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Deep learning has become a powerful paradigm to analyze the binding sites of regulatory factors including RNA-binding

proteins (RBPs), owing to its strength to learn complex features from possibly multiple sources of raw data. However, the

interpretability of these models, which is crucial to improve our understanding of RBP binding preferences and functions,

has not yet been investigated in significant detail. We have designed a multitask and multimodal deep neural network for

characterizing in vivo RBP targets. The model incorporates not only the sequence but also the region type of the binding

sites as input, which helps the model to boost the prediction performance. To interpret the model, we quantified the con-

tribution of the input features to the predictive score of each RBP. Learning across multiple RBPs at once, we are able to avoid

experimental biases and to identify the RNA sequence motifs and transcript context patterns that are the most important

for the predictions of each individual RBP. Our findings are consistent with known motifs and binding behaviors and can

provide new insights about the regulatory functions of RBPs.

[Supplemental material is available for this article.]

RNA-binding proteins (RBPs) play important roles in all aspects of
post-transcriptional gene regulation including splicing, polyade-
nylation, transport, translation, and degradation of RNA tran-
scripts (Gerstberger et al. 2014). It is therefore not surprising
that misregulation of RBPs as well as mutations in their protein
sequence and/or their RNA targets can result in diseases including
cancer (Cooper et al. 2009; Siddiqui and Borden 2012). Hence, it
is essential to identify RBP binding preferences to understand
their function and reveal their disease promoting mechanisms.
Although we are reaching a consensus annotation of all human
RBPs (Ascano et al. 2012), and recent large-scale efforts have gen-
erated data on the targets of many RBPs (Van Nostrand et al.
2016), the binding preferences of comparatively few of these are
well determined (Wheeler et al. 2018).

Cross-linking and immunoprecipitation followed by se-
quencing (CLIP-seq) protocols have made it possible to character-
ize transcriptome-wide binding sites of RBPs (Hafner et al. 2010;
König et al. 2010; Van Nostrand et al. 2016). Despite providing a
valuable resource, CLIP data need to be regarded with caution.
Compared to alternatives such as RNA-binding and immunopre-
cipitation (RIP), CLIP results in significantly larger numbers of tar-
get sites, indicating possible cross-linking of low-specificity events
or that only fewmRNA copies of a given gene are actually bound in
the same cell (Mukherjee et al. 2011; Plass et al. 2017). On the oth-
er hand, CLIP-seq is sensitive to expression levels, meaning that
binding events on lowly expressed transcripts may not be detect-
ed. Finally, CLIP protocols are variable, and aspects of the protocol
can introduce significant biases, most notably owing to the type
and concentration of RNase that is used (Kishore et al. 2011). To
derive binding sites from CLIP-seq reads, several specialized peak
detection methods have been developed to capture high-fidelity
RBP binding sites from different CLIP protocols (Corcoran et al.
2011).

Motif finding approaches can extract the dominant shared se-
quence/structure motifs that characterize the binding sites, rang-
ing from those based on sequence only (Georgiev et al. 2010;
Bailey 2011) to more recent ones that also take aspects of RNA
structure into account (Kazan et al. 2010; Heller et al. 2017;
Munteanu et al. 2018). These approaches aim at deriving short, op-
timal continuous sequence/structure motifs based on, for exam-
ple, an information theoretic objective function. Alternatively,
binding sites can also be analyzed by classification approaches,
for instance, to distinguish between bound and unbound sites.
Models with this aim use large numbers of binding sites (and pos-
sibly their flanking regions), typically for one RBP in one cell type
at a time. The trainedmodel can then be used to revealmissing tar-
gets of the RBP in the specific cell type, or to identify putative tar-
get sites that are bound in other cell types without available in vivo
binding data (Maticzka et al. 2014; Stražar et al. 2016). However,
interpreting these classifiers, for example, to derive consensusmo-
tifs as in motif finding, is usually not straightforward.

The rise of deep learninghas spurred the development of deep
neural networks (DNNs) to predict TF or RBP binding sites.
Alipanahi et al. 2015 first showed that convolutional neural net-
works (CNNs) can learn TF/RBP binding sites with high accuracy
compared to state-of-the-art methods, using only the DNA/RNA
sequences as input. Since then, several convolutional and recur-
rent neural network models for genomics data have improved pre-
diction accuracy (Quang and Xie 2016; Ben-Bassat et al. 2018). For
example, iDeep (Pan and Shen 2017) leverages a multimodal DNN
to integrate different sources of data to infer RBP binding sites. A
study concurrent to ours additionally included relative distances
of binding sites to various positional landmarks such as splice sites,
using spline transformations (Avsec et al. 2018).
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Although these deep networks
show great promise to push the accuracy
of predictions, it is generally unclear
what the models base these predictions
on. Using CNNs with sequence as input
makes it possible to inspect the kernels
or convolutional filters in the first DNN
layers. One can extract the weights of
these kernels or aggregate input subse-
quences that maximally activate the
kernels and visualize them as position
weight matrices (PWMs) (Alipanahi et
al. 2015; Pan and Shen 2017; Avsec
et al. 2018). These patterns give general
insight about low-level representations
that the model has learned, but they do
not provide information about the deci-
sion itself, especially for DNNs withmul-
tiple layers. This challenging problem
of explaining predictions has become
an active field of study, and severalmeth-
ods have been developed over the last
couple of years (Lanchantin et al. 2017;
Shrikumar et al. 2017; Sundararajan
et al. 2017).

In this work, we propose amultitask
and multimodal DNN model, Deep RBP binding preference
(DeepRiPe), set up with the aim to characterize RBP binding pref-
erences. DeepRiPe uses a modular structure to learn informative
features from DNA sequence and transcript region types, because
many RBPs have preferences for binding to specific regions of a
transcript. We frame RBP site prediction as multitask learning
problem, that is, predicting binding sites for several RBPs simulta-
neously. This enables the model to use shared information among
tasks and helps it to focus on the distinctive features of each RBP.
In turn, because several RBPsmay possess similar binding patterns,
sharing information among their predictors may help the model
when training data are limited. We evaluate DeepRiPe on a large
compendium of PAR-CLIP and eCLIP data sets and use integrated
gradients (IG) to study the impact of different model choices on
the interpretation of the model (Sundararajan et al. 2017).
Finally, we quantify the potential of DeepRiPe to study the impact
of sequence variants on binding events.

Results

DeepRiPe

DeepRiPe consists of a sequencemodule that extracts features from
the RNA sequence and a regionmodule that extracts features from
transcript locations. The features of these modules are then
merged and fed to a multitask module to predict the binding sites
ofmultiple RBPs simultaneously. Figure 1 shows a simplified archi-
tecture of the model. The sequence and region modules both con-
sist of convolutional neural networks (CNNs) (Goodfellow et al.
2016). CNNs use a weight-sharing strategy, and they are highly
successful to locate motifs, for example, in a sequence, indepen-
dent of their position within the sequence. The multitask module
contains a CNN or recurrent neural network (RNN) (Goodfellow
et al. 2016). RNNs have a “memory” that allows information to
persist so that they can learn dependencies in sequential data
(for more details about the model structure, see Methods).

Initial model development and testing made use of extensive
PAR-CLIP data sets for 59 RBPs from different publications, which
were profiled with the same flag-tagged construct in the HEK293
cell line. These libraries were compiled, quality controlled, and
processed with the same pipeline, including PARalyzer (Corcoran
et al. 2011) for peak calling and the human GRCh37/hg19 release
as reference, in a recent study (Mukherjee et al. 2019). To prepare
the input data, we obtained 50-bp nonoverlapping genome bins
and assigned a label vector with k entries corresponding to all
RBPs of interest (Methods). The input for the sequence module is
the one-hot encoded RNA sequence froma 150-bpwindow; the in-
put for the region module is the vector of one-hot encoded region
features from a 250-bp window, both centered on each 50-bp bin.
Whereas sequence features denote the nucleotide (A,C,G,U), re-
gion features denote each position within mRNA as being in a 3′

UTR, 5′ UTR, CDS, or intron region and otherwise N, meaning
no information. The flanking regions can give insight about the
context of binding sites, and by using single-nucleotide resolution,
we can capturewhether binding sites occur at boundaries of region
types (e.g., exon/intron junctions, cleavage sites) near cross-linked
sites. To account for the drastic differences in the number of called
peaks (ranging from approximately 1000 to 1,000,000 sites)
(Supplemental Fig. S1A), DeepRiPe consists of three networks
with identical architectures (Fig. 1), each of which is trained on a
subset of CLIP data sets with comparable binding site numbers,
which we refer to model-high, model-mid, and model-low
(Methods). We used 20% and 10% of the bins for validation and
test of the model, respectively, and the rest of the bins for training
the model. All downstream analyses in this study are based on the
independent test data.

Performance of DeepRiPe

Themain goal of our study is to establish interpretable classifiers as
a first step towardmodels that can quantify the impact of sequence
variation on post-transcriptional gene regulation. To start, we

Figure 1. A simplified graphic illustration of the model. The model consists of a sequence module that
extracts features from the RNA sequence and a region module that extracts features from genomic loca-
tions. The features of these modules are then merged and fed to a multitask module to predict the bind-
ing sites of multiple RBPs simultaneously.
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established the baseline performance of DeepRiPe using receiver-
operating characteristics (ROC) and precision-recall (PR) curves.
Figure 2A shows the ROC and PR curves, as well as the correspond-
ing area under the ROC (AUROC) and average precision (AP) val-
ues, for a subset of 15 RBPs that we investigate in more detail
below. The AUROC and AP values for all RBPs are provided in
Supplemental Table S1. Although all AUROC values are above
0.7, the AP scores show a wide range. The detailed distribution of
prediction scores for three RBPs shows that cases with high
AUROC and AP scores (MBNL1 and QKI) show a clear difference
between positive and negative samples, whereas there is little dis-
crimination between positives and negatives for RBPs with lower
scores (CPSF) (Fig. 2B).

Variation in classification performance can result from the
different quality of individual CLIP data sets, which may on the
one hand miss genuine binding sites (false negatives), and may
on the other hand contain substantial amounts of false positive,
low-affinity cross-linked sites. Furthermore, RBPs may belong to
complexes in which not all proteins directly bind to RNA in a se-
quence-specific manner. To investigate this, we ranked candidate
binding sites of each RBP (positive CLIP samples of test data) based
on the prediction score and extracted the 6-mers from the bottom
10% as well as the top 10% of the sites (Fig. 2C). Although the top
6-mers in the high-ranking sites are in linewith the corresponding
RBP motif(s), this is not necessarily the case for low ranking sites,
especially for RBPs with low scores. As an example, the high-rank-
ing binding sites for CPSF6 (AP of 0.26) contain mostly AAUAAA
and UGUA elements, that is, the polyadenylation signal and up-

stream motif recognized by the CFIm complex that CPSF6 is part
of (Martin et al. 2012). Low ranking CPSF6 sites are enriched in
U-rich elements that have been previously reported as CLIP arti-
facts (Krakau et al. 2017). This indicates that the RBP data used
in our study vary in terms of the fraction of sequence-specific sites
in them, indicating a potentially high rate of false positives in
some of the (PAR-)CLIP data sets or, alternatively, specification
of sites by features not accounted for in our DNNs. The aim of
our study is therefore not to achieve the best performance accord-
ing to some metric; simply striving for classification performance
can be highly misleading if the data are subject to considerable
biases.

We also observed that using GRU instead of CNN for themul-
titask module of DeepRiPe does not significantly improve the per-
formance scores (Supplemental Fig. S2), most likely because of the
lack of data for training GRU with more parameters compared to
CNN.

Interpretation of DeepRiPe

The results so far emphasize the need for an interpretable classifier
to better understand what the driving input features are behind a
good or poor performance. To this end, we applied methods that
provide model interpretability to determine which sequence and
region type patterns are informative for predicting RBP binding
sites (Methods). For each RBP and any given input sequence,
we compute an attribution map that indicates the individual
nucleotides that were most important for classification of the in-

put sequence as the target site for this
RBP. Attribution maps for several RBPs,
for positive samples of the test data
with the highest prediction scores, illus-
trate that the model is able to learn and
highlight important sequence motifs
(Fig. 3; Supplemental Fig. S3). Despite
drastic variability in the size of the data
sets and the proportion of high-scoring
peaks, these motifs in fact agree with
the knownmotifs. For each RBP, 10 attri-
butionmaps corresponding to the inputs
with the highest prediction scores (when
higher than 0.5) can be found as
Supplemental Files and the GitHub re-
pository of the model.

Looking at specific RBPs inmore de-
tail highlights a crucial advantage of
DNNs for regulatory sequence interpreta-
tion: The models are able to locate both
simple and complex patterns in the in-
put, such as one to several occurrences
of onemotif and compositemotifs, with-
out additional prior knowledge. As exam-
ples for simple patterns, we observe the
well-established UGUAHAUA binding
motif in attribution maps corresponding
to PUM2. LINE-1 ORF1p is a protein en-
coded by the transcripts of LINE-1 retro-
transposable elements and responsible
for its retrotransposition; attribution
maps of its target sequences delineate
with high precision its GAUC target mo-
tif (Mandal et al. 2013).

B

A

C

Figure 2. Performance of DeepRiPe. (A) ROC and precision-recall curves for several RBPs. The corre-
sponding AUROC and AP scores are shown in parentheses. (B) Prediction score distributions for positive
and negative samples for MBNL1, QKI, and CPSF6. (C) The 6-mer counts at the top and bottom 10% of
the positive samples for MBNL1, QKI, and CPSF6, ranked based on their prediction scores.
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MBNL1 and QKI are splicing factors with reported YGCU/
GCUU (Lambert et al. 2014) and ACUAAY (Hafner et al. 2010)
bindingmotifs, respectively, and their attributionmaps reveal sev-
eral occurrences of the motifs in the mRNAs. ELAVL2, ELAVL3,
and ELAVL4 are RBPs that regulate mRNA stability and translation
through the 3′ UTR and bind to U-rich elements (Keene 2001). The
patterns observed in their attributionmaps are consistentwith this
knowledge. ELAVL1 additionally binds to pre-mRNAs in the nucle-
us and thus to additional region types, and it also showed similar
preference for U- and AU-rich patterns (Keene 2001). Depending
on the input sequence, we are also able to identify variable num-
bers of the core U-rich pentamer.

The model is also able to locate combinations of motifs. For
example, we observe RNA polyadenylation/cleavage-related se-
quence elements—namely, AAUAAA and U/GU-rich elements lo-
cated in preferred distances to the actual site of cleavage
(Darmon and Lutz 2012)—in the attribution maps of cleavage

and polyadenylation specificity factors
(CPSFs) and cleavage stimulatory factors
(CSTFs), respectively. Additionally, the
previously reported motif UGUA is ob-
served in attribution maps of CPSF6,
which is involved in 3′-end cleavage of
RNA transcripts (Brown and Gilmartin
2003; Yang et al. 2011).

Composite motifs may reflect mul-
tiple binding modes of one protein, sites
of interacting proteins, genomic land-
marks such as start codons, or sites that
are related to a process but engaged at dif-
ferent times. If the resolution of CLIP ex-
periment is sufficient, our method is able
to discriminate among some of these
possibilities. As an example, Supplemen-
tal Figure S4 shows several attribution
maps of CPSF6 targets, in which the posi-
tion of actual (PAR-CLIP) peaks along the
input sequences are marked. We can ob-
serve that UGUA motif is always located
inside the peak, but this is not the case
for the AAUAAA motif. This rules out
that the AAUAAA motif is involved in
direct interactions. In fact, CPSF1, the
largest subunit of CPSF, binds to the
AAUAAA polyadenylation signal, where-
as UGUA is the target of the CPSF5/6
complex that interacts with UGUA up-
stream of poly(A) sites (Brown and Gil-
martin 2003; Yang et al. 2011).

Altogether, patterns observed in at-
tribution maps were consistent with pre-
viously reported motifs, in spite of not
optimizing an objective function that
directly quantifies the presence of com-
mon, strong motifs as in traditional mo-
tif finding. It also adds confidence
that the model has learned genuine se-
quence features. Notably, the DNN en-
ables us to see the actual occurrence of
the motif in the sequence, and it is in-
trinsically able to identify complex motif
patterns, such as combinations ofmotifs.

This characteristic inherent flexibility of the DNN is a clear advan-
tage over classical regulatory sequence analysis, with its rich
literature of highly specific approaches for complex motif
configurations.

Consensus motifs

To obtain consensus representations for each RBP, we aggregated
the patterns in attribution maps from all positive samples (the
whole input sequence) with prediction scores larger than 0.5.
We reasoned that high confidence binding sites most probably
contain the target motifs, but those with low probability may
result from spurious binding. To do so, we first identified the top
motif of length 6 in each attribution map and then clustered
and aligned the motifs to obtain consensus motifs (Fig. 3;
Supplemental Fig. S3; Methods). In line with patterns observed
in individual attribution maps, the consensus patterns obtained

Figure 3. Interpretation of the model using attribution maps obtained from the IG method. For each
RBP, the sequence logos corresponding to the attribution maps of three true binding sites with the high-
est DeepRiPe prediction scores are shown. Consensus motifs, obtained from attribution maps of all true
binding sites of the RBPwith prediction scores larger than 0.5, are shown beside the attributionmaps. The
ratio of the number of binding sites used to obtain the consensus motif to the number of all true binding
sites is written below the corresponding consensus motif. The observed patterns in both the attribution
maps and the consensus motifs resemble the known motif(s) for the specific RBPs: PUM2 (UGUAHAUA),
QKI (ACUAAY), MBNL1 (YGCU/GCUU), CPSF6 (AAUAAA and UGUA), and CSTF2 and CSTF2T (AAUAAA
and U/GU-rich).
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from high confidence attribution maps are also consistent with
previously reported motifs.

Benefits of the multimodal model

To assess the benefit of the multimodal model that uses both se-
quence and region type as input, and to evaluate the impact of re-
gion type in the performance of the method, we trained the
DeepRiPe model without using region type information as input.
Both sets of models were trained with similar structure and the
same hyperparameters.

The multimodal model using both sequence and region type
outperforms themodel that uses only sequence for nearly all of the
RBPs (Fig. 4A). This indicates the importance of region type for pre-
diction. The model uses region information and assigns higher
scores to the peaks that fall in a specific region. Attribution maps
also revealed that the model uses specific region preferences that
are consistent with current knowledge (Fig. 4B). The network de-
tects not only the specific region type but also the boundaries of
region types near cross-linked sites. For example, functional
ELAVL2 binding sites are predominantly located in the 3′ UTRs,
and CSTF2 binds to the 3′ end of the gene. Regional features could
also provide information about the function of RBPs. For example,
RBPs with regional impact of 3′ UTR (ELAVL2) may be involved in
RNA stability, whereas RBPs bound to the end of the genes (CSTF2)
are likely involved in termination/polyadenylation.

Benefits of multitask learning

To assess the benefit ofmultitask learning, we compared the results
of the model to those obtained by its singletask counterparts, for
which we used the same hyperparameters as for the multitask
model. We evaluated multiple strategies to define singletask train-

ing data. In the first strategy (single models 1), we oversampled
from positive samples of the training and validation data sets for
each RBP to ensure an equal number of positive samples as nega-
tive samples. In the second strategy (singlemodels 2), we used ran-
domnegative samples obtained fromunbound transcripts for each
RBP. We compared the performance (Fig. 5A) and interpretability
(Fig. 5B) of two approaches. Finally, we also subsampled from neg-
ative samples of the training and validation data sets to ensure an
equal number of negative samples as positive samples in these data
sets (single models 3) (Supplemental Fig. S5).

The overall results indicate that for some RBPs, the multitask
learning indeed boosts the performance. Assessing each of the
three DeepRiPe submodels (model-high, model-mid, and model-
low) (Supplemental Fig. S5) shows that RBPs with a low number
of samples benefit the most, which is in line with the promise of
multitask learning.

Although there is consistent but limited performance im-
provement between single- and multitask models, the interpret-
ability of single- and multitask models differed considerably.
Comparison of attribution maps of ELAVL2 (Fig. 5B) revealed
that the singletask models showed reduced importance of the
known motif and were heavily misled by the PAR-CLIP sequence
bias fromRNase T1, which cleaves after guanines and is very prom-
inent in especially early PAR-CLIP data sets (Kishore et al. 2011).
Although the strategy of using binding sites of other RBPs as neg-
ative samples (single models 1) rather than using random nega-
tives from unbound transcript (single models 2) already leads to
a slightly better delineation of the target motif, the multitask
learning approach can reveal the actual motif clearly: When learn-
ing the preferences of multiple RBPs simultaneously, the cleavage
bias does not constitute useful information to discriminate be-
tween target sites of different RBPs, because many PAR-CLIP peaks

will be equally affected by it. Multitask
learning thus puts much less weight on
protocol biases that are shared between
several RBP libraries.

DeepRiPe as a potential tool to study the

effects of sequence variants

WedevelopedDeepRiPe as a tool to iden-
tify and score sequence variants with po-
tential impact on RBP binding. To assess
this aspect specifically, we first used the
trained model to compute and compare
the attribution maps of wild-type and
mutated reporter constructs with known
differences in binding efficiency for two
RBPs.

ELAVL1 binds to the 3′ UTR of the
ERBB2 oncogene mRNA. In a recent
study (Epis et al. 2011), ELAVL1 was
shown to oppose the repression effect
of microRNA miR-331-3p in ERBB2 by
binding to a U-rich element (URE) near
the miRNA target region. Mutation of
the URE results in an experimentally de-
tected shift of ELAVL1 binding to an up-
stream site with reduced binding affinity
and weakens the repressive effect of
ELAVL1 on miR-331-3p. In line with
the reported observation, the attribution

B

A

Figure 4. Assessing the performance of the multimodal model. (A) Scatter plots comparing the
AUROC and AP scores of DeepRiPe and the singlemodal model (themodel using only sequence features).
Each data point represents an RBP and it falls above the diagonal when DeepRiPe outperforms the single-
modal model. (B) Two examples of attribution maps that correspond to region inputs obtained from the
multimodal model using IG method for the positives samples of two RBPs, CSTF2 and ELAVL2.
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maps show the loss of ELAVL1 binding site at the mutated site,
while upstream sites were not affected (Fig. 6).

As a second example, we examined the effect of mutations in
potential QKI binding sites inNUMB pre-mRNA. In a study that in-
vestigated the role of QKI in regulating NUMB alternative splicing
(Zong et al. 2014), two mutant sequences, Mut1 and Mut2, were
generated targeting two potential binding sites of QKI in the re-
gions surrounding the 3′ splice site of intron 12. Although Mut1
contains mutations only in the second binding sites, Mut2 has
mutations in both sites (Fig. 6). Compared to wild-type RNA,
with binding affinity comparable to that of a control RNA that car-
ries a bipartite QKI consensus sequence, Mut1 RNA showed re-
duced QKI binding, but Mut2 RNA lost QKI binding completely.
The attribution map of the wild-type sequence reveals a strong
binding for the second binding site and aweak binding for the first
binding site, the attributionmap of Mut1 has lost the strong bind-

ing but preserves the weak binding, and the attribution map of
Mut2 has lost both binding sites.

Identification of potentially disease-causing sequence variants

A major challenge in human genetics is to reveal the role and im-
pact of single-nucleotide variants (SNVs) that are located in non-
coding regions, especially in the context of congenital disorders
or cancer. For instance, a recent study (Kelley et al. 2018) used
DNNs to predict the influence of genomic variants on gene expres-
sion, by using thousands of epigenetic and transcriptional regula-
tory features. In post-transcriptional gene regulation, variants also
play roles, for instance by altering RBP binding sites. The naive ap-
proach to associate SNVs with alteration of RBP binding sites is to
find mutations that have been mapped to RBP targets obtained
from CLIP experiments. However, the resolution of peaks is

B

A

Figure 5. Assessing the performance of the multitask model. (A) Scatter plots comparing the AUROC and AP scores of DeepRiPe and the singletask mod-
els. Single models 1 and single models 2 are trained on random negative samples from binding sites of other RBPs and unbound transcript, respectively.
Each data point represents an RBP and it falls above the diagonal when DeepRiPe outperforms its singletask counterpart. (B) Comparing the attribution
maps obtained from the multitask and singletask models using the IG method for two positives samples of ELAVL2.

Figure 6. Assessing the impact of sequence variants using attribution maps. Sequences of wild-type and mutant constructs, in which mutations are
shown in bold lowercase letters, and their corresponding attribution maps for ELAVL1 and QKI. The potential binding sites are shown in boxes. (WT)
wild-type; (Mut) mutant.
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typically not sufficient to conclude that any mutation will alter
RBP binding. Furthermore, a CLIP experiment of one cell type or
tissue may miss targets in other cell types owing to tissue-specific
gene expression. Here, our interpretable model provides an oppor-
tunity for the identification of mutations that potentially alter the
RBP binding sites.

We therefore analyzed the potential mutational effects of
known pathogenic SNVs obtained from COSMIC (v89) (Forbes
et al. 2015) of three RBPs with known motifs and high DeepRiPe
performance (MBNL1, QKI, and PUM2).

For MBNL1 and QKI, we scored the variants that are residing
in the intronic location, and for PUM2, those that are located in
the 3′ UTRs. For each variant, we obtained the 150-bp DNA se-
quence centered on the annotated site and fed both wild-type
and variant sequences to the network to compare their prediction
scores. When we observed a sufficient difference in scores (> 0.1),
we assessed the effect of the mutation by comparing their corre-
sponding attributionmaps. Figure 7 shows that variants predicted
to alter the binding sites for the specific RBP can do so in different
ways: Variants can disrupt the binding sites, create new potential
targets, or increase/decrease RBP binding in cases in which there
are multiple potential target sites close to each other. Among the
variants with score differences higher than two, 180, 36, and 48
variants are located within CLIP peaks of MBNL1, QKI, and
PUM2, respectively.

Generalization power of DeepRiPe

DeepRiPe as a classification method should be able to distinguish
between bound and unbound sites for a specific RBP regardless
of experimental conditions and therefore to identify putative
binding sites in other cell types for which there are no PAR-CLIP
data. To assert this ability to generalize, we used six data sets of
RBPs that were profiled by both eCLIP and PAR-CLIP in different
cell lines, namely CPSF6, CSTF2T, CSTF2, PUM2, andQKI (two ad-
ditional cell lines) (VanNostrand et al. 2016). For each RBPweused
processed binding sites (intersection between two replicates) pro-
vided by the ENCODE Project (https://www.encodeproject.org)
and predicted binding for them using DeepRiPe trained on PAR-
CLIP. To define comparable input vectors forDeepRiPe, we extend-
ed the middle of each eCLIP peak with 75 bp and 125 bp both up-
stream and downstream for sequence and region modules,
respectively.

We ran the PAR-CLIP trained models on eCLIP targets,
ranked eCLIP peaks for each RBP based on their DeepRiPe predic-
tion score, and counted all possible 6-mers in the top 2000 (high
confidence) and bottom 2000 (low confidence) binding sites.
Figure 8 shows the top 10 6-mers in each set. Although the top
6-mers in high confidence binding sites resemble the motif(s)
for the specific RBP, this is not the case for low confidence binding
sites. As we observed on PAR-CLIP data, low-scoring eCLIP peaks
are therefore likely to represent weak affinity or spurious binding
sites.

Performance and interpretation of DeepRiPe on eCLIP data

DeepRiPe is not limited to PAR-CLIP data sets; although it general-
izes well, it will typically be advantageous to be retrained on data
obtained from other CLIP protocols and cell lines. For example,
we applied our method on eCLIP data generated by the ENCODE
Project (https://www.encodeproject.org) to find relevant sequence
patterns. The eCLIP data consist of target data sets for approxi-
mately 150 RBPs profiled across two cell lines, K562 and HepG2.

As we had done for PAR-CLIP data, we again trained several differ-
ent models (here five) with the same parameters for each cell line
to account for differences in the number of peaks (Methods). The
performance of the models in terms of AUROC and AP are provid-
ed in Supplemental Table S2. For each RBP, 10 attribution maps
corresponding to the inputs with the highest prediction scores
(when higher than 0.5) can be found at Supplemental Files and
the GitHub repository of the model.

Complementing in vivo CLIP data, the ENCODE Project ap-
plied RNA Bind-n-Seq (RBNS), an in vitro method to characterize
RBP binding preferences. Dominguez and colleagues compared
the top k-mers in RBNS and eCLIP data sets for RBPs profiled in
both assays (24 RBPs) (Dominguez et al. 2018) and found agree-
ment between eCLIP peaks and corresponding RBNS motifs for
most cases (17 RBPs). For RBPs with significant agreement between
in vitro and in vivo motifs, we compared the patterns in attribu-
tionmaps to the in vivo and in vitromotifs (Fig. 9). In all those cas-
es, the networks detect the relevant motifs. We next examined the
attributionmaps corresponding to two RBPs (IGF2BP2 and RBP15)
with no agreement between ENCODE in vivo and in vitro motifs
(Supplemental Fig. S6). Although the reported eCLIP motif is
CG-rich for both RBPs, the network detects different motifs that
are similar to the RBNS motif.

On investigating the attributionmaps of other eCLIP-profiled
RBPs, we found additional cases in which the model can detect
complex sequence patterns (Supplemental Fig. S7). Particularly,
the model highlighted 5′ or 3′ splice sites (GGUAG, CAG) in the
attributionmaps of several splicing factors. Although these motifs
are not involved in direct interactions of the RBPs, they can pro-
vide information for the annotation and function of RBPs.

Studying the impact of sequence variants using allele-specific

binding events of RBPs

Allele-specific binding (ASB) of RBPs provides a natural source of
data to assess the ability of DeepRiPe to predict the impact of var-
iants. Having a full compendium of models trained on eCLIP data
allowed us to make use of the results of recent methods that have
been developed specifically to identify ASB events (Bahrami-
Samani and Xing 2019; Yang et al. 2019).

Specifically, BEAPR predicts ASB events using the allele-spe-
cific mRNA expression as null hypothesis, as quantified by eCLIP
input (Yang et al. 2019). For each reported significant BEAPR
SNV, we computed three scores: motif score, model score, and
IG-score. Motif score is defined as the maximum log-odds scores
of 10-bp windows flanking the ASB SNV (both alleles) against
the reported RBP motif (position weight matrix), obtained from
pentamers identified by an RBNS assay of corresponding RBP (if
available) or from the literature. Model score is calculated as the
difference between DeepRiPe prediction scores of RNA sequences
centered on minor and major alleles. IG-score is obtained as the
difference between the sum of the attribution scores in 6-bp win-
dows flankingASB SNValleles. To account for the potential ofmul-
tiple binding sites in the input window of 200 bp, we here used
just the 30-bp sequence centered at the ASB SNV (the remaining
positions are filled with N, meaning equal probability of being
A, C, G, or U).

For RBPs with well-defined distinct, short motifs like RBFOX2
or QKI, ASB events with high motif scores also have high model
scores and IG-scores, indicating that ASB SNPs that impact the
core motif may be causal for the observed ASB (Fig. 10A). For
RBPs like HNRNPL that bind to longer, mono- or dinucleutide
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repeats, the mutation can lead to a weaker or stronger binding ef-
fect depending on its position as well as the length of the repeat.
Here, theDeepRiPe results suggest that it ismore likely that the var-
iant leads to an altered binding affinity when the repeat sequence
is short (i.e., with a lower motif score) compared to when the re-
peat sequence is long (i.e., with the highest motif score), and
this effect can again be visualized using attribution maps (as is
the case for HNRNPL with AC-rich motif) (Fig. 10B).

Discussion

We have developed a multimodal and multitask deep learning ap-
proach to model genuine, specific RBP binding events, and to ex-
tract informative features about RBP binding characteristics from
dozens of high-throughput, noisy CLIP-seq data sets. The model
recovers known sequence motifs and provides insight about RBP
binding preferences. It can also locate the sequence motifs along

Figure 7. Examples of effects of noncoding SNVs on the binding sites of MBNL1, QKI, and PUM2. The attribution maps corresponding to the wild-type
(WT) andmutant (MT) sequences for different noncoding SNVs obtained from the COSMIC database. The COSMIC ID as well as the position of the SNV is
provided for each example.
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the input sample and identify co-occurrences ofmotifs in a flexible
manner. Comparing our approach, which determines the influ-
ence of input features on the output, with interpreting the convo-
lutional layers as in previous studies (Supplemental Figs. S8–S13),
we noticed that the filters in DeepRiPe’s first layer typically repre-
sented only parts of the motifs. The network as a whole can detect
complete motifs or take nonlinear dependencies into account by
assembling multiple filters in the downstream layers, which com-
plicates direct interpretation of these filters. Additionally, some of
these filters may represent motifs in the negative set or the bias in
the data. Therefore, if there is no prior knowledge about the true
motif, it is very hard to decipher complete, biologically relevant
motifs from filters. This issue gets confounded even further in
the case of multitask learning, because individual filters may
now not be specific to one RBP.

We observed considerable variability of success across differ-
ent RBPs, and we were able to relate this to the absence of known
motifs in low-scoring peaks; CLIP-seq experiments can result in
tens of thousands of peaks, and it is highly unlikely that all of these
represent targets with defined functional consequences of bind-
ing. Rather, large numbers of peaks may reflect poor antibody
quality, sequencing artifacts, or interaction patterns of RBPs be-
yond specific sequence/structure target site definitions, such as
helicases. As many peak callers do, ourmodel assumes site-specific
binding, and for libraries for which this assumption holds true, we
aremoving closer to a scenario inwhichwe can nowuse themodel
to judge the quality of experiments, rather than to take noisy data
as “ground truth.”

Singletask and multitask models solve different classification
problems. Although the overall performance of multitask and sin-

gletask reported here appear superficially similar, themultitask for-
mulation of learning allows themodel to focus on the features that
are shared across the tasks. In this way, it is able to ignore possible
protocol-inherent biases, as these will be present in data sets across
different RBPs. We illustrate that this leads to notable differences
in the features that a model uses for its predictions, with the mul-
titaskmodels relyingmore strongly on the presence of knownmo-
tifs compared to the singletask methods. Choosing negative
samples for each RBP from binding sites of other RBPs makes the
prediction task harder, but at the same time it guides the model
to learn specific motifs. Most previous RBP target classification ap-
proaches have been set up as singletask problems, which means
that we cannot directly benchmark against them. In turn, many
singletask models have been evaluated on cross-validated, held-
out data from the same experiment. For some of these, the reported
results will likely be overly optimistic—the models will not gener-
alize well, as we have recently observed anecdotally (Munteanu
et al. 2018).

Extending our current deep network appears promising in
several directions. The method already provides functionality to
locate binding sites, score variants, and derive motifs from attribu-
tion maps. Owing to the (1) multitask learning process, in which
we combine data sources of varying quality and numbers of tar-
gets, (2) the occurrence of sometimes multiple sites per CLIP
peak, and (3) our strategy to derive motifs from well-scoring
(>0.5) inputs regions only, they are rather serving the purpose of
illustrating, summarizing, and comparing results. However, we an-
ticipate that changes to the training approach, including solutions
to the issue of imbalanced data, can allow for a fully fledged motif
finder, in which motifs represent in vivo binding affinities similar

Figure 8. Performance of DeepRiPe on eCLIP data conducted in different cell types. The top 6-mers from both the set of high- and low-confidence bind-
ing sites, based on the prediction scores obtained from DeepRiPe. The top 6-mers from the high confidence binding sites resemble the known motif(s)
for the specific RBPs: PUM2 (UGUAHAUA), QKI (ACUAAY), MBNL1 (YGCU/GCUU), CPSF6 (AAUAAA and UGUA), and CSTF2 and CSTF2T (AAUAAA and
U/GU-rich).
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to in vitro-derived motifs. This holds promise to alleviating some
shortcomings of current approaches for RBP motif discovery that
struggle because of the shortness of the binding motif and the po-
tentially large number of false positives in the input data. In this
context, interpreting DNNs may provide competitive flexibility,
because there is no need to specify parameter like motif length
or configuration. For both classification and prediction, future
work should address how to adequately consider RNA structure
within the framework of deep neural networks to advance the in-
terpretation of noncoding sequence variants.

Methods

Input data

We collected PAR-CLIP data sets for 59 RBPs from different publi-
cations, which were profiled with the same flag-tagged construct

in the HEK293 cell line. These libraries
were quality controlled and processed
with the same pipeline, including
PARalyzer (Corcoran et al. 2011) for
peak calling and the human GRCh37/
hg19 release as reference, in a recent
study (Mukherjee et al. 2019). We based
our models on this consistently pro-
cessed CLIP data, and we chose not to
lift over annotations or completely rean-
alyze this large compendiumonGRCh38
to maintain consistency with previous
results. Slight sequence/assembly varia-
tion for some individual peaks will not
affect the overall results, because our
models are based on thousands of CLIP
peaks and not on detailed investigations
of a small number of individual loci.

We chose RBPs that have between
1000 and 106 peaks and divided them
into three categories: RBPs with >105

peaks, RBPs that have between 15,000
and 105 peaks, and RBPs with <15,000
peaks. We used RBPs in each category
for training and evaluating a separate
DNN, which we refer to as model-high,
model-mid, andmodel-low, respectively.
Supplemental Figure S1 shows the num-
ber of peaks for each RBP (Supplemental
Fig. S1A) as well as the number of shared
binding sites for each pair of RBPs
(Supplemental Fig. S1B).

To prepare the data for input to the
DNN, we first split the genome into 50-
bp nonoverlapping bins and kept only
bins that overlap with the transcriptome.
For each bin, we assigned a label vector
with k entries corresponding to all RBPs
of interest to define the labeled data for
themultitask model. For each bin, the la-
bel of an RBP is 1 if more than half of its
peak region falls within a 50-bp bin, and
0 otherwise. We kept only bins with at
least one binding event. In this way, the
negative samples of one RBP may serve
as positive samples of other RBPs. We
used 20% and 10% of the bins for valida-

tion and testing of the model, respectively, and the rest of the bins
for training the model.

From eCLIP experiments of human RBPs (hg19), we collected
themerged peaks between two replicates for each RBP provided by
the ENCODE Project (https://www.encodeproject.org) and kept
RBPs with more than 1000 reported peaks. We divided RBPs into
five categories for each cell line: RBPs with >104 peaks, RBPs that
have between 7000 and 104 peaks, between 4000 and 7000 peaks,
between 2000 and 4000 peaks, and between 1000 and 2000 peaks.
To prepare the input data for the model, we used a bin size of 100
bp to account for the eCLIP peaks resolutions. Other steps are sim-
ilar to PAR-CLIP.

Model design and training

In this work, we used two types of DNN architectures, convolu-
tional neural networks (CNNs) and recurrent neural networks
(RNNs) (Goodfellow et al. 2016). More specifically, we used

Figure 9. Comparison of motifs obtained from in vitro (RBNS) and in vivo (eCLIP) experiments with
patterns observed in attribution maps. For each RBP, the motifs obtained from RBNS, eCLIP, and the at-
tribution maps, along with attribution maps for the top three inputs with the highest prediction scores,
are shown. The consensus motifs obtained from the attribution maps correspond to all true binding sites
with prediction scores larger than 0.5. For the attribution mapmotifs, the ratio of the number of binding
sites used to obtain consensus motif to the number of all true binding sites is written below the corre-
sponding consensus motif.
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a bidirectional gated recurrent network (GRU) (Chung et al.
2014) to account for possible long-range dependencies of the
features.

The model consists of a sequence module that extracts fea-
tures from the RNA sequence and a region module that extracts
features from genomic locations. The features of these modules
are thenmerged and fed to amultitaskmodule to predict the bind-
ing sites of multiple RBPs simultaneously. Figure 1 shows a simpli-
fied architecture of the model.

The sequence and region modules both have a convolution
layer followed by a rectified linear unit (Relu), a max pool layer,
and a drop out layer with probability of 0.25. We used 90 filters
with length 7 for both convolution layers. The multitask module
takes as input the concatenated features from sequence and region
modules and consists of one CNN (with 100 filters of length 5) or
one bidirectional GRU (with 60 units) and one fully connected lay-
er with 250 hidden units and Relu activations. The output layer
contains k sigmoid neurons to predict the probability of binding,
one for each RBP.

To assess the contribution of different aspects to the success
of the DNNs, we also explored variations of the architecture and
training of the model; in singletask models, in which the model
predicts the binding sites of one RBP, the output layer has only
one neuron. In all applications, we used CNNs in the multitask
module unless stated otherwise. The training was performed
with an Adam optimizer (Kingma and Ba 2014) using a mini-
batch size of 128 for 20 epochs to minimize the mean multitask
binary cross entropy loss function on the training set. To account
for imbalanced data, we used a weighted loss function that gives
higher penalties for misclassifying samples related to the classes
with less samples. The best model was chosen based on the val-
idation loss computed at the end of each epoch. We used early
stopping to prevent the possibility of overfitting during the
training.

Evaluation scores

We evaluated the DeepRiPe model, which was trained using train-
ing and validation sets, on independent test data. Classification
performance was assessed by both the receiver-operating charac-
teristic (ROC) and precision-recall (PR) curves, as well as the area
under the ROC curves (denoted as AUROC). Average precision
(AP) summarizes PR curves and is defined as the precision averaged
across all values of recall. AP is more conservative compared to the
area under the PR curve, because the latter uses linear interpolation
and can be too optimistic. AP is more appropriate than AUROC in
the case of imbalanced datawithmore negative samples, because it
does not take into account the number of true negatives.

Interpretation

Although obtaining accurate predictions of RBP/TF binding sites is
important, it is at least equally important to understand why the
model makes these predictions and which parts of the input con-
tribute themost to the output. The gradient (partial derivatives) of
an output neuron with respect to its input indicates how the out-
put value changes with respect to a small change in inputs. This is
the basic concept used in gradient-based attributionmethods that
assign an attribution value to each input feature of the network, in-
dicating how much that feature contributes to the output. Here,
the target neuron of interest is the output neuron associated
with the corresponding RBP class for a given sample, and an attri-
butionmethod can specify which nucleotides of the sample input
sequence and/orwhich region part were responsible for the output
of the RBP. In this study, we used an attributionmethod called in-
tegrated gradients (IG) (Sundararajan et al. 2017). IG computes the
average gradients of the output as the input varies along a linear
path from a baseline or reference to the input, to avoid the satura-
tion problem that occurs when computing gradients only at the
input. The baseline is defined based on the application and often

B

A

Figure 10. Assessing the ability of DeepRiPe to predict the impact of variants using ASB events. (A) Relationships between different scores of ASB events
for different RBPs. Asmotif score increases for ASB events, we observe a larger difference between themodel prediction scores (model score) and attribution
values (IG-score) corresponding to sequences with minor andmajor alleles. (B) Examples of attributionmaps corresponding to ASB events of HNRNPL with
a different length of AC-rich motif in their flanking regions.
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chosen to be zero. We used zero and 0.25 for the baselines of se-
quence and region inputs, respectively.

Calculating all the attribution values corresponding to all po-
sitions of one input sample leads to an “attribution map” of the
sample. By visualizing the attribution map as sequence logos (for
sequence) or barplots (for region), we can observe the influence
of each position on the prediction. The height of sequence logos
or bar plots indicates the importance of that position in the predic-
tion. Positions with large positive attribution values can be inter-
preted as features that were informative for the prediction of the
RBP. Visualization of the attribution maps of each input sample
for a specific RBP not only reveals the potential target motif or mo-
tifs of the RBP, but it can also be used to locate the potential bind-
ing sites of the RBP on a new sequence or to assess the effect of
genetic variants on RBP binding site.

To assess the effect of sequence variants, the wild-type and
mutant sequences are used as the input for the sequence module.
For the region module, we used N for each position in the input,
meaning equal probability of being in any region. Then we com-
pared the attribution maps corresponding to the wild type and
the mutant.

Consensus motifs

To obtain the consensusmotifs for each RBP, we aggregated the re-
sults of all the attribution maps corresponding to all the binding
sites with prediction scores larger than 0.5. First, we searched for
the top k motifs in each attribution map to obtain a list of all po-
tential motifs for each RBP. To find the topmotifs for each attribu-
tionmap, we averaged the scores in sliding windows of the desired
length, picked the window with the highest score, removed
its neighborhood, and searched again for the next motif. We con-
verted all the negative attribution scores of the obtained windows
to zero and normalized them. Subsequently, we used UMAP
(McInnes et al. 2018) to embed the top motifs obtained from the
attribution maps and clustered the embedded motifs using
DBSCAN clustering. Next, we aggregated motifs in each cluster
by averaging over corresponding nonembedded motifs and
aligned them to find the consensus motifs.

Software availability

The code for DeepRiPe is available in the Supplemental Code and
from https://github.com/ohlerlab/DeepRiPe.
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