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Abstract New therapeutic strategies to reduce sepsis-related mortality are urgently needed, as 
sepsis accounts for one in five deaths worldwide. Since hematopoietic stem and progenitor cells 
(HSPCs) are responsible for producing blood and immune cells, including in response to immu-
nological stress, we explored their potential for treating sepsis. In a mouse model of Group A 
Streptococcus (GAS)-induced sepsis, severe immunological stress was associated with significant 
depletion of bone marrow HSPCs and mortality within approximately 5–7 days. We hypothesized 
that the inflammatory environment of GAS infection drives rapid HSPC differentiation and depletion 
that can be rescued by infusion of donor HSPCs. Indeed, infusion of 10,000 naïve HSPCs into GAS-
infected mice resulted in rapid myelopoiesis and a 50–60% increase in overall survival. Surprisingly, 
mice receiving donor HSPCs displayed a similar pathogen load compared to untreated mice. Flow 
cytometric analysis revealed a significantly increased number of myeloid-derived suppressor cells in 
HSPC-infused mice, which correlated with reduced inflammatory cytokine levels and restored HSPC 
levels. These findings suggest that HSPCs play an essential immunomodulatory role that may trans-
late into new therapeutic strategies for sepsis.

Editor's evaluation
This preclinical study reports on a novel strategy for sepsis. Sepsis induced by Group A Strepto-
coccus (GAS) in mice leads to depletion of bone marrow HSPCs and mortality and infusion of naive 
donor HSPCs lower mortality but has no effect on bacterial burden. This supports that HSPCs infu-
sion might attenuate the detrimental immune response in sepsis warranting further investigation of 
this novel concept.

Introduction
Sepsis accounts for one in five deaths worldwide and is a common final pathway for many disease 
processes such as cancer, diabetes, and cardiovascular disease (Rhee et al., 2019). Sepsis is an inflam-
matory syndrome largely driven by the activation of immune cells by pathogen associated molecular 
patterns (PAMPs) and damage-associated molecular patterns (DAMPs) (van der Poll et al., 2017; 
Deutschman and Tracey, 2014). After recognizing these molecules via pattern recognition receptors, 
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immune cells become activated and produce proinflammatory cytokines, notably interleukins IL-1, 
IL-6, interferons (IFNs), and tumor necrosis factor (TNF) that contribute to fever, vasodilation, and 
multiorgan dysfunction (Deutschman and Tracey, 2014; Yu et al., 2011; Huang et al., 2005; Wang 
et al., 2008). For patients that progress to septic shock, mortality rates remain as high as 40% (Napol-
itano, 2018).

Leukopenia is a feature of severe sepsis that arises from apoptosis of peripheral immune cells and 
is an independent risk factor for death. To counteract the adverse effects of leukopenia, investiga-
tors have used immunotherapies such as GM-CSF (Krebs et al., 2019) or granulocyte infusions in an 
attempt to restore leukocyte numbers and improve survival. These strategies have produced mixed 
results (Estcourt et al., 2016; Li et al., 2019; Mathias et al., 2015). The benefits of granulocyte infu-
sions in cancer patients with fever and neutropenia are limited by the difficulty of obtaining sufficient 
cells and the short-lived nature of those cells (Hidalgo et al., 2019; Robinson and Marks, 2004).

Recent work from our group and others indicates that hematopoietic stem and progenitor cells 
(HSPCs) express surface receptors for cytokines, chemokines, and PAMPs (Karpova et  al., 2017; 
Burberry et al., 2014; Nagai et al., 2006; Schürch et al., 2014; Matatall et al., 2014; Baldridge 
et al., 2011; Pietras et al., 2016; Takizawa et al., 2017) and respond rapidly upon direct and indirect 
stimulation by these signals. HSPCs, the progenitors of all blood and immune cells, are comprised of 
five subgroups of hematopoietic cells: hematopoietic stem cells (HSCs), which have long-term self-
renewal capacity, and four types of multipotent progenitors (MPPs 1–4), which are defined by lower 
self-renewal capacity and myeloid or lymphoid differentiation biases (Wang et al., 2008; Morales-
Mantilla and King, 2018; Chambers et al., 2007; Sun et al., 2014; Rodriguez-Fraticelli et al., 2018; 
Cabezas-Wallscheid et  al., 2014). Immune responses induce HSPCs in the bone marrow (BM) to 
produce effector immune cells via a process called emergency hematopoiesis (Matatall et al., 2014; 
Pietras et al., 2016; Takizawa et al., 2017; Morales-Mantilla and King, 2018; MacNamara et al., 
2011; Matatall et al., 2016). The capacity of HSPCs to directly detect pathogen-derived molecules, 
cytokines, and chemokines suggests that emergency granulopoiesis can be mobilized from even the 
most primitive hematopoietic progenitors and that HSPCs have an active role in fighting infections. 
However, the extent and mechanism by which HSPC responses contribute to immunity in the acute 
setting remain poorly defined.

We recently showed that chronic inflammatory stress impairs HSPC quiescence and self-renewal 
while promoting their activation and terminal differentiation (Matatall et  al., 2016). Upon direct 
sensing of inflammatory cytokines such as interferon-gamma (IFNγ), HSCs are dislodged from their 
normal position near quiescence-enforcing CXCL12-abundant reticular cells in the niche. Inflamma-
tory signaling induces transcription factors such as Pu.1, CEBPb, and BATF2 (Matatall et al., 2014; 
Pietras et al., 2016; Matatall et al., 2016; Sato et al., 2020) to promote myeloid differentiation, 
leading to the expansion of granulocyte and monocyte populations. Disruption of the homeostatic 
balance of self-renewal and differentiation eventually leads to depletion of the progenitor compart-
ment (Pietras et al., 2016; Morales-Mantilla and King, 2018; Matatall et al., 2016). Collectively, 
these studies point toward a direct role for HSPCs in supplying the myeloid cells critical to the immune 
response against infection.

To test their contribution to immune responses during acute infection, we examined the role of 
HSPCs in a mouse model of Streptococcus pyogenes infection, also known as Group A Streptococcus 
(GAS). GAS is a common and clinically relevant pathogen that causes a plethora of diseases, from mild 
skin infections to life-threatening necrotizing fasciitis and sepsis (Wang et al., 2008; Efstratiou and 
Lamagni, 2016; Emgård et al., 2019; Walker et al., 2014). GAS infections can infiltrate the blood-
stream and other organs, causing high systemic levels of inflammatory cytokines including IFNγ, TNF, 
IL-1, and IL-6. As HSPCs have been shown to activate and differentiate in response to these cytokines 
(Burberry et al., 2014; Matatall et al., 2014; Pietras et al., 2016; Takizawa et al., 2017; Morales-
Mantilla and King, 2018; Gong et al., 2020; Esplin et al., 2011; Chou et al., 2012), in this study we 
sought to determine the role of HSPCs in immune responses against infections.

Here, we found that GAS infection significantly depletes HSPCs in the bone marrow (BM). We 
tested the idea of infusing HSPCs to restore the hematopoietic progenitor pool. Mice treated with 
HSPCs showed restored HSPC numbers in the BM, increased myeloid cell production, and signifi-
cantly improved overall survival. Surprisingly, HSPC infusion did not reduce pathogen burden. Instead, 
HSPC infusion correlated with a significant increase in the abundance of myeloid-derived suppressor 
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cells (MDSCs) and a dampening of overall systemic inflammation. In summary, our studies indicate that 
HSPCs contribute to survival from sepsis by supporting the production of immunosuppressive MDSCs.

Results
GAS infection induces trafficking of myeloid cells from the BM into 
circulation
To characterize the impact of acute infections on the hematopoietic system, we inoculated mice by 
intramuscular injection of the hind leg with 2 × 106 colony forming units (CFU) of the model pathogen 
S. pyogenes strain MGAS315. To characterize differentiated hematopoietic populations during infec-
tion, we performed flow cytometric analysis of BM and peripheral blood (PB) lineage cells 24 hr after 
GAS infection (Figure 1A) and collected serum for cytokine analyses. BM characterization of lineage 
cells showed a significant decrease in BM monocytes (Figure 1C) and granulocytes (Figure 1D) with 
no change in BM B or T cells (Figure 1E and F). In contrast, PB lineage composition was signifi-
cantly skewed toward myeloid cells with significantly higher circulating monocytes and granulocytes 
(Figure  1G and H) and lower lymphoid cells (Figure  1I and J). Serum cytokine characterization 
showed a significant increase in monocyte chemoattractant protein-1 (MCP-1; also known as CCL2) 
(Figure 1B). These results suggest that myeloid cells exit the BM into circulation following an MCP-1 
gradient, consistent with prior studies showing MCP-1-driven mobilization during inflammation (Tsou 
et al., 2007; Schultze et al., 2019).

GAS infection depletes bone marrow HSPCs without evidence of 
extramedullary hematopoiesis
After 24 hr of infection, the state of HSPCs in the infected mice were analyzed by flow cytometry of 
BM and spleen (Figure 2A) (see Table 1 for surface markers). BM cells were not gated for the common 
stem cell marker SCA1 (Figure  2B), since it has been previously described to be non-specifically 
expressed during inflammatory stress (Baldridge et al., 2011). The total number of HSPCs dropped 
significantly in just 24 hrs in GAS-infected mice (Figure 2C). More specifically, HSPC subpopulations 
including HSCs, multipotent progenitor 3 (MPP3s), and MPP4s were significantly lower in GAS-
infected mice (Figure 2D, E, and F).

Extramedullary hematopoiesis is the proliferation and differentiation of HSCs in tissues other than 
the BM, the canonical stem cell niche. The spleen is one of the most common sites of extramedullary 
hematopoiesis during infections (Yang et al., 2020). To assess whether a reciprocal increase in extra-
medullary hematopoiesis accompanied the loss of HSPCs in the BM, we analyzed spleen tissue by flow 
cytometry. While there was a slight increase in total HSPCs in the spleen (Figure 2G), there was no 
significant change in spleen populations that include HSCs/MPP1, MPP2s, or MPP3/4 (Figure 2H-J). 
These findings suggest that the loss of BM HSPC populations is not principally a result of migration 
from the BM into the spleen, and other mechanisms such as terminal differentiation (Matatall et al., 
2016) also likely contribute to the noted HSPC depletion, as observed in other studies.

GAS infection induces HSC myeloid differentiation
Activation of HSPCs by PAMPs or cytokines promotes their proliferation and differentiation (Nagai 
et al., 2006; Matatall et al., 2014; Pietras et al., 2016; Takizawa et al., 2017; Morales-Mantilla and 
King, 2018; Baldridge et al., 2010). To determine the lineage fate of endogenous HSPCs following 
GAS infection, we performed lineage tracing experiments using the tamoxifen-inducible KRT18-
CreERT2: Rosa26-lox-STOP-lox-TdTomato mouse system (Figure 3A). Within the BM, Krt18 is almost 
exclusively expressed in HSCs (Chapple et al., 2018) and these mice do not have any immunological 
impairment that would change the severity of our infection model. Tamoxifen induction activates the 
CreERT2 protein in Krt18-expressing HSCs, resulting in irreversible TdTomato expression in HSCs and 
their newly formed progeny (Figure 3B).

After 5 days of intraperitoneal injections of tamoxifen, mice were inoculated with GAS or saline. 
Since the average mammalian cell cycle takes 24 hr, we decided to trace the lineage of hematopoiesis 
72 hr post GAS infection. After these 72 hr, BM and PB was harvested for flow cytometric analysis. 
Analysis of the BM showed that GAS infection induced the production of new HSPCs, which includes 
short-term HSCs and MPPs (Figure 3C-D). In addition, there was significant labeling of CD41+ HSCs, 
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a myeloid-biased and proinflammatory subset of HSCs (Figure 3E; Gekas and Graf, 2013), and new 
cells of the myeloid lineage (Figure 3F-H). While we found a significant increase in new BM mono-
cytes (Figure 3G), there was no significant change in the frequency of TdTomato-labeled granulocyte/
monocyte progenitors (GMPs) (Figure 3I), which may simply reflect a rapid flow through this compart-
ment to terminally differentiated populations. We also saw no statistically significant increase in BM 
granulocytes (Figure 3H); however, PB analysis showed a significant increase in new myeloid cells in 
both monocytic and granulocytic branches (Figure 3L-N). While there was a significant decrease in 

Figure 1. Group A Streptococcus (GAS) infection promotes a rapid myeloid cell response. (A) Experimental time frame of GAS infection and bone 
marrow (BM) analysis. (B) Serum levels of monocyte chemoattractant protein-1 (MCP-1) of naïve and GAS-infected mice. Absolute number of 
(C) monocytes, (D) granulocytes, (E) B cells, and (F) F cells in the BM of naïve and infected mice. Relative abundance of (G) monocytes, (H) granulocytes, 
(I) B cells, and (J) T cells in the blood. (B–J) Data is representative of three independent experiments; n = 3–5 mice/group; statistical comparison done 
using unpaired t-test; *p < 0.05, **p < 0.01, ****p < 0.0001. Outliers were identified using the ROUT method (Q = 5%).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. BM and PB populations of lineage cells and serum MCP-1 levels.

Figure supplement 1. Group A Streptococcus (GAS) infection and superinfection promotes exit of myeloid cells from bone marrow (BM) into 
circulation.

Figure supplement 1—source data 1. BM counts of HSPC populations of naïve, infected, and superinfected mice.

https://doi.org/10.7554/eLife.74561
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the production of new BM T cells (Figure 3J), there was no change in BM B cells (Figure 3K) nor PB 
T or B cells (Figure 3O–P). These data suggest that endogenous HSCs undergo rapid emergency 
myelopoiesis during GAS infection.

HSPC infusion promotes survival in GAS-infected mice
Given that HSPCs are activated to divide and differentiate into immune effector cells upon inflam-
matory stimulation and we observed an acute loss of HSPCs in GAS-infected mice, we hypothesized 
that infusion of naïve HSPCs (Lin- Sca-1+ c-Kit+) into GAS-infected mice could improve pathogen 
clearance, reduce tissue damage, and prolong survival. To test this hypothesis, we infected mice 
with 2 × 106 CFU MGAS315 and then infused 10,000 FACS-purified HSPCs 24 hr later, when endog-
enous HSPCs are significantly decreased (Figure 4A). This HSPC dose, equivalent to approximately 
1.7 × 107 cells per m2 body surface area, is significantly lower than the dose used for granulocyte 

Figure 2. Group A Streptococcus (GAS) infection depletes bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) 24 hr post infection. 
(A) Experimental time frame of GAS infection and BM analysis. (B) Flow plot of HSPC gating and representation of different surface expression of 
cKit and Sca-1 during infection. Plots are gated from lineage negative BM cells. (C–F) Absolute number of HSPCs, hematopoietic stem cells (HSCs), 
multipotent progenitors (MPP) 3, and MPP4 in the BM of naïve and GAS-infected mice. Spleen populations of (G) HSPCs, (H) HSC/MPP1, (I) MPP2, and 
(J) MMP3/4 identified by differential expression of CD150 and CD48. (C–J) Data is representative of three independent experiments; n = 4–5 mice/
group; statistical comparison done using unpaired t-test; *p < 0.05, **p < 0.01. Outliers were identified using the ROUT method (Q = 5%).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. BM counts of HSPC populations of naïve and infected mice and spleen HSPC populations.

Figure supplement 1. Superinfection further depletes hematopoietic stem and progenitor cells (HSPCs) and hematopoietic stem cells (HSCs) in the 
bone marrow (BM).

Figure supplement 1—source data 1. BM and PB levels of immune cells and MCP-1 during infection.

https://doi.org/10.7554/eLife.74561
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infusions, typically between 108 and 1010  cells 
per m2 (Price et al., 2015). On day 3 post infec-
tion, we harvested BM, limb tissue, and spleen to 
characterize BM populations and pathogen load 
(Figure 4B).

BM characterization showed that HSPC infu-
sion restored the relative abundance of HSPCs, 
HSCs, and myeloid-biased progenitors, such as 
MPP3s and GMPs, in the BM (Figure 4C-H). We 
observed that GAS-infected mice that received 
HSPCs showed lower morbidity than non-rescued 
mice, with improved overall body score and 
activity level. To assess survival, we performed 
Kaplan-Meier survival studies of GAS-infected 
mice in the absence or presence of HSPC rescue 
(Figure  4K). GAS-infected mice infused with 
HSPCs had significantly higher survival than 
non-rescued mice (Figure  4L). However, to our 
surprise, HSPC infusion did not significantly affect 
the pathogen burden in the infected muscle 
(Figure  4I) or pathogen spread to other tissues 
(Figure 4J). Overall, these findings suggest that 
HSPC infusion is beneficial during GAS infections 
and promotes survival by a mechanism other than 
pathogen clearance.

Superinfection further depletes 
HSPCs in mice
To determine the extent of the protective poten-
tial of HSPC infusion during infections, we tested 
the efficacy of HSPC rescue in a mouse model 
of influenza and GAS superinfection. Here, we 
used a model of influenza and S. pyogenes 
(strain MGAS315) bacterial superinfection. Mice 
were infected with influenza (strain H1N1 PR8) 
by intranasal injection of 150 plaque-forming 
units (PFU). On day 3 post influenza virus infec-
tion, which represents peak viral replication for 

humans and mice (Baccam et al., 2006; Smith and Perelson, 2011), we injected mice with 2 × 
106 CFU MGAS315 by IM inoculation (Figure 2—figure supplement 1A). On day 4 (24 hr post GAS 
infection), we analyzed BM and PB. Lin- cells in the BM showed phenotypical differences in surface 
expression of Sca-1 and c-Kit proteins depending on the pathogen combination (Baldridge et al., 
2011; Figure 2—figure supplement 1B). In addition, superinfection caused a severe decrease in 
HSPCs and their subpopulations (Figure 2—figure supplement 1C–1H). Most notably, the abso-
lute number of HSCs was reduced to 20–30% of a healthy mouse (Figure 2—figure supplement 
1D).

We also analyzed BM and PB lineage populations of superinfected mice (Figure 1—figure supple-
ment 1A). Similar to GAS-infected mice, superinfection led to an increase in serum levels of MCP-1 
(Figure 1—figure supplement 1B) that resulted in the exit of BM monocytes and BM granulocytes 
(Figure 1—figure supplement 1C, G) into circulation (Figure 1—figure supplement 1D, H). BM B 
cell and T cell numbers did not change (Figure 1—figure supplement 1E, I), while the abundance 
of circulating B and T cells was reduced in GAS-infected and superinfected mice (Figure 1—figure 
supplement 1F, J).

Table 1. Surface markers for flow cytometry.
Hematopoietic cell populations identified by 
flow cytometry were characterized using the 
listed surface markers. Lineage (Lin) markers 
include Gr1, CD11b, B220, CD4, CD8, and 
Ter119.

Population Markers

HSC Lin- ckit+ CD150+ CD48- CD34- Flk2-

CD41+ HSCs Lin- ckit+ CD150+ CD48- CD34- Flk2- 
CD41+

Donor HSPCs Lin- ckit+ Sca1+

HSPCs Lin- ckit+

MPP1 Lin- ckit+ CD150+ CD48 CD34+ Flk2-

MPP2 Lin- ckit+ CD150+ CD48+ Flk2-

MPP3 Lin- ckit+ CD150 CD48+ CD34+ Flk2-

MPP4 Lin- ckit+ CD150 CD48+ CD34+ Flk2+

GMP Lin- ckit+ CD41- CD150- CD16/32+

MkP Lin- ckit+ CD150+ CD41+

Myeloid cells Gr1+ Mac1+ B220- CD4- CD8-

B cells Gr1- Mac1- B220+ CD4- CD8-

T cells Gr1- Mac1- B220- CD4+ CD8 or Gr1- 
Mac1- B220- CD4- CD8+

Granulocytes Gr1+ Mac1+ B220- CD4- CD8- SSC-
mid F4/80-

Eosinophils Gr1- Mac1+ B220- CD4- CD8- SSCHi

Macrophages Gr1+ Mac1+ B220- CD4- CD8- SSClow 
F4/80+

Monocytes Mac1+ B220- CD4- CD8- SSClow

PMN-MDSC CD11b + Ly6G + Ly6ClowCD244+

M-MDSC CD11b + Ly6G- Ly6Chi

https://doi.org/10.7554/eLife.74561
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HSPC infusion promotes survival in superinfected mice and increases 
levels of HSPCs and myeloid progenitors in the BM
The loss of HSPCs and HSCs was very prominent in superinfected mice, more so than in mice infected 
with GAS alone. Therefore, we hypothesized that an infusion of 10,000 HSPCs would also benefit mice 
in this model of superinfection (Figure 5A). As expected, HSPC infusion significantly increased HSPCs 
and myeloid-biased progenitors in superinfected mice (Figure 5B-G). As seen in GAS-infected mice, 
HSPC infusion did not promote bacterial (Figure 5H) or viral (Figure 5I) clearance in superinfected 
mice. The spread of bacteria to the spleen was also unaffected by HSPC infusion (Figure 5J).

Despite the severity of the infection, superinfected mice that received an HSPC infusion (Figure 5K) 
had significantly improved survival compared to non-rescued mice (Figure 5L). This finding suggests 
that the protective properties of HSPC infusion are effective even in this very severe model of infection.

HSPC infusion increases immunomodulatory MDSCs and prevents 
sepsis-induced cytokine exacerbation
Production of proinflammatory cues including IL1, IL6, IL8, TNF, and MIP1a is a key driver of morbidity 
during sepsis. Together, these cues contribute to systemic inflammatory response syndrome (SIRS), 

Figure 3. Krt18 lineage tracing of naïve and Group A Streptococcus (GAS)-infected hematopoietic stem cells (HSCs). (A) Genetic model of KRT18-
CreERT2:Rosa26-lox-STOP-lox-TdTomato mouse system. (B) Representative gating of TdTomato expression in negative control (left: Genotype: Krt18-
CreERT2+) and tamoxifen-induced positive control (right: Genotype: KRT18-CreERT2+: Rosa26-lox-STOP-lox-TdTomato+/-). Percent of bone marrow (BM) 
(C) hematopoietic stem and progenitor cell (HSPC), (D) HSC, (E) CD41+ HSC, and (F) myeloid populations that are TdTomato+. Percent of BM (G) total 
monocytes, (H) granulocytes, (I) granulocyte/monocyte progenitor (GMP), (J) BM T cells, and (K) BM B cells that are TdTomato+. Percent of peripheral 
blood (PB) (L) total myeloid cells, (M) monocytes, (N) granulocytes, (O) T cells, and (P) B cells that are TdTomato+. Data representative of three 
independent experiments; (C–N) n = 5–7 mice/group. Statistical comparison done using unpaired t-tests; *p < 0.05, **p < 0.01.

The online version of this article includes the following source data for figure 3:

Source data 1. Levels of newly generated cells in response to GAS infection.

https://doi.org/10.7554/eLife.74561


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation | Stem Cells and Regenerative Medicine

Morales-Mantilla et al. eLife 2022;11:e74561. DOI: https://doi.org/10.7554/eLife.74561 � 8 of 20

Figure 4. Hematopoietic stem and progenitor cell (HSPC) infusion in Group A Streptococcus (GAS)-infected mice promotes survival and increases 
progenitor populations in the bone marrow (BM). (A) Experimental design of BM analysis and colony forming unit (CFU) count after HSPC infusion. 
(B) Flow plot of HSPC gating and representation of different surface expression of cKit and Sca-1 during infection. Plots are gated from lineage negative 
BM cells. (C–H) Absolute numbers of HSPCs, hematopoietic stem cells (HSCs), and downstream progenitors in the BM of naïve, GAS-infected mice, and 
GAS-infected mice rescued with HSPCs. Quantified bacterial load in the (I) limb and (J) spleen of infected mice. (K) Experimental design of the survival 
study. (J) Survival curve of GAS-infected mice with or without HSPC infusion. Data representative of three independent experiments; (C–H) n = 5–7 mice/
group, (I and J) n = 8–10 mice/group, (L) n = 9–10 mice/group. Statistical comparison done using (C–H) one-way ANOVA with Tukey’s correction for 
multiple comparisons or (I and J) unpaired t-tests. ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001, *****p < 0.0001. Comparison of (L) survival 
was done using Log-rank (Mantel-Cox) test.

The online version of this article includes the following source data for figure 4:

Source data 1. HSPC levels after infusion and survival data.

https://doi.org/10.7554/eLife.74561
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including fever, tachypnea, vasodilation, and circulatory collapse (Huang et al., 2005; Jaffer et al., 
2010). These cytokines are independently associated with poor outcomes and death from sepsis in 
humans. Since we observed improved survival in mice receiving HSPC infusion without any changes 
in pathogen load, we hypothesized that HSPCs could impact immunomodulatory cell composition 
and the inflammatory response to severe infection. Upon analysis of PB and BM populations 3 days 
after infection and 2 days after HSPC infusion (Figure 6A), there were no changes in BM or PB T 
lymphocytes that could indicate a Treg-related activity (Figure 6—figure supplement 1A and 1B). 
However, we found that HSPC infusion significantly increased PB polymorphonuclear MDSCs (PMN-
MDSCs) (Figure 6B) and restored PB monocytic-MDSCs (M-MDSCs) levels (Figure 6C) 3 days post 
infection and 2  days post HSPC infusion. Similarly, HSPC infusion restored BM PMN-MDSCs and 
M-MDSCs populations in GAS-infected mice (Figure 6D and E). These cells were functionally vali-
dated (Figure 6—figure supplement 1C) as immunosuppressive cells by their ability to reduce acti-
vated T cell proliferation in culture (Figure 6—figure supplement 1D). Strikingly, cytokine profiling 

Figure 5. Hematopoietic stem and progenitor cell (HSPC) infusion in superinfected mice promotes survival without changing pathogen clearance. 
(A) Experimental design of bone marrow (BM) analysis and colony forming unit (CFU) count post HSPC infusion in superinfected mice. (B–G) BM 
populations of HSPCs and downstream progenitors after HSPC infusion. Bacterial load in the (H) limb and (J) spleen of infected mice. (I) Viral load 
of mice with or without HSPC infusion. (K) Experimental design of the survival studies on superinfected mice. (L) Survival curve after HSPC infusion. 
Experiments are representative of three independent experiments. (B–J) Comparison done with unpaired t-test or Welch’s t-test. (B–G) n = 5, (H–J) n = 
9–11, and (L) n = 9–10 mice per group. Comparison of (L) survival was done using Log-rank (Mantel-Cox) test. ns = not significant, *p < 0.05.

The online version of this article includes the following source data for figure 5:

Source data 1. HSPC levels in superinfected mice after infusion and survival data.

https://doi.org/10.7554/eLife.74561
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72 hr after GAS infection showed reduced overall levels of proinflammatory cytokines in GAS-infected 
mice that received HSPC infusion (Figure 6F). These findings suggest that HSPC infusion supports 
the production of MDSC populations sufficient to dampen maladaptive proinflammatory cues during 
sepsis.

Infused HSPCs do not engraft but produce myeloid cells including 
MDSCs
In order to determine whether HSPCs infused in an infected mouse directly differentiate into MDSCs, 
we performed lineage tracing experiments using expression of the CD45.1 variant to distinguish 
infused HSPCs from endogenous CD45.2 cells. Mice were infected with GAS and then rescued with 
HSPCs 24 hr after GAS inoculation. Thirty days after infection, mice still showed signs of inflammation 
on the leg, indicating the inflammatory cues that drive HSPC activation and differentiation were still 
present. At 30 days after infection, the CD45.1+ cell compartment showed no HSCs but a low number 
of MPP1 and myeloid-biased MPP3s in the BM (Figure 7A). Lineage analysis in the BM showed that 
these cells gave rise to more myeloid cells compared to lymphoid. Furthermore, a fraction of the 

Figure 6. Hematopoietic stem and progenitor cell (HSPC) infusion increases and restores myeloid-derived suppressor cell (MDSC) populations and 
dampens inflammation after Group A Streptococcus (GAS). (A) Representative gating of MDSCs by their surface expression of Ly6G and Ly6C at day 3 
post infection. Gated on CD11b + cells. Peripheral blood (PB) populations of (B) polymorphonuclear MDSCs (PMN-MDSCs) and (C) monocytic-MDSCs 
(M-MDSCs) of naïve, GAS-infected, and GAS-infected mice infused with HSPCs. Bone marrow (BM) populations of (D) PMN-MDSCs and (E) M-MDSCs 
of naïve, GAS-infected, and GAS-infected mice infused with HSPCs. (F) Heatmap of serum cytokine levels using ClustVis web tool (Metsalu and Vilo, 
2015). Data representative of two (A–E) or four (F) independent experiments. (B–E) Statistical comparison done using one-way ANOVA with Tukey’s 
correction for multiple comparisons; n = 7 mice per group; *p < 0.05, **p < 0.01. Outliers were identified using the ROUT method (Q = 5%).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. BM and PB levels of MDSC populations and cytokine levels raw data.

Figure supplement 1. Myeloid-derived suppressor cells (MDSCs) reduce activated T cell proliferation.

Figure supplement 1—source data 1. T cell numbers after infusion and suppression assay data.

https://doi.org/10.7554/eLife.74561
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cells became new monocytic-MDSCs (M-MDSCs) and polymorphonuclear-MDSCs (PMN-MDSCs) 
(Figure 7B). Upon examination of the PB, circulating CD45.1 were primarily myeloid cells, with a small 
fraction identified as M-MDSCs and PMN-MDSCs (Figure  7C). Collectively, these data show that 
infused cells differentiate toward the myeloid lineage with no sign of stem cell engraftment. Whereas 
MDSCs did arise directly from infused cells, their numbers were not sufficient to account for the 
large increase in MDSCs observed in the HSPC-rescued mice. These data suggest that HSPC infusion 
contributes to MDSC expansion via both direct and indirect mechanisms.

Discussion
Here, we show HSPC infusion holds therapeutic potential for bacterial sepsis. Our studies demon-
strate that GAS infection induces a robust myeloid response just 24 hr after infection and significantly 
depletes HSPC populations in the BM. After infection, endogenous HSPCs are driven to differentiate 
toward the myeloid lineage. However, this response is insufficient to prevent disease progression and 
pathogen dissemination, resulting in mortality in 5–7 days. While sepsis has been described to cause 
mobilization of HSPCs (Skirecki et al., 2019), we did not find any evidence of HSC or MPP mobiliza-
tion to the spleen. Strikingly, we found infusing just 10,000 HSPCs improved survival in GAS-infected 
mice and mice with GAS and influenza superinfection. This infusion was capable of increasing PB and 
BM hematopoietic populations of infected mice. Specifically, HSPC infusion restored BM HSPCs and 
both PB and BM MDSC populations. Importantly, HSPC infusion did not reduce pathogen burden, 

Figure 7. Lineage fate of infused hematopoietic stem and progenitor cells (HSPCs) in Group A Streptococcus (GAS)-infected mice skews myeloid 
without signs of stem cell engraftment. Gating representation of the lineage fate of (A) bone marrow (BM) HSPCs, (B) BM lineage cells, and 
(C) peripheral blood (PB) lineage cells 30 days after GAS infection. Data is representative of three independent experiments.

https://doi.org/10.7554/eLife.74561
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but contributed to survival via the generation of immunoregulatory cells that dampened maladaptive 
inflammatory signaling in infected mice.

The hematopoietic and immune systems are comprised of immune cells with antimicrobial killing 
capacity as well as various types of immunomodulatory cells such as MDSCs, regulatory B cells (Bregs), 
and regulatory T cells (Tregs) (Maizels and Smith, 2011; Rosser and Mauri, 2015; Schrijver et al., 
2019). In the short time frame of acute sepsis, myeloid cells such as neutrophils, monocytes, and 
macrophages are of critical importance in rapidly recognizing and killing invading bacteria. Our data 
demonstrate that these cells and even the progenitors that produce them in the BM can be rapidly 
depleted during a severe acute infection. Furthermore, lineage tracing experiments provide the first 
direct evidence that terminally differentiated myeloid cells are rapidly produced from the level of the 
HSC during an acute infection. Initially we hypothesized that replacement of HSPCs may improve 
outcomes from acute bacterial infection by boosting the availability of myeloid cells to kill bacteria. 
While myeloid cell populations were somewhat restored after HSPC infusion, this was insufficient to 
reduce pathogen burden.

Dysregulated inflammation is one of the main drivers of morbidity and mortality during infections 
(Huang et al., 2005; Frank and Paust, 2020; Karki et al., 2021; Fajgenbaum and June, 2020). 
For example, excessive inflammatory responses are a common result of seasonal influenza (Yu et al., 
2011; Frank and Paust, 2020) and SARS-CoV-2 infection (Karki et  al., 2021). Seasonal influenza 
increases the susceptibility of patients to secondary bacterial infections or superinfection (Rynda-
Apple et al., 2015). Superinfections exacerbate the proinflammatory environment of common viral 
infections and are associated with increased morbidity and mortality (Rynda-Apple et  al., 2015; 
Paget and Trottein, 2019). To our surprise, HSPC infusion was protective in a model of influenza and 
GAS superinfection, suggesting that its protective effects are robust even in the setting of severe 
inflammation. In our mouse models, infection dramatically increased cytokine levels within just 3 days 
of infection. Interestingly, HSPC infusion was accompanied by an overall decrease in serum cytokine 
levels and a specific dampening of cytokines involved in ‘cytokine storm’ (Huang et al., 2005; Karki 
et al., 2021; Fajgenbaum and June, 2020). HSPCs have been described to produce cytokines, indi-
cating that they have the capacity to direct immune function (Chen et al., 2016). However, whether 
the cytokines produced by HSPCs themselves contribute to the regulation of the immune response 
has heretofore been unknown. Our data point toward an immunomodulatory role of HSPC infusion 
that could prevent immune dysregulation during sepsis.

Immunoregulatory cells in the hematopoietic system include Tregs, Bregs, and MDSCs (Maizels 
and Smith, 2011; Schrijver et al., 2019; Uhel et al., 2017). Perhaps the most recognized immu-
nomodulatory cell known is the Treg. While Tregs have essential roles regulating immune responses 
to pathogens (Maizels and Smith, 2011), we did not see differences in any lymphocyte population, 
including T cells, that would suggest a Treg-mediated anti-inflammatory mechanism after HSPC infu-
sion. MDSCs are immature myeloid cells that have strong anti-inflammatory roles by suppressing 
the responses of T-helper cells that contribute to the development of sepsis (Schrijver et al., 2019; 
Köstlin et al., 2017; Delano et al., 2007). PMN-MDSCs and M-MDSCs have strong anti-inflammatory 
functions that can be beneficial or detrimental depending on the setting. In fact, some studies have 
shown that MDSCs contribute to clinical worsening during sepsis (Schrijver et al., 2019). For almost 
three decades, increased circulating immature myeloid cells have been a clinical marker of SIRS (Bone 
et al., 1992). Interestingly, increased MDSCs during sepsis have also been associated with increased 
development of nosocomial infections (Uhel et al., 2017). However, in our GAS model of accelerated 
infection, the increase in MDSC populations after HSPC infusion was accompanied by lower overall 
cytokine levels and increased survival, suggesting that the immunomodulatory functions of MDSCs are 
beneficial during the early stages of systemic inflammation and could prevent sepsis-related mortality 
(Chang et al., 2018).

An important limitation of our study is that the lineage fate and the tissue or organ destination of 
the infused HSPCs at the early stages of infusion remain unknown. The small number of cells infused 
makes it challenging to identify them in the pool of endogenous cells of the recipient mice. While 
our data suggest that infused HSPCs directly and indirectly boost MDSC production by endogenous 
cells, further work will be required to determine the mechanisms by which HSPCs contribute to MDSC 
expansion. In addition, further analysis of HSPC subpopulations will be required to determine if long-
term HSCs or short-lived MPPs confer the greatest therapeutic potential. Identifying a short-lived 

https://doi.org/10.7554/eLife.74561
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hematopoietic progenitor that can signal endogenous cells to restore MDSC populations could repre-
sent a promising alternative therapeutic avenue (Hidalgo et al., 2019; Karpova et al., 2017; Nagai 
et al., 2006) to treat sepsis while avoiding concern of possible graft versus host disease complications 
(Batsali et al., 2020; Tijaro-Ovalle et al., 2019).

Currently, G-CSF, GM-CSF, and granulocyte transfusion (Robinson and Marks, 2004; Price 
et al., 2015; Klein and Castillo, 2017) are used to prevent or treat sepsis in oncology patients with 
chemotherapy-induced fever and neutropenia. However, the clinical efficacy of granulocyte transfu-
sion is poor (Price et al., 2015; Klein and Castillo, 2017). Here, we have shown infusing HSPCs is a 
promising alternative to granulocyte transfusion. Current granulocyte doses in humans are around 1 
× 1010 cells per m2 body surface area given daily or every other day (Price et al., 2015; Teofili et al., 
2016). Our infusion model only uses a single dose of 1.7 × 107 cells per m2 body surface area (or 
10,000 HSPCs in a mouse). It is important to emphasize that 10,000 HSPCs is a relatively small number 
of cells to infuse into a mouse as it represents less than 0.01% of the nucleated BM cells in a mouse. 
Collectively, the single low HSPC dose compared to multiple larger granulocyte transfusions suggests 
that HSPCs are more effective than granulocytes, cell for cell, in the treatment of sepsis. While the 
path to a clinical application can be long, our findings could lead to the future development of a new 
therapeutic approach that could succeed where granulocyte infusions have fallen short.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Antibody

American Hamster 
monoclonal Anti-mouse 
CD3e Biolegend

Clone 145–2C11 (Cat. No. 
100301) (2 µg/mL) RRID:AB_312666

Antibody

Syrian Hamster 
monoclonal anti-mouse 
CD28 Biolegend Clone 37.51 (Cat. No. 102101)

(2 µg/mL)
RRID:AB_312866

Antibody
Rat Monoclonal anti-
mouse Gr1-PECy5 eBioscience

Clone RB6-8C5 (Cat. No. 
15-5931-82)

(1:100)
RRID:AB_468813

Antibody

Rat Monoclonal Anti-
Mouse CD11b PE-
Cyanine5 eBioscience

Clone M1/70 (Cat. No. 
15-0112-82)

(1:100)
RRID:AB_468714

Antibody

Rat Monoclonal
Anti-Human/Mouse 
CD45R (B220) PE-
Cyanine5 eBioscience

Clone RA3-6B2 (Cat. No. 
15-0452-82)

(1:100)
RRID:AB_468755

Antibody
Rat Monoclonal ANTI-
MOUSE CD4 PE-Cy5 eBioscience

Clone GK1.5 (Cat. No. 
15-0041-82)

(1:100)
RRID:AB_469532

Antibody
Rat Monoclonal Anti-
Mouse CD8a PE-Cyanine5 eBioscience

Clone 53–6.7 (Cat. No. 
15-0081-82)

(1:100)
RRID:AB_468706

Antibody

Rat Monoclonal Anti-
Mouse TER-119 PE-
Cyanine5 eBioscience

Clone TER119 (Cat. No. 
15-5921-82)

(1:100)
RRID:AB_468810

Antibody
Rat monoclonal anti-
mouse Sca-1 Pacific Blue Biolegend Clone D7 (Cat. No. 108120)

(1:100)
RRID:AB_493273

Antibody
Rat monoclonal anti-
mouse Ly-6G Biolegend Clone 1A8 (Cat. No. 127605)

(1:100)
RRID:AB_1236488

Antibody
Mouse monoclonal
Anti-Mouse CD45.1 PE Biolegend Clone A20 (Cat. No.110707)

(1:100)
RRID:AB_313496

Antibody

Rat Monoclonal anti-
mouse CD117 (c-Kit) APC-
eFluor 780 eBioscience Clone 2B8 (CaT. No. 47-1171-82)

(1:100)
RRID:AB_1272177
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Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Antibody
Rat Monoclonal
Anti-Mouse CD150 PECy7 Biolegend

Clone TC15-12F12.2 (Cat. No. 
115914)

(1:100)
RRID:AB_439797

Antibody

American Hamster 
Monoclonal Anti-mouse 
CD48 APC eBioscience

Clone HM48-1 (Cat. No. 
17-0481-82)

(1:100)
RRID:AB_469408

Antibody
Rat Monoclonal Anti-
Mouse CD34 FITC eBioscience Clone RAM34 (11-0341-82)

(1:50)
RRID:AB_465021

Antibody
Rat Monoclonal Anti-
Mouse CD135 DyLight680 Novus

Clone A2F10 (Cat. No. NBP1-
43352FR)

(1:50)
RRID:AB_2904163

Antibody
Rat Monoclonal Anti-
Mouse CD16/32 BV605 BD

Clone 2.4G2 (93) (Cat. No. 
563006)

(1:100)
RRID:AB_2737947

Antibody
Rat Monoclonal Anti 
Mouse CD41 BV480 BD

Clone MWReg30 (Cat. No. 
746554)

(1:100)
RRID:AB_2743844

Antibody
Rat Monoclonal Anti-
mouse Ly-6C APC Biolegend Clone HK1.4 (Cat. No. 128016)

(1:100)
RRID:AB_1732076

Antibody
Rat Monoclonal Anti-
mouse CD244 PECy7 eBioscience

Clone eBio244F4 (Cat. No. 
25-2441-82)

(1:100)
RRID:AB_2573432

Antibody
Rat Monoclonal Anti-
Mouse F4/80 Pacific Blue ThermoFisher Clone BM8 (Cat. No. MF48028)

(1:100)
RRID:AB_1500083

Chemical compound, 
drug Penicillin-Streptomycin Invitrogen (Cat. No. 15140122)  �

Chemical compound, 
drug

Hanks' Balanced Salt 
Solution

Gibco/
Thermofisher HBSS (Cat. No. 14170161)  �

Chemical compound, 
drug HEPES (1M)

Gibco/
Thermofisher Cat. No. 15630080  �

Chemical compound, 
drug Tamoxifen Sigma (Cat. No. 10540-29-1)  �

Commercial assay or kit CD117 Microbeads Miltenyi-Biotec (Cat. No. 130-091-224)  �

Commercial assay or kit
CD3e Microbead Kit, 
Mouse Miltenyi-Biotec (Cat. No. 130-094-973)  �

Commercial assay or kit

Invitrogen SuperScript 
IV First-Strand Synthesis 
System Invitrogen (Cat. No. 18091050)  �

Commercial assay or kit
iTaq Universal SYBR 
Green Supermix; BioRad Bio Rad (Cat. No. 172–5121)  �

Peptide, recombinant 
protein Recombinant Mouse IL-2 Biolegend (Cat. No. 575404)  �

Sequence-based reagent
Nucleoprotein (NP) 
Forward primer IDT NP F1 5'-​GGGT​GAGA​ATGG​ACGA​AAAAC-3'

Sequence-based reagent
Nucleoprotein (NP) 
Reverse primer IDT NP R1 5'-​GATC​CATC​ATTG​CTTT​TTGTGCA-3'

Software, algorithm ClustVis
Metsalu and 
Vilo, 2015 ClustVis RRID:SCR_017133

Strain, strain background 
(Mus musculus)

KRT18-CreERT2: Rosa26-
lox-STOP-lox-TdTomato This paper Tamoxifen-inducible Cre system

Strain, strain background 
(Mus musculus) C57Bl/6J

The Jackson 
Laboratory Strain #000664

Wildtype mouse line – CD45.2
RRID:IMSR_JAX:000664

Strain, strain background 
(Mus musculus) B6.SJL-Ptprca Pepcb/BoyJ

The Jackson 
Laboratory Strain #002014

C57Bl/6J congenic strain - CD45.1
RRID:IMSR_JAX:002014

 Continued
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Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Strain, strain background 
(Streptococcus pyogenes) Group A Streptococcus clinical isolate

MGAS315, emm3 genotype, 
Serotype M3

Strain, strain background 
(Orthomyxoviridae, 
influenza virus A) Influenza A virus ATCC PR8 H1N1  �

Commercial assay or kit

CellTrace Violet Cell 
Proliferation Kit, for flow 
cytometry Invitrogen (Cat. No. C34571)  �

 Continued

Mice
We used WT C57Bl/6 (CD45.2) (RRID:IMSR_JAX:000664) and C57Bl/6.SJL (CD45.1) (RRID:IMSR_
JAX:002014) mice 8–10  weeks of age. Lineage tracing using KRT18-CreERT2: Rosa26-lox-STOP-
lox-TdTomato we made by crossing KRT18-CreERT2 mice obtained from Dr Daisuke Nakada (Baylor 
College of Medicine) and Rosa26-lox-STOP-lox-TdTomato mice (stock # 007914) obtained from 
Jackson Laboratories (Bar Harbor, ME, https://www.jax.org). All mice genotypes were confirmed by 
polymerase chain reaction (PCR) prior to the start of the experiments. Mice were assigned to each 
experimental group at random. Both male and female mice were used for all the experiments except 
for the superinfection survival studies as it has been shown that female mice have long-lasting hyper-
responsiveness to respiratory infections (Larcombe et al., 2011). Therefore, only male mice were used 
in the superinfection experiments. Individual mice were assigned to groups randomly and were age 
and sex-matched for each independent experiment.

Pathogen inoculation and quantification
Mice were infected with S. pyogenes strain MGAS315 by intramuscular injection on the hind limb with 
2 × 106 CFU. To determine the bacterial load, limb, spleen, and blood were collected from infected 
mice. Limb and spleen tissue were homogenized, serially diluted, and plated on blood agar plates 
(BAP) (BD, Franklyn Lake, NJ, https://www.bd.com). Blood was serially diluted and plated on BAP. 
Limb and spleen bacterial load was normalized to the grams of tissue that was homogenized.

Influenza A H1N1 PR8 strain infections were done by intranasal inoculation with 150 PFU. Viral 
load was quantified by collecting viral particles from lung lavage fluid using Amicon Ultra 0.5  mL 
(Millipore Sigma, Burlington, MA, https://www.emdmillipore.com), and RNA was purified using the 
TRIZOL method followed by the quantification of viral particles by real-time PCR of virus-specific 
nucleoprotein gene. The exact quantity was calculated using a standard curve of purified viral particles 
with known concentration and normalized by the amount of lung tissue collected.

HSPC isolation and purification
Six bones were collected from naïve donor mice (two tibias, two femurs, and two hip bones). Bones 
were then carefully crushed in HBSS media with 1% penicillin/streptomycin and HEPES. Filtered BM 
was RBC lysed using 5 min RBC lysis buffer (Biolegend, San Diego, CA, https://www.biolegend.com). 
Lysis buffer was washed out and cells were stained with anti-CD117 magnetic beads (eBiosciences, 
San Diego, CA, https://www.thermofischer.com) using the manufacturer’s protocol. CD117+ cells 
were positively selected using the AutoMACS instrument (Miltenyi). CD117+ cells were washed and 
stained for Lineage markers (Table 1) and Sca-1. After staining, HSPCs were purified by cell sorting.

Flow cytometry and cell sorting
Flow cytometry analyses were done using LSR II and BD Fortessa instruments. Cells were identified by 
the differential expression of markers listed in Table 1. Our cocktail of Lineage (Lin) markers include 
Gr1, CD11b, B220, CD4, CD8, and Ter119.

Cell sorting of HSPCs and their subpopulations were done using the SONY SH800 sorter and the 
BD FACS Aria Fusion using the markers listed in Table 1. Post-sort purity test showed that sorted cells 
were 95–98% pure.

https://doi.org/10.7554/eLife.74561
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Cre induction
Cre activation in KRT18-CreERT2: Rosa26-lox-STOP-lox-TdTomato was induced with tamoxifen. Each 
mouse was administered tamoxifen by intraperitoneal injection at a dose of 100 mg/kg body weight 
for 5 consecutive days prior to the start of the lineage tracing experiments.

Cell infusion
All infusions were done intravenously by retroorbital injection. Rescued mice received cells resus-
pended in saline solution while the control mice were injected with saline solution alone.

Cytokine profiling
Serum was collected using a BD Microtainer blood collection tube (San Jose, CA, https://www.bdbio-
sciences.com). Serum levels of cytokines were analyzed through Eve Technologies company (Calgary, 
AB, Canada, https://www.evetechnologies.com).

T cell suppression assay
T cells were isolated from the spleen using anti-CD3 magnetic beads from Miltenyi Biotec (Bergisch 
Gladbach, Germany, https://www.miltenyibiotec.com) and MDSCs were sorted using the SONY 
SH800 sorter and the BD FACS Aria Fusion as described above. T cell were activated with anti-CD3 
and anti-CD28 coated plates and supplemented with IL-2 to support proliferation and then cultured 
alone of with M-MDSCs or PMN-MDSCs. T cells were stained with CellTrace Violet and proliferation 
was measured by dye dilution using flow cytometry.

Statistical tests
Normality was assessed using the Shapiro-Wilk test and variances were compared using F-tests. 
Comparisons between two groups were made done using unpaired t-test for parametric data, Welch’s 
t-test for parametric data without equal variances, and Mann-Whitney test for non-parametric data. 
Tests involving three or more comparisons were done using one-way ANOVA with Tukey’s correc-
tion for multiple comparisons or Kruskal-Wallis test with Dunn’s correction for multiple comparisons. 
Comparisons of survival curves were done using Mantel-Cox tests. Outliers were identified using the 
ROUT method (Q = 5%). Graphs are shown as mean ± SEM. Sample size of each experiment was 
calculated based on pilot experiments and using an alpha = 0.05 and power = 0.80. Each specific 
statistical test used as well as group size and independent experiments are described on each figure 
legend.

Study approval
Mice are housed in AAALAC-accredited, specific-pathogen-free animal facilities at Baylor College 
of Medicine and Texas Children’s Hospital. All experiments are approved and follow the guidelines 
stated in our protocol approved by the Institutional Animal Care and Use Committee (IACUC) and by 
the Baylor College of Medicine institutional review board.
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