between the single electron energy levels εS(a) 
and, consequently, T± states could not be occupied. Triplet state occupation T0 doesn’t increase due to the selec-
tion rules which restrict transitions between singlet S± states and triplet T0 state. Single electron states a± filling 
for the symmetric coupling of DQD with the reservoir is also forbidden by the selection rules. Meanwhile, filling 
of the triplet state T0 is possible only from the single electron a± state.

Figure 2. Time evolution of the triplet state filling nT 0. The parameters are U/T = 6.5, ε1/γ = ε2/γ = −5.0, 
T/γ = 15 and γ = 1. The initial conditions are na = 0.5, = = = .±n n n(0) (0) (0) 0 0S T T0 0 .

Figure 3. Time evolution of partial pseudo particle occupation numbers n t( )S0  (black solid line) and ±n t( )S  (red 
dashed line), which reveals filling of the singlet state. The parameters are U/T = 6.5, ε1/γ = ε2/γ = −5.0, T/γ = 15 
and γ = 1. The initial conditions are nb = 1.0, = = = .±n n n(0) (0) (0) 0 0S T T0 0 .
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The proposed scheme allows to prepare controllable the maximally entangled pure triplet T0 state and to drive 
the system from the T0 state to the another entangled singlet S0 state by applied bias and gate voltage changing. 
One could also follow time evolution of the degree of entanglement by analyzing the behavior of two-electron 
correlation functions51.

Diagnostics of two electron states in the correlated quantum dots. DQD system is a promising 
candidate for the diagnostics of initially prepared two-electron states. As it was shown in Section 1.1 sequential 
combination of symmetric and asymmetric coupling to the leads results in the controllable manipulation of spin 
and charge states. The question of interest is the possibility to probe prepared states. For this goal symmetrical 

a

Figure 4. Scheme of the energy levels illustrating filling of the singlet S0 state.

partially

Figure 5. Sketch of the measurement setup (a)and logic diagram (b), which enable to resolve initial many 
particle electron states with different spin orientation for both “empty” and “partially occupied” reservoirs.
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coupling scheme to two reservoirs is more consistent as it allows to distinguish initially prepared two-electron 
states (T0, T± or S0) by analyzing non-stationary spin-polarized currents in the both reservoirs and controlling 
residual charge in the QDQ. It is convenient to apply symmetric coupling for diagnostics as in this case single 
electron states a± are uncoupled from the reservoir and residual charge could be localized in them. This doesn’t 
happen for symmetric coupling. Diagnostics scheme differs depending on the position of the Fermi levels in the 
reservoirs with respect to the DQD single electron energy levels. Let us distinguish two possible reservoir states: 
“empty” reservoir and “partially occupied” reservoir. “Empty” means that reservoir Fermi level lies well below the 
DQD single electron states. “Partially occupied” reservoir correspond to the situation when Fermi level lies 
between the DQD single electron states εa < EF < εs and ε

γ
| − |

 1E a S( )F

I II( )
. To identify the triplet T± states one 

should also apply oppositely directed magnetic fields to the reservoirs (see Fig. 5).
One should start from the diagnostics of the triplet states T+ and T− as they could be resolved only by the 

measurements of the non-stationary spin-polarized currents in the reservoirs. Procedure for the T+ and T− res-
olution is the same for “empty” and “partially occupied” reservoirs. The absence of non-stationary current in 
the left lead (III = 0) and the presence of non-stationary current in the right lead II means that triplet state T+ 
was an initial one. The opposite situation corresponds to the T− initial state (see logic diagram in the Fig. 5). 
Further diagnostics of the singlet S0 and triplet T0 states could be performed. In addition to the the non-stationary 
currents measurements one should analyze the residual charge. Moreover, measurements procedure differs for 
the “empty” and “partially occupied” reservoirs. For “empty” reservoirs singlet S0 and triplet T0 states could be 
resolved by means of control under residual charge Q just after the registration of the non-stationary current 
pulses (II ≠ 0 and III ≠ 0) in both leads. The absence of the residual charge Q = 0 corresponds to the singlet S0 ini-
tial state. The presence of residual charge Q ≠ 0 means triplet T0 initial state (see logic diagram in the Fig. 5). For 
“partially occupied” reservoirs T0 and S0 states could be identified by simultaneous registration of non-stationary 
spin- polarized currents in the both leads. The absence of currents in the both leads means that the initial state 
was a triplet T0 state which does not decay. The presence of non-stationary spin-polarized currents in the both 
leads corresponds to the initial singlet S0 state (see logic diagram in the Fig. 5).

Conclusion
In the present paper we demonstrated the possibility for controllable manipulation of the spin and charge states in 
the correlated quantum dots coupled to the reservoirs. This possibility is based on the fundamental (symmetry) 
properties of localized two electron states quenched dynamics due to the switching “on” and “off ” coupling to the 
reservoirs. We proposed experimental scheme which allows to prepare maximally entangled pure triplet state T0 
and to drive the system to the another entangled singlet state S0 by applied bias and gate voltage changing. One 
could also follow the degree of entanglement changing during the system time evolution by analyzing the behav-
ior of two-electron correlation functions. Moreover, the symmetry properties of the DQD - electron reservoirs 
system allow to distinguish the initially prepared two-electron state by analyzing non stationary spin polarized 
currents in the both reservoirs and control under residual charge.
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