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Abstract: Artificial intelligence has enabled the automated diagnosis of several cancer types. We
aimed to develop and validate deep learning models that automatically classify cervical intraepithelial
neoplasia (CIN) based on histological images. Microscopic images of CIN3, CIN2, CIN1, and non-
neoplasm were obtained. The performances of two pre-trained convolutional neural network (CNN)
models adopting DenseNet-161 and EfficientNet-B7 architectures were evaluated and compared
with those of pathologists. The dataset comprised 1106 images from 588 patients; images of 10% of
patients were included in the test dataset. The mean accuracies for the four-class classification were
88.5% (95% confidence interval [CI], 86.3–90.6%) by DenseNet-161 and 89.5% (95% CI, 83.3–95.7%) by
EfficientNet-B7, which were similar to human performance (93.2% and 89.7%). The mean per-class
area under the receiver operating characteristic curve values by EfficientNet-B7 were 0.996, 0.990,
0.971, and 0.956 in the non-neoplasm, CIN3, CIN1, and CIN2 groups, respectively. The class activation
map detected the diagnostic area for CIN lesions. In the three-class classification of CIN2 and CIN3
as one group, the mean accuracies of DenseNet-161 and EfficientNet-B7 increased to 91.4% (95% CI,
88.8–94.0%), and 92.6% (95% CI, 90.4–94.9%), respectively. CNN-based deep learning is a promising
tool for diagnosing CIN lesions on digital histological images.

Keywords: cervical intraepithelial neoplasia; histology image; artificial intelligence; deep learning;
convolutional neural network

1. Introduction

In 2018, cervical cancer ranked as the fourth most frequently diagnosed cancer and
the fourth leading cause of cancer-related death in women worldwide [1]. Despite the
decreasing incidence in developed countries due to active screening and vaccination for
human papilloma virus (HPV), its prevalence and mortality are increasing in sub-Saharan
Africa, southeastern Asia, eastern Europe, and South America. Histologically, the most
common type is squamous cell carcinoma, and HPV is the virtually necessary (but not
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sufficient) cause of cervical cancer [1]. For early detection, screening methods, such as
the HPV test, cervical cytology, and colposcopy, are recommended. However, the gold
standard for diagnosing cervical lesions is the microscopic evaluation of histopathology by
a qualified pathologist [2].

Premalignant lesions of the cervix, cervical intraepithelial lesions (CINs) are prolifera-
tions of squamous cells driven by HPV infection, showing maturation abnormalities and/or
viral cytopathic changes that do not extend beyond the basement membrane [3]. CINs are
graded as CIN1, CIN2, and CIN3, according to the extent of abnormal proliferation in the
atypical basal/parabasal-like cells and mitotic activity [3]; in CIN1, atypical proliferation
and mitosis occur up to the lower third of the epithelium along with koilocytotic atypia
with clearly retained features of maturation. CIN2 shows basal/parabasal morphology and
mitotic activity extending into the lower two-thirds of the epithelium, but with maturation
in the uppermost cell layers. CIN3 demonstrates full-thickness basal/parabasal-type atypia
and mitotic activity without maturation in the top-most epithelial layers. Recently, due to
the improved reproducibility and enhanced biological relevance, a two-tier terminology of
low-grade squamous intraepithelial lesion (LSIL), which includes CIN1, and high-grade
squamous intraepithelial lesion (HSIL), which may be subdivided into CIN2 and CIN3 is
preferred in premalignant lesions of the cervix [2]. However, the CIN classification still has
clinical importance. In the natural clinical course, LSIL has a low potential for progression
and a high potential for regression, which it has been conservatively managed [4–6]. In
contrast, HSIL was actively treated for cure due to a higher potential for progression and
a lower potential for regression and the treatment was standardized irrespective of CIN2
and CIN3 [5]. In recent studies, the higher regression rates of CIN2 unlike CIN3 have led to
the adoption of alternative conservative management strategies in women who wish to
preserve fertility [6]. Consequentially, the updated guidelines by the American Society of
Colposcopy and Cervical Pathology (ASCCP) in 2019 strongly recommended to qualify
a histologic HSIL result by CIN2 or CIN3 for epidemiologic and clinical management
purposes [6]. However, pathologists often encounter difficulties in accurately diagnosing
and grading CIN [7]. The effects of inflammation, repair, pregnancy, and atrophy, as well as
the inherent difficulty in distinguishing lesions with a morphologic spectrum, complicate it
and may lead to substantial inter-observer and intra-observer variability [7–9]. The time
pressure, workload, and limited experience of the pathologist may be other hindrances.
With the increase in cervix specimens due to population growth, increased prevalence of
cancers, and longer life spans, these obstacles will likely worsen in the future. In addition,
due to the limited well-trained pathology workforce, the quality of pathology services is
uneven nationwide and worldwide [10]. The use of automatic histology image classification
can alleviate the scarcity in professional resources and heavy workloads.

With the advancement of artificial intelligence (AI), machine learning techniques can
be used as a major ancillary tool for diagnosing tumors in various organs based on the
histological images. However, most recent studies have applied techniques for the detection
and classification of invasive cancers [11–16] rather than intraepithelial or premalignant
lesions. With regard to cervical lesions, some studies have been devoted to the creation of
computer-assisted reading systems for assessing cervical cytology specimens [17,18] and
only a limited number of studies have focused on examining CINs [19–25]. In this study,
we aimed to develop and assess an optimal convolutional neural network (CNN) model
for classification of CINs.

2. Materials and Methods
2.1. Data Collection

Female patients who were scheduled for colposcopic biopsy or conization due to
suspicion of CIN at Kangnam Sacred Heart Hospital between 2015 and 2017 were retro-
spectively enrolled. This study was approved by the Institutional Review Board (IRB)
of Kangnam Sacred Heart Hospital (IRB no. HKS 2018-03-013) and performed in accor-
dance with the Declaration of Helsinki. One experienced pathologist (J-W.K.) reviewed
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the histological slides of tissue sections of the involved patients that were stained with
hematoxylin and eosin (H&E) and p16 antibody (Roche E6H4TM, catalog #725-4713) and
obtained digital microscopic photographs of representative lesions at an objective magni-
fication of 20× using a microscope (Olympus BX51; Melville, NY, USA) equipped with a
digital camera (Olympus DP2). Photographic images were acquired in JPEG format with a
resolution of 2560 × 1920 or 1280 × 960 pixels. Unsuitable blurred or defocused images
were excluded from this study. Three experienced pathologists (J-W.K., M.H., and G-Y. K.)
were independently re-reviewed the digitalized H&E images along with the corresponding
p16 immunohistochemical images. Blinded to the results of other pathologists, accord-
ing to the 2019 World Health Organization (WHO) classification [3] and the 2012 Lower
Anogenital Squamous Terminology (LAST) standardization project [2] the three pathol-
ogists classified the images into four classes: CIN3, CIN2, CIN1, and non-neoplasm. On
H&E images, CIN1 was defined as a proliferation of basal/parabasal-like cells and mitosis
(not atypical) restricted to the lower third of the epithelium along with koilocytotic atypia
within the middle and surface cells. CIN2 was characterized by atypical basaloid cells
and mitotic activity extending into the upper half to upper two-thirds of the epithelium,
but with retained koilocytotic changes or maturation on the surface. CIN3 was defined
as full-thickness basal/parabasal-type atypia and mitotic activity without maturation in
the top-most epithelial layers. To aid in the distinction of CIN2/CIN3 from mimickers of
precancer and CIN1, p16 immunohistochemistry (IHC) was adjunctively used [2,3]. Out
of 1305 H&E images, 199 (15.2%) with any discrepancy were excluded and only images
categorized in the same class by the all three pathologists were involved in this study.
Ultimately, 1106 microscopic images from 588 patients were included: 266, CIN3; 231, CIN2;
266, CIN1; and 343, non-neoplasms (Table 1).

Table 1. Data composition for the first splitting of the training and test datasets.

Whole Dataset Training Set Test Set

Image N Patient N Image N Patient N Image N Patient N

Overall 1106 588 989 542 117 68
CIN 3 266 183 236 165 30 19
CIN 2 231 108 210 97 21 11
CIN 1 266 143 234 129 32 14
Non-
neoplasm 343 250 309 225 34 25

N, numbers; CIN, cervical intraepithelial neoplasia.

2.2. Dataset Construction

From the whole dataset, the test dataset was randomly split three times with a ratio
of 10% to evaluate the performance of the trained CNN models. Random train/test
set splitting was performed for each class using the patient ID as the key to avoid the
simultaneous involvement of the same class image of one patient in both the training and
test datasets. For each three splitting, the training set consisted of 90% of the whole dataset
and was divided into the training dataset proper and the tuning (or validation) dataset,
with a ratio of 80%:10%. Therefore, each CNN model was trained three times independently
using three different split folders.

2.3. Dataset Preprocessing

All images were resized to 640 × 480 pixels reducing the resolution of the whole
images and were normalized for each RGB color channel based on the mean and standard
deviation values of the images in the ImageNet dataset. Data augmentation and histogram
equalization were not performed as these methods did not improve the model performance
in our pilot studies.
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2.4. Deep Learning Model Training

Two CNN architectures were adopted: DenseNet-161 and EfficientNet-B7. The details
of the CNN models are described in previous studies [26,27]. Briefly, DenseNet-161 is
characterized by a dense block that uses the feature maps of the previous layers as the
input of the current layer [26]. EfficientNet is characterized by an MBconv block that
balances the width and depth of the CNN via reinforcement learning [27]. These models
were pre-trained using the ImageNet Large Scale Visual Recognition Challenge dataset and
fine-tuned using the training dataset of this study.

In the first experiment, the CNN models were trained to perform four-class classifica-
tion that classified images into CIN3, CIN2, CIN1, and non-neoplastic lesions. Then, the
CIN2 and CIN3 groups of the whole dataset were merged into one group, representing
HSIL. In the second experiment, the training/test set splitting was re-performed; the CNN
models were trained to perform three-class classification and classified the images into
CIN2–3 and CIN1, which represent LSILs, and non-neoplasms.

The model was trained using the PyTorch platform with categorical cross-entropy
as the loss function. The Adam optimizer was adopted with a β1 value of 0.9 and a β2
value of 0.999. The learning rate was 1 × 10−4, and the batch sizes were 15 and 5 for
DenseNet-161 and EfficientNet-B7, respectively. The number of training epochs was set to
100, and the model with the minimum validation loss was chosen. The hardware platform
was equipped with NVIDIA GeForce GTX 1080ti 6-way graphics processing units, dual
Xeon central processing units, 128 GB RAM, and a customized water-cooling system.

Saliency maps were produced to identify the regions of interest with a gradient-
weighted class activation mapping (Grad-CAM) [28]. Grad-CAM method can highlight
a class-specific local features in the image using gradient information. Overall, there are
three steps to generate a class-specific saliency map. First, it computes the gradient of
the logit for predicted class with respect to the last CNN layer which not only learns
high-level abstract features but also retains spatial information. Then, the gradients are
global-average-pooled to estimate the importance of feature maps in the last layer. Lastly,
along with the importance weights, feature maps are averaged. In order to highlight only
features that actually increase the value of class logit, ReLU function is applied to the
averaged feature map [28]. In this study, an implementation of Grad-CAM for PyTorch-
based models was used (available at: https://github.com/jacobgil/pytorch-grad-cam;
accessed on 10 June 2021).

2.5. Human Performance Evaluation

For the first test dataset, two other experienced human pathologists, who were blinded
to the true labels, independently classified the images, and the performances were evaluated.
Human performances were compared with those of the CNN models.

2.6. Main Outcome Measures and Statistical Methods

The primary outcome was the model performance for four-class classification, while
the secondary outcome was model performance for three-class classification. The per-
formance of the CNN model was evaluated using three different test datasets, and the
performance was estimated using means and 95% confidence intervals (CIs). The per-
formance was evaluated using the diagnostic accuracy and the area under the receiver
operating characteristic (ROC) curve (AUC). For each class, per-class sensitivity, specificity,
positive predictive value, and negative predictive value were also evaluated. Continuous
or categorical variables are expressed as means or percentages with 95% CIs. Statistical
significance was set at p < 0.05.

3. Results

A total of 1106 images from 588 patients were included in this study. The patients’
mean age was 43.0 ± 12.4 years (range: 16–84 years). The patients’ data are presented in
Table 1. Non-neoplastic lesions comprised the majority class (343 cases from 250 patients,

https://github.com/jacobgil/pytorch-grad-cam
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31.0%) in the whole dataset, while CIN2 was the least common type (231 cases, 20.9%). The
test dataset for the human performance evaluation comprised 117 images from 68 patients.

3.1. Four-Class Classification Performance of Deep Learning Models and Human Pathologists

The mean accuracies for the four-class classification (CIN3, CIN2, CIN1, and non-
neoplasm) in the test dataset were 88.5% (95% CI, 86.3–90.6%) by DenseNet-161 and 89.5%
(83.3–95.7%) by EfficientNet-B7, respectively (Table A1). The validation accuracy reached
a plateau within 20 epochs during the model training, as shown in Figure 1. The overall
accuracies for the four-class classification of human pathologists were 93.2% and 89.7%,
respectively. The heatmaps for the confusion matrix of the best-performing models for the
test dataset and human pathologists are presented in Figure 2.

The per-class performances of the deep learning models are presented in Table 2 and
Figure 3 depicts the per-class ROC curves for the best-performing CNN models. For both
CNN architectures, the mean AUC was highest in discriminating non-neoplastic lesions
(0.996 for DenseNet-161 and 0.996 for EfficientNet-B7). For both CNN architectures, the
mean AUC was lowest in discriminating CIN2 lesions, but the individual AUCs remained
high (0.947 for DenseNet-161 and 0.956 for EfficientNet-B7, respectively). In determining
CIN3 lesions, EfficientNet-B7 showed a mean sensitivity of 97.5% (95.4–99.5%) and a mean
specificity of 96.3% (94.1–98.6%). For the CIN1 lesions, EfficientNet-B7 presented a mean
sensitivity of 85.2% (73.3–97.1%) and a mean specificity of 96.3% (95.1–97.6%).
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plateau within 20 epochs during model training.

Table 2. Per-class performances of the deep learning models in the four-class classification.

Model/Class Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 Score AUC (95% CI)

DenseNet-161

CIN3 95.3 (93.7–96.8) 94.4 (93.1–95.6) 85.0 (82.3–87.7) 98.3 (97.8–98.9) 89.8 (88.8–90.8) 0.989 (0.982–0.996)
CIN2 75.2 (67.7–82.8) 94.1 (91.8–96.4) 76.1 (62.3–89.9) 93.8 (92.5–95.0) 75.5 (64.9–86.1) 0.947 (0.932–0.963)
CIN1 82.1 (77.8–86.5) 98.3 (97.4–99.2) 94.2 (92.2–96.2) 94.5 (92.6–96.4) 87.7 (84.5–91.0) 0.979 (0.968–0.990)
Non-neoplasm 95.6 (90.9–100.0) 98.0 (96.3–99.7) 95.0 (91.0–99.0) 98.3 (96.6–100.0) 95.2 (92.0–98.4) 0.996 (0.991–1.000)

EfficientNet-B7

CIN3 97.5 (95.4–99.5) 96.3 (94.1–98.6) 90.0 (84.2–95.8) 99.1 (98.4–99.8) 93.6 (89.6–97.5) 0.990 (0.981–0.999)
CIN2 73.0 (62.2–83.9) 96.7 (93.7–99.7) 86.8 (75.2–98.4) 93.6 (92.3–94.8) 79.1 (69.1–89.1) 0.956 (0.946–0.967)
CIN1 85.2 (73.3–97.1) 96.3 (95.1–97.6) 88.5 (88.2–88.8) 95.5 (91.3–99.8) 86.5 (80.4–92.6) 0.971 (0.950–0.993)
Non-neoplasm 95.6 (90.9–100.0) 96.3 (92.2–100.0) 92.3 (84.8–99.8) 98.3 (96.6–100.0) 93.8 (88.8–98.8) 0.996 (0.992–0.999)

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating character-
istic curve; CI, confidence interval.
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Figure 2. Heatmaps for confusion matrix of the best-performing CNN models and human pathol-
ogists in the four-class classification. There were three false-negative cases in the best-performing
DenseNet-161 (a) model, there was no false-negative or false-positive case with the best-performing
EfficientNet-B7 (b). Pathologist 1 (c) classified CIN2 with higher sensitivity than pathologist 2 (d).
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Figure 3. Per-class ROC curves for four-class classification the best-performing CNN models. For
DenseNet-161 (a) and EfficientNet-B7 (b) with best performance, AUC was higher in discriminating
non-neoplasm and CIN3 rather than in classifying CIN2 and CIN1.

3.2. Histologic Review of Misclassified Cases in Four-Class Classification Using Best-Performing
CNN Models

No false-positive cases were included in the best-performing CNN models, both
DenseNet-161 and EfficientNet-B7 (Figure 2). False-negative cases were not observed
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by EfficientNet-B7; among 117 test cases, three CIN1s (2.6%) were classified as false-
negative cases by DenseNet-161. After a histological review, it appeared that the scarcity of
characteristic koilocytotic cells might have contributed to the misclassification (Figure A1a).

Eight (9.2%) out of 87 CIN cases were unsuccessfully graded by DenseNet-161; one
CIN3 (1.1%) and two CIN2 (2.3%) cases were downgraded as CIN1 and CIN2, respectively,
while one CIN1 (1.1%) and four CIN2 cases (4.6%) were upgraded as CIN2 and CIN3,
respectively (Figure 2a). EfficientNet-B7 misgraded the five CIN2 cases (5.7%): four cases
were classified as CIN1, while one case was classified as CIN3 (Figure 2b). None of the
CIN1 cases were classified as CIN3, and none of the CIN3 cases were classified as CIN1. On
histological review, histology of CIN3 cases downgraded as CIN2 was not sufficient to be
classified as carcinoma in situ. The cases showed basal/parabasal-type atypia throughout
the full-thickness of the epithelium (Figure A1b). CIN2 cases downgraded as CIN1 had
atypia extending to the lower half of the epithelium with koilocytotic changes in the upper
half and maturation in the uppermost layers (Figure A1c). The CIN1 case upgraded as
CIN2 showed disoriented epithelium (Figure A1d). One of the CIN2 cases upgraded as
CIN3 showed atrophy (Figure A1f).

3.3. Three-Class Classification Performance of Deep Learning Models and Human Pathologists

In the three-class classification discriminating the images into CIN2–3, CIN1, and non-
neoplasm, the mean accuracies in the test dataset increased up to 91.4% (95% CI, 88.8–94.0%)
by DenseNet-161 and 92.6% (95% CI, 90.4–94.9%) by EfficientNet-B7. The overall accuracies
for the three-class classification of human pathologists were 95.7% and 92.3%, respectively.
Figure 4 shows the heatmaps of the confusion matrix of the best-performing models for the
test dataset and human pathologists.

The per-class performances of the deep learning models in the three-class classification
are listed in Table 3. The mean AUCs for non-neoplastic lesions were 0.996 (95% CI,
0.992–0.999) for DenseNet-161 and 0.993 (95% CI, 0.985–1.000) for EfficientNet-B7. The
mean AUCs for CIN2–3 and CIN1 were 0.981 and 0.974 for DenseNet-161 and 0.982 and
0.979 for EfficientNet-B7. In terms of determining CIN2–3 lesions, EfficientNet-B7 showed
a mean sensitivity of 94.8% (92.7–96.7%) and a mean specificity of 93.4% (90.1–96.8%).
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Table 3. Per-class performances of the deep learning models in the three-class classification.

Model/Class Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 Score AUC (95% CI)

DenseNet-161

CIN2-3 92.0 (86.9–97.1) 92.4 (85.3–99.6) 92.5 (87.0–98.0) 93.4 (90.2–96.7) 92.1 (88.9–95.3) 0.981 (0.973–0.989)
CIN1 80.9 (70.9–90.8) 96.0 (94.2–97.7) 87.0 (84.0–89.9) 94.5 (93.3–95.6) 83.5 (77.6–89.4) 0.974 (0.968–0.980)
Non-neoplasm 97.8 (94.2–100.0) 97.5 (95.6–99.5) 94.4 (90.0–98.9) 99.1 (97.6–100.0) 95.9 (95.5–96.4) 0.996 (0.992–0.999)

EfficientNet-B7

CIN2-3 94.8 (92.8–96.7) 93.4 (90.1–96.8) 92.9 (90.3–95.6) 95.1 (92.3–97.9) 93.8 (91.7–96.0) 0.982 (0.971–0.993)
CIN1 86.1 (82.4–89.7) 96.4 (95.2–97.5) 87.6 (81.2–94.0) 95.6 (94.3–96.9) 86.8 (82.1–91.4) 0.979 (0.972–0.985)
Non-neoplasm 94.7 (92.8–96.6) 98.4 (97.0–99.7) 96.0 (92.8–99.2) 97.8 (97.1–98.6) 95.3 (94.0–96.6) 0.993 (0.985–1.000)

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating character-
istic curve; CI, confidence interval.

3.4. Analysis of Grad-CAM Images by CNN Model

Figure 5 shows the representative Grad-CAM images of non-neoplasms, CIN1, CIN2,
and CIN3. Grad-CAM images were reviewed by a pathologist, and the region of interest of
the deep learning model agreed with that of humans. The CNN model successfully detected
squamous epithelium and recognized images from the transformation zone and exocervix,
atrophic cervix, and cervicitis with erosion as non-neoplasms. In Grad-CAM images, CIN1,
CIN2, and CIN3 characterized by presence of koilocytotic cells or hyperchromatic atypical
cells with a high nuclear/cytoplasmic ratio and increased mitotic activity were depicted
as highlighted areas. According to the distribution of abnormal cells, different layers of
squamous epithelium were highlighted.
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4. Discussion 

Figure 5. Grad-CAM images by EfficientNet-B7. Normal squamous epithelium was highlighted in
Grad-CAM images (a–d). Images from cervix interpreted as non-neoplasm by the EfficientNet-B7
include exocervix (a), metaplastic muco-sa from transformation zone (b), cervicitis and erosion (c)
and atrophic mucosa (d). In CIN1, layers with koilocytotic cells were mainly highlighted (e). The
highlighted areas extended to the upper two-third of the epithelium in CIN2 (f) and full-thickness of
the epithelium in CIN3 (g). Normal endocervical glands ((g), black arrows) were not highlighted.

4. Discussion

In recent years, AI has been used in the field of pathologic image diagnosis, and
many studies have shown promising results in detecting and diagnosing cancers in a
variety of organs, including the stomach [29], colon [15], breast [30], prostate [16], head
and neck [13], brain [14], and lungs [31]. As for cervical cancer, with the advancement
in the management of preinvasive lesions, the increasing diagnostic workload of cervical
biopsy calls for the development of high-performance algorithms with high sensitivity
and specificity. Practically, many pathologists experienced more difficulty and burden in
accurately classifying preinvasive cervical lesions than in distinguishing between invasive
and non-neoplastic condition [7]. Therefore, we focused on developing an optimized CNN
system for CIN grading.

For the classification of premalignant lesions of the cervix, LSIL and HSIL have been
the preferred terminology in both tissue and cytology specimens due to the improved
reproducibility and biological relevance of the two-tier system [2]. A recent systemic
review and meta-analysis of studies from 1973 to 2016 [32] indicated that among CIN2
managed conservatively, 50% regressed, 32% sustained, and 18% progressed to CIN3. The
regression rate of CIN2 was higher (60%) in particular in women younger than 30 years
and observation has been acceptable for CIN2 in the women [6,32]. Consequently, the
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subdivision of HSIL into CIN2 and CIN3 is essential for making treatment decision for
young women. Hence, we investigated the four-class classification (CIN3, CIN2, CIN1, and
non-neoplasm) performance as well as the three-class classification (CIN2-3, CIN1, and
non-neoplasm) performance.

Two CNN architectures, DenseNet-161 and EfficientNet-B7, were adopted in our study.
EfficientNet-B7 is a recently developed heavy model and a state-of-the-art architecture; it
showed better performance than DenseNet-161 [27]. However, DenseNet-161 also showed
excellent performance and presented good cost-effectiveness [26]. In the four-class classi-
fication, the mean accuracies for DenseNet161 and EfficientNet-B were 88.5% and 89.5%,
respectively, and the performance was similar to that of human pathologists (93.2% and
89.7%, respectively). The mean AUC values of both CNN models were considerably high
in all four classes (Table 1). Furthermore, the mean accuracies of both models for three-class
classification were increased to 91.4% and 92.6% by DenseNet-161 and EfficientNet-B7,
respectively, which are almost the same levels as those of human pathologists (95.7% and
92.3%, respectively).

Compared to the four-class classification, the three-class classification had imbalanced
classes due to merging CIN2 and CIN3. The numbers of CIN2/3, CIN1, and non-neoplasm
were 497, 266, and 343 and the CIN2/3:CIN1 ratio was 1.87. Although the ratio of CIN2/3
to CIN1 (or non-neoplasm) increased, the model learned the features of CIN1 and CIN0
and showed high accuracy for the minority classes. In fact, the per-class AUCs for CIN1
and non-neoplasm in EfficientNet reached 0.993 and 0.979, respectively. Consequently,
the mean accuracies of the CNN models for three-class classification were increased than
those for four-class classification. In other similar studies, the imbalanced datasets were
used without a balancing strategy [33,34]. In the light of previous other studies and our
experimental results, we concluded that the imbalance was not a critical issue in our study.
However, in both four-class classification and three-class classification by EfficientNet-B7,
the mean F1 scores of the minority classes, CIN2 and CIN1, respectively, were 79.1 and 86.8,
which were lower than those of the majority classes. Balancing datasets and building large
datasets might increase the F1 scores in the future research.

Through repeated validation and tests of two CNN models, we determined the optimal
image preprocessing conditions (640 × 480 pixels size and normalization of each RGB
color channel in the ImageNet dataset) in which the CNN models can achieve better
performance. The most suitable resolution for deep learning of the histopathological images
is not known yet. Since the preprocessing method for high-resolution and large-scale
histopathological images causing memory limitation can induce important information
loss, it must be handled carefully. Various methods to overcome loss of information
have been reported recently [35]. In the early stage of this study, we tried three different
image resolutions for our four-class classification, and observed that the resolution of
640 × 480 was not inferior to 1280 × 960 and 800 × 600 (data not shown). After the
experiment, we decided to continue our experiments with 640 × 480 image resolution
considering the training and evaluation speed. Since at 640 × 480 image resolution, the deep
learning models showed a similar level to human performance in four-class classification,
we can draw conclusions that the deep learning models perform effectively even after
resizing the CIN images and the resolution of 640 × 480 is appropriate for this study. In
addition, we found that data augmentation and histogram equalization did not improve
the model performance. To overcome a small number of training datasets in CNN, image
augmentation has been frequently used. In our pilot experiments applied horizontal-
flip and contrast limited adaptive histogram equalization (data not shown), the model
performance did not significantly change depending on the augmentation methods. Thus,
we concluded that the augmentation methods are not likely to boost the model performance
in this study.

Approximately 90% of CIN1 regress without treatment, and less than 1% progress to
invasive cancer, whereas the risk of progression of untreated CIN2 and CIN3 to cancer is
estimated to be 0.5–1% per year [4]. Notably, CIN3 is a direct precursor of invasive cervical
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cancer, and active treatment is recommended. By contrast, observation is the preferred
approach for CIN1. Therefore, it is much more critical to quickly determine CIN1 or CIN3
than CIN2 or CIN3. Despite some misclassification of CIN2, EfficientNet-B7 perfectly
discriminated CIN1 from CIN3 based on the four-class classification (Figure 2), and the
results demonstrated its clinical applicability.

We observed that the CNN models have a weakness in classifying CIN2 (75.2% and
73.0% sensitivities for DenseNet-161 and EfficientNet-B7, respectively). Considering that
it is often challenging for pathologists to distinguish CIN2 from CIN1 and CIN3 and
inter-observer, agreement is notoriously poor at this interface, even among experts [4], the
performance of these CNN models is almost similar to that of human pathologists even in
this respect. Moreover, the difficulty in classifying CIN2 can be attributed to its inherent
nature, which is intermediate in the morphological spectrum of CIN. Due to the ambiguity
of CIN2 diagnosis based on the H&E morphology, the LAST Project suggested that the
addition of p16 immunohistochemical stain significantly improves the reliability of CIN2
diagnosis and advised the use of p16 staining to confirm the presence of a high-grade lesion
when CIN2 is diagnosed based on H&E slide [2]. In future studies, analyzing H&E images
along with the images of p16 immunohistochemical staining would be helpful to increase
diagnostic accuracy of CNN models.

For determining the CIN1 lesions, the mean sensitivities were 82.1% and 85.2% by
DenseNet-161 and EfficientNet-B7, respectively, which were lower than those of CIN3 and
non-neoplasms. On histologic review, the scarcity of characteristic koilocytotic cells in CIN1,
severe inflammation, and metaplastic changes might have contributed to the inaccuracy of
CNN classification. For more precise detection of koilocytotic cells, the CNN model needs
to be improved. To reduce the false-positive rate, more variable non-neoplastic lesions,
such as chronic cervicitis, metaplastic mucosa, and atrophy, should be included in the study
set, and a repeat validation would be helpful.

Automated screening machines have been developed for analyzing cervical cytology
smears, and a few FDA-approved automated primary screening device are available [17].
However, it is more difficult to develop an automated tool for cervical tissue histology
due to the complexity of the patterns observed and the structural associations between
different tissue components. Keenan et al. [21] developed a machine vision system for
histological grading of CIN using the KS400 macro programming language. It was a scoring
system that analyzes geometric data, and 62.7% of the CIN cases with captured images
were correctly classified [21]. Several previous studies have used multiclass support vector
machines and gray-level co-occurrence matrices to analyze whole slide images (WSIs) or
selected images [22,25,36]. Despite some promising results, the small data size of less than
100 cases with insufficiently validated or curated images and the extremely complicated
methodology limited the applicability of the study results. Huang et al. [23] proposed a
method based on the least absolute shrinkage and selection operator and ensemble learning
support vector machine. They showed that the accuracy of normal-cancer classification
was high (99.64%), but the accuracy of the LSIL-HSIL classification was 76.34%. A recent
study that classified cervical tissue pathological images based on fusing deep convolution
features has been published [37]. The researchers analyzed the dataset comprising small-
sized images cropped from 468 WSIs, including those of normal tissues, LSIL, HSIL, and
cancer. Resnet50v2 and DenseNet121(C5) showed excellent performance, with an average
classification accuracy of 95.33%.

Pathologic classification is an image-based method, and CNN is an optimized AI tool
for image learning. Our study showed that CNN is a robust instrument for pathologic
classification, but some things must be considered. For CNN to be developed and to
work properly, collecting a large amount of accurate data is of utmost importance. Since
CNN produces results very faithfully in the learned input, the quality of the CNN output
absolutely depends on the quality of the input data. In order to develop a clinically relevant
CNN model for pathologic diagnosis, a superb dataset from expert pathologists must
be constructed. Recently, Meng et al. provided a public cervical histopathology dataset
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for computer-aided diagnosis, called MTCHI [24]. Pathologic diagnosis is sometimes
equivocal and might be challenging to perform in some lesions in the gray zone or lesions
with reactive changes. Therefore, pathologists should continue to improve and make
an objective pathological diagnosis. In addition, high-quality H&E slide images is the
need for using AI to perform a pathologic diagnosis. Although staining and mounting
are automated, preparing pathology slides, sectioning, and embedding are still manually
performed. Artifacts in the production process, such as tissue overlapping, tangential
embedding, and poor sectioning, hinder the acquisition of focused images and cause AI to
make diagnostic errors.

We aimed to develop an artificial technique for classifying CIN from the WSI of
cervical biopsy, but some practical difficulties were observed. In the WSIs of tissues,
grading of intraepithelial neoplasia or dysplasia is much more complicated than finding
lesions or cancer. Since CIN is a morphological spectrum, cervical biopsy specimens
show large differences in disease degrees and mix of lesions. This makes it difficult for
pathologists to precisely annotate according to the CIN grade in small biopsies. Compared
with other tissues such as the breast, colon, and stomach, the specimen used for cervical
biopsy are tissue strips or appear irregular in shape and often include a small amount of
epithelium. Moreover, it is easily embedded in a disoriented or tangential manner. These
were obstacles in making a standardized dataset using WSIs suitable for training and
validation of the CNN model. In this study, we built a reliable dataset of CIN provided by
three qualified pathologists and analyzed the CNN performance prior to its application in
WSI. For enabling the future broad application of AI-based pathology in cervical biopsy,
it is essential to build a large-scale multicenter dataset with a standardized protocol. It
is another limitation of our study that there was still a gap between the training and
validation accuracies, although we tried several strategies for image normalization, data
augmentation, and loss function optimization. Novel approaches for these issues might
improve the final model performances in the future.

In conclusion, we built a reliable dataset for CIN classification and showed that
EfficientNet-B7 and DenseNet-161 provided a promising performance in classifying cer-
vical lesions on digital histology images. In terms of accuracy, EfficientNet-B7 had a
functional advantage over DenseNet-161. Grad-CAM images used in the CNN models
located the areas where CIN lesions can be found. Moreover, we realized that the accu-
rate identification and classification of CIN by CNN relies entirely on the standardized
diagnosis of pathologists, and the professional knowledge and analytical experience of
pathologists are the cornerstone of technical advancement. An exquisite AI tool trained
using a well-established and standardized dataset would be helpful in improving the
pathology services worldwide.
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Appendix A

Table A1. Accuracies of deep learning models.

Four-Class Classification Three-Class Classification

DenseNet-161 EfficientNet-b7 DenseNet-161 EfficientNet-b7

Mean accuracy 0.885 0.895 0.914 0.926
95% CI 0.863–0.906 0.833–0.957 0.888–0.940 0.904–949
Test 1 0.906 0.957 0.940 0.949
Test 2 0.873 0.853 0.901 0.919
Test 3 0.875 0.875 0.901 0.911

CI, confidence interval; CI, confidence interval.
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Figure A1. Histology of misclassified cases by CNN models. A case with scarce koilocytotic cells
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epithelium was disoriented (d). CIN2 with koilocytosis (e) and atrophic CIN2 (f) were upgraded
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