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Abstract: The present study aimed to produce a biosurfactant from Candida yeast cultivated in a
low-cost medium made of sugar-cane molasses (5%), frying oil waste (5%), and corn steep liquor
(5%). Initially, the production at the flask-scale was investigated and then scaled up in bioreactors to
1.2, 3.0, and 50 L to simulate a real production scale. The products obtained an excellent reduction
in surface tensions from 70 to 29 mN·m−1 in the flask-scale, comparable to 33 mN·m−1 in the 1.2-L
reactor, to 31 mN·m−1 in the 3-L reactor, and to 30 mN·m−1 in the 50-L reactor. Regarding the
yield, it was observed that the isolation by liquid-to-liquid extraction aided biosurfactant production
up to 221.9 g·L−1 with a critical micellar concentration of 0.5%. The isolated biosurfactant did
not exhibit an inhibitory effect on the germination of vegetable seeds and presented no significant
acute toxicity in assays with Artemia salina and Allium cepa. Among the different formulations of
mayonnaise-like sauces, the most stable formula was observed with the addition of the biosurfactant
at a concentration of 0.5% and the greatest results were associated with the guar and carboxymethyl
cellulose gums. Thus, the biosurfactant from C. bombicola represents a promising alternative as a food
additive in emulsions.

Keywords: bioemulsifiers; industrial waste products; food additives

1. Introduction

Biosurfactants are well-known for their applicability in the environmental field, pri-
marily in the processes of bioremediation, the removal of toxic metals from the soil, oil
and gas processing, and enhanced oil recovery [1–5]. Due to their amphiphilic struc-
tures, the biosurfactants are able to increase the surface area of water-insoluble species,
enhancing their bioavailability and altering the properties of bacterial cell surfaces, mak-
ing them excellent emulsifiers, as well as foaming and dispersing agents. Compared to
the chemically-synthesized surfactants, they present some general advantages, such as
biofriendly production, higher biodegradability, lower toxicity, and potential in a range
of biotechnological applications [6]. Byproducts from industrial waste can add value to
the production of biosurfactants by composing the substrate, in addition to reducing their
pollutant effects when released into the environment [7].

Their physical and chemical properties make biosurfactants attractive in industrial
and biotechnological applications, such as in food additives, cosmetics, detergents, agri-
culture, and medicine [8–10]. The emulsifying, foaming, humectant, solubilizing, and
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anti-adhesive properties of biosurfactants are exceptionally desirable in the food indus-
try [11,12]. The most common use is in stabilizing emulsions in dairy products to create a
satisfactory texture and creaminess. Furthermore, they are added to retard agglomeration,
solubilize aromatic oils, enhance organoleptic properties in bakery products and ice cream
formulations, and stabilize fat while frying [13]. Before being applied in food products, bio-
surfactants should be evaluated due to their antimicrobial and non-stick properties [14–16]
and the absence of toxicity in vitro from a perspective of production cost reductions and
green surfactant innovations [17,18].

Among the microorganisms able to produce biosurfactants, the genus Candida has
received great attention in food processing applications, including C. intermedia, C. maltosa,
S. versatilis, and C. zeylanoides [19,20]. Studies related to optimizing biosurfactant production
from regional oil substrates and alternative glucose sources pointed out the use of Candida
lipolytica [21]. Other works employed an association of vegetable oil- and carbohydrate-
based substrates for biosurfactant production from Candida [22], while industrial waste
has emerged as a promising source for substrates [23,24]. In addition, the application of
biosurfactants from Candida bombicola [25] and Candida utilis [26] has gained attention in
the cookies industry and in the production of mayonnaise-like sauces [27,28].

Polysaccharides have been widely used in food products to control rheological and
organoleptic properties, to modify texture, stabilize emulsions, suspensions, and foams, as
well as to inhibit ice and sugar crystallization and control the release of active compounds,
such as flavors and antioxidants [29]. Xanthan gum (XG), guar gum (GG), carboxymethyl
cellulose (CMC), and starch derivatives are the most common ones in the food industry,
especially in emulsion-based products, such as mayonnaise, salad dressings, concentrated
fruit beverages [30], and bakery products [31]. Therefore, the search for a natural and
non-toxic bioproduct with stabilizing and emulsifying properties has aroused the interest
of the scientific community to develop new ingredients and additives for food products.
For this reason, a bioemulsifier produced from Candida bombicola was investigated as a food
additive in this research paper.

2. Materials and Methods
2.1. The Microorganism and Storage Medium

The Candida bombicola strain was kept at 5 ◦C in a YMA (yeast mold agar) medium to
perform the assays. The medium composition in w/v was as follows: yeast extract (0.3%),
malt extract (0.3%), tryptone (0.5%), D-glucose (1.0%), and agar (5.0%). To maintain the
cellular viability of the colony, samples were transferred monthly to new fresh media.

2.2. Microorganism Growth

The inoculum growth was carried out in YMB (yeast mold broth), similar to YMA
except for the presence of agar. Initially, the inoculum was transferred to a YMA tube in
order to obtain a young, standardized colony. Then samples were transferred to Erlenmeyer
flasks with 50 mL of YMB in each and were incubated for 24 h at 28 ◦C at 200 rpm. After
the incubation period, the samples were diluted up to a concentration of 106 cells mL−1.

2.3. Biosurfactant Production

The production of the biosurfactant was carried out by the fermentation of the yeast
samples a distilled-water-based media with 5% sugar-cane molasses, 5% frying oil waste,
and 5% corn steep liquor. The molasses were provided by Usina São José (Recife, Pernam-
buco, Brazil), the frying oil from the local food industry, and the corn steep liquor from
Corn Products S.A. (Cabo de Santo Agostinho, Pernambuco, Brazil).

2.4. Scaled-Up Biosurfactant Production

In addition to the flask production, the bioreactors of 1.2, 3.0, and 50 L (MA502,
Marconi LTDA, Piracicaba, Brazil) were employed to investigate the magnification of the
process under an orbital shake for 120 h at 28 ◦C and at 180 rpm. After fermentation, the
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broth samples were collected for the evaluation of emulsification activity, surface tension,
and interfacial tension and, thereafter, to perform the isolation of the biosurfactant.

2.5. Biosurfactant Isolation, Purification, and Characterization

To determine the emulsification activity, the samples were centrifuged at 4500 rpm for
15 min and were analyzed according to the Cooper and Goldenberg [32] methods. All the
assays were carried out in triplicate.

The surface tension (ST) was obtained with a KSV Sigma 700 tensiometer (Helsinki,
Finland) by using the du Noüy ring method. The interfacial tension (IT) was measured
against n-hexadecane in the cell-free broth after millipore filtering (0.45 µm). The tension
was considered high when it was above the value of 18 mN·m−1, and was considered low
when the values were below 7 mN·m−1. The critical micelle concentration (CMC) of the
isolated biosurfactant was determined automatically in the tensiometer [33].

The isolation was performed by both liquid extraction (LE) and acid precipitation
(AP) and was compared. For the liquid extraction methodology, ethyl acetate was used as
a solvent and the extraction was performed three times in a non-centrifuged broth. The
organic phase was then separated and sodium sulfate was used to form the precipitate.
Then, the sample was filtered and dried [33]. For the acid precipitation, the broth was
centrifuged at 4500 rpm for 20 min. The temperature of the samples was kept at 10 ◦C to
aid cell removal. The pH was adjusted to 2.0 by adding HCl (6.0 M) and was precipitated
by adding two volumes of methanol [34].

For purification, the biosurfactant was added to solvents with increasing polarities
and was analyzed in thin-layer chromatography on silica gel G60 plates (Merck, Germany).
After purification, the biosurfactant was analyzed by infrared spectroscopy and nuclear
magnetic resonance (NMR) [35].

2.6. Phytotoxicity Assays with Seeds

The phytotoxicity of the biosurfactant was evaluated in static assays to estimate
germination rates and the relative root growth of Solanum lycopersicum (tomato) and Cucumis
anguria (gherkin), as described by Tiquia et al. (1996) [36]. The isolated biosurfactant was
prepared in distilled water at different concentrations (1/2 CMC, 1 CMC, and 2 CMC). The
assays were performed in triplicate for 5 days in the absence of light. At the end of the
experiments, the relative seed germination (RSG), relative root growth (RRG) (≥ 5 mm),
and the germination index (GI) rates were calculated as in Equations (1)–(3), respectively.

RSG (%) =
germinated seeds in contact with the samples

germinated seeds f rom control sample
∗ 100 (1)

RRG (%) =
average growth o f roots in contact with the samples

average growth o f roots f rom control sample
∗ 100 (2)

IG (%) =
RSG × RRG

100
(3)

2.7. Toxicity Assay with Artemia salina

The toxicity of the biosurfactant was also evaluated against brine shrimp eggs. The
larvae were incubated for 24 h before use. Biosurfactant samples were prepared in marine
synthetic samples (33 mg. L−1) at three concentrations (1/2 CMC, 1 CMC, and 2 CMC).
The assays were carried out in 10-milliliter penicillin flasks with 10 larvae and 5 mL of each
sample for 24 h and the living organisms were counted [37]. The control was prepared with
a marine synthetic sample with no biosurfactant. The threshold of toxic concentration was
set as the lower concentration able to kill the organisms within 24 h. All the assays were
carried out in triplicate.
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2.8. Phytotoxicity Assays in Onions (Allium cepa L.)

Allium cepa L. specimens were also used as an indicator of toxicity. The biosurfactant
samples were also prepared at 1/2 CMC, 1 CMC, and 2 CMC. The inhibition of root growth
was observed regarding the exposure to samples as described by Jardim [38]. The assays
were performed in triplicate.

2.9. Biosurfactant as a Food Additive

The emulsifying property of the product was assessed regarding a mayonnaise-like
sauce with the following composition: 40% corn oil (Bunge, Recife, Brasil), 40.3% water,
10% vinegar, 4% powder egg (Naturovos LTDA, Salvador do Sul/RS Brasil), 2% sugar,
2% salt, 1% mustard flour, and 0.5% instant starch (Unilever LTDA, Recife, Brasil) [39]. To
this formulation, four thickening agents were investigated: Arabic gum, xanthan gum,
guar gum, and carboxymethylcellulose at amounts of 0.2, 0.5, and 0.8%, until the most
consistent sauce was obtained. The pH of each sample was measured and the viscosity of
each formulation was determined at 27 ◦C by using a rotary viscometer (NDJ-1, Brookfield).

Once the best conditions were set, the formulation was elaborated with the isolated
biosurfactant at concentrations ranging from 0.2 to 0.8% to obtain the most stable emulsion.
The samples were stored at 4 ◦C for 6 months and then they were visually inspected [40].

2.10. Microbiological Analyses

All the samples were evaluated after their 6-month refrigeration at 4 ◦C (± 2 ◦C)
regarding microbiological parameters. The analyses were carried out in the Laboratory of
Animal Source Foods at the Federal University of Pernambuco, according to the methods
recommended by AOAC (2005) [41]. The investigated parameters were in accordance with
the current Brazilian legislations: the determination of the most probable number (MPN)
of total and thermotolerant coliforms, the Staphylococcus aureus count, and Salmonella sp.
presence [42].

3. Results and Discussion
3.1. Biosurfactant Properties

The CMC is the minimum concentration of a biosurfactant necessary for the maximum
reduction in the surface tension of water and the onset of the formation of micelles. This
concentration is used as a measure of the efficiency of a biosurfactant. The biosurfactant
produced by C. bombicola had a CMC of 0.5%, which falls within the range that is considered
promising for the production of a biosurfactant.

The biosurfactant from C. bombicola exhibited low interfacial tension (3.5 mN·m−1),
which indicates the facility in forming stable emulsions. The reduction in surface or
interfacial tension is considered one of the main parameters for the detection of surfactant
presence [43]. In addition to this, the stability of oil/water emulsions is also relevant as
a parameter because the ability of a molecule to form a stable emulsion is not always
linked to a reduction in surface tension [44]. Luna et al. [45] found an interfacial tension
of 12.5 mN·m−1 for a biosurfactant from Candida sphaerica cultivated in an industrial
waste-based broth.

The use of industrial residues can reduce the cost of biotechnological processes by
approximately 30% [44]. In the present study, the biosurfactant from C. bombicola was
obtained by its cultivation in distilled water, supplemented with 5% canola frying oil,
5% molasses, and 5% corn steep liquor.

The use of bioreactors stands out among the strategies that can be used to increase
biosurfactant production yields, as such equipment, which constitutes a completely closed
system that enables the control of emissions, the greater control over the different variables
of the process (pH, temperature, humidity, etc.), the better incorporation of additives,
and a reduction in processing time, all of which are fundamental aspects in industrial
applications [44].
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Table 1 exhibits the estimated properties of the biosurfactants produced in flask and
bioreactor scales.

Table 1. Biosurfactant properties when produced in flask scale and 1.2-, 3.0- and 50-L bioreactors.

Method
ST a

(mN·m−1)

Emulsification Index (%) Yield (g·L−1) b

Canola Oil Corn Oil Soya Oil LE Isolation AP Isolation

Flask 29.0 ± 1.0 49.0 ± 1.2 47.0 ± 0.9 45.0 ± 1.1 12.5 ± 1.4 5.9 ± 1.3
1.2-L bioreactor 31.0 ± 1.1 29.0 ± 1.4 32.0 ± 0.9 29.0 ± 1.1 19.8 ± 0.9 2.8 ± 1.0
3.0-L bioreactor 33.0 ± 1.3 10.0 ± 1.2 10.0 ± 1.1 12.0 ± 1.6 61.0 ± 0.8 1.1 ± 1.1
50-L bioreactor 30.0 ± 1.3 59.0 ± 0.9 58.0 ± 1.1 57.0 ± 1.2 221.9 ± 1.1 2.4 ± 1.3

a ST = surface tension; b LE = liquid-extraction; AC = acid precipitation.

As can be seen in Table 1, the biosurfactant exhibited a great reduction in ST when
compared to water (70 mN·m−1) with the greatest reduction in the flask scale and an
increasing reduction when the bioreactor is magnified. The use of different oils presented a
minor influence regarding the emulsification activity, with an average index of 47% for the
flask-scale process and 30, 11, and 58% in 1.2-, 3.0-, and 50-L bioreactors, respectively. LE
was demonstrated to be more effective for isolating the biosurfactant and the scale-up was
notably favorable to the process, allowing the obtainment of up to 221.9 g·L−1 of product.

Rau et al. [46] found yields of sophorolipids up to 300 g·L−1 using C. bombicola ATCC
22,214 cultivated in a bioreactor with waste and glucose. Almeida et al. [2] employed
C. tropicallis grown in 2.5% of molasses and 2.5% of waste canola oil in the production of
a biosurfactant. The surface tension was equivalent to 29.52 mN·m−1 with a yield of up
to 7.0 g·L−1. Luna et al. [45] grew C. sphaerica in a medium made of 9.0% soya oil and
9.0% corn steep liquor and the surface tension was equivalent to 25 mN·m−1 and the yield
was estimated at 8.0 g·L−1.

Marti et al. [47] described the production of surfactin from genetically modified
strains of Bacillus subtilis, a mineral medium containing 2% glucose in shaker flasks and
a 5-L bioreactor. In contrast to the present results, surfactant production was 6.2 g·L−1

in flasks but did not surpass 0.006 g/L in the bioreactor. These findings demonstrate
the production capacity of C. bombicola and its efficiency regarding different production
volumes in comparison to Bacillus subtilis.

Marti et al. (2014) described the production of surfactin from genetically modified
stains of Bacillus subtilis in a mineral medium containing 2% glucose in shaker flasks and
a 5-L bioreactor. In contrast to the present results, surfactant production was 6.2 g/L in
flasks, but did not surpass 0.006 g/L in the bioreactor. Growth kinetics of Candia tropicalis
and biosurfactant production

3.2. Biosurfactant Characterization

The H1-NMR and C13-NMR spectra for the biosurfactant are shown in Figures 1 and 2,
respectively.

In Figure 1, it is possible to observe a signal in the region below 1 ppm, which can be
associated with the (CH3)n group, and peaks between 1 and 2 ppm, which corresponds
to the signal of (H2C-CH2)n e (CH2)n. The characteristic peaks in the range of 2 and
3 ppm indicate the presence of (HC=CH-CH2)n e (CH2)n groups. The signal observed at
around 5.4 was associated with the (HC=CH)n group in the structure of the biosurfactant.
Therefore, hydrogen bonds for aliphatic carbon and sp2-hybridized carbon can be noted in
the spectrum. A weak peak in the range of 7 and 8 ppm may be indicating the presence of
the carboxyl acid group.

According to Figure 2, there is a signal around the 180-ppm region, which corroborates
this biosurfactant as a carboxylic acid compound. The two sharp peaks at around 130 ppm
indicate the carbon double-bonds, and the aliphatic carbon may be represented by the
signals in the 10 to 40 ppm range. These results suggest that the biomolecule of the surfac-
tant is a type of carboxylic acid metabolite, likely bonded to carbohydrates (simple fatty



Foods 2022, 11, 561 6 of 12

acids), as described for other glycolipid biosurfactants produced by yeasts. Additionally, it
is possible to observe a triplet of sharp peaks in the 80-ppm region that may be related to
the solvent.
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According to Ribeiro et al. [26], Candida utilis produces a biosurfactant structure of a
metabolized fatty acid rich in oleic acid, which points out a variety of fatty acid proportions.
Other reports in the literature described biosurfactants with a glycolipid nature, such as
the product of Bacillus sp. IITD106 [48]. FTIR and NMR analyses found a saponin structure
with two sugar groups and a 5-ring triterpene sapogenin unit. Santos et al. [21] reported
promising results by growing C. lipolytica in media based on a waste rich in animal fat.
The characterization of the biosurfactant suggested its glycolipid structure. According to
Figure 2, similar results were found by Campos et al. [49] with surfactant from Candida utilis.

3.3. Phytotoxicity Assays with Seeds

As was mentioned before, biosurfactants are expected to present low toxic effects. Even
though toxicity assays are recommended to guarantee its safe application as an ingredient
in food formulation, phytotoxicity assays are of easy operation and execution, fast, and
have a low cost, which is highly regarded for scientific research. The germination index
(GI) takes into consideration the relative germination measure of seeds and the relative
unidimensional growth of roots to estimate the acute toxicity in the development of seeds,
such as tomato and gherkin seeds. No inhibitory effects could be noted in seed germination
rates and the growth of roots for both tomato and gherkin seeds. The elongation of roots
was significant even at high concentrations of biosurfactant and 1/2 CMC, 1 CMC, and
2 CMC. For the biosurfactant isolated by acid precipitation, IG was estimated at 85, 38, and
22% for the tomato and 100, 100, and 80% for the gherkin, respectively. For the samples
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isolated by liquid extraction, germination index results of 64, 45, and 0% of were observed
for tomatoes, while 41, 28, and 0% were observed for gherkins. In addition, secondary roots
were observed to grow in the assays with the gherkin for isolation by liquid extraction. The
experiments demonstrated a downtrend in seed germination rates when the biosurfactant
was enhanced, as is shown in Table 2.

Table 2. Toxicity assays of biosurfactant from C. bombicola grown in 5% waste oil, 5% molasses, and
5% corn steep liquor with tomato and gherkin seeds.

Germination Index of Isolated Biosurfactants (%)

1/2 CMC CMC 2 CMC

Seeds LE a AP b LE AP LE AP

Cucumis anguria (gherkin) 100% ± 0.1 41.0%± 0.1 100% ± 0.1 28.0% ± 0.1 80.0% ± 0.2 0% ± 0.1

Solanum lycopersicum (tomato) 85.0% ± 0.1 64.0% ± 0.1 38.0% ± 0.1 45.0% ± 0.2 22.0% ± 0.2 0% ± 0.1
a LE = biosurfactant isolated by iquid extraction; b AP = biosurfactant isolated by acid precipitation.

Table 2 demonstrates that the GI was reported to be lower than 80% for biosurfactants
at 1/2 CMC produced from Candida lipolytica UCP0988 grown in a medium containing 5%
animal source fat and 2.5% corn steep liquor, according to Santos et al. [21]. On the other
hand, Silva [50] found no significant inhibitory effect in the germination rates and root
growth of lettuce, cabbage, and coriander seeds for a biosurfactant produced from the yeast
9II. Phytotoxicity against cabbage (B. oleracea) was investigated for another biosurfactant
sample from Pseudomonas sp by Silva et al. [51]. The authors also found the absence of
significant toxicity for seed germination and root elongation.

3.4. Toxicity Assay with Artemia salina

The toxicity against aquatic organisms is relevant in the case of any application the
product may have in aquatic ecosystems. Artemia salina is a standard marine living being
commonly employed in ecotoxicology due to the feasibility of maintenance on a lab scale,
simple growth conditions, and a short life cycle. The assays demonstrated that the AP
isolated biosurfactant caused 50 and 100% lethality rates when at high concentrations of
0.5% (CMC) and 1% (2 CMC), respectively. The LE isolated biosurfactant did not exhibit
significant lethal rates.

Santos et al. [21] found no significant lethal rates for Artemia salina with biosurfactant
samples at 0.02 and 0.06%, while 100% of the larvae were found to be dead at 0.08%. A
report from Santos [52] exhibited no significant lethal rates for a biosurfactant derived from
Streptomyces sp. DPUA1559 at amounts of 50, 100, and 150 mg·mL−1 in CMC (10 mg·mL−1).
The biosurfactant produced from Pseudomonas aeruginosa exhibited lethal rates at 100 and
50% on the organisms at concentrations of 700 and 525 mg·L−1, respectively [36]. Lower
concentrations presented no significant lethal rates and the same was observed for the
cell-free broth.

3.5. Phytotoxicity Assays in Onions (Allium cepa L.)

Plants, such as onions, have been widely explored for the ecotoxicology assessment of
several pollutants [53]. The advantages of this vegetal organism are related to its low cost,
easy growth, non-seasonal availability, and feasibility to both acute and chronic toxicity
assays under laboratory or environmental conditions [54]. The phytotoxicity, estimated
by the inhibition of root elongation on mature organisms or seed germination, is the most
common indicator [55]. The experiments are fast and easily executed. The toxic effect was
regarded from the weight gain and the elongation of the roots at different concentrations of
the biosurfactant.

The isolation by LE demonstrated no significant difference regarding root length
and weight gain in the investigated concentration range. The product, from AP isola-



Foods 2022, 11, 561 8 of 12

tion, displayed a downtrend of growth when the concentration was elevated, and both
results were compared with the control samples. The surfactant Tween 80, as reported
by Grippa et al. [56], did not exhibit cytotoxic effects over Allium cepa after 72 h of expo-
sure. Therefore, toxicology has acted as a powerful tool to estimate the potential risks to
the ecosystem and to identify compounds able to compromise the metabolism of natural
occurrence biota [21].

3.6. Biosurfactant as a Food Additive
3.6.1. Selection of the Thickening Agent

The Arabic gum, xanthan gum, guar gum, and carboxymethylcellulose presented
different results in a previous evaluation after 30 days. All the samples with Arabic gum
exhibited a thin character and the presence of two phases after 15 days. Xanthan-derived
formulations presented thick samples with serum formation in the 0.8% sample. For guar
gum and carboxymethylcellulose, no alteration could be observed within 4 weeks. It was
possible to note the significant increase in dynamic viscosity when the concentration of the
thickening agent was also increased, especially for guar gum and xanthan gum. For Arabic
gum, the dynamic viscosity did not present a strong relation with the enhancement of its
concentration in the formula.

Xanthan gum is an anionic gum commonly seen in oil/water emulsions, such as dress-
ings and mayonnaise-based sauces, to achieve a jellified texture. It is highly pseudoplastic
and remarkably stable regarding acidic conditions, temperature, and enzymes [30]. Guar
gum is made of polysaccharides with a high molecular weight and can be found in many
applications in the food industry. When incorporated at around 1 g for each 100 g, it is able
to provide gelation, emulsification, and thickening properties to food products. At superior
rates, it presents high viscosity and limits the application of these types of products [57].

Chivero et al. [58] evaluated soy soluble polysaccharides, octenyl succinate starch, and
Arabic gum in the production of mayonnaise and related a similar result for Arabic gum,
especially when oil composition exceeded 60% v/v. Martín-Alfonso et al. [59] studied the
rheological properties of aqueous solutions containing guar gum and xanthan gum, ranging
between 1–3% (w/w), and observed that the rheokinetics of the process, and the resulting
rheological responses, were extensively altered by the hydrocolloids. This suggests that
xanthan solutions behaved as weak gels, whereas the entanglement and the formation of
a viscoelastic gel-like structure were referred to the guar gum samples. Bak and Yoo [60]
observed a synergic effect of viscosity in xanthan and guar gums, only in the presence of
sodium chloride and sucrose.

Regarding the pH of samples, the average values were around 3.70 and the lowest
average was obtained with guar gum at 6.63. All the products are under the recommenda-
tion for mayonnaise formulas. The pH-acceptable range is from 3.3 to 3.8. The results are
displayed in Table 3.

Nanoemulsions, produced by the addition of rhamnolipids, were unstable at around
pH 4.0 when a thin layer of oil over the surface was formed after storage. The authors
concluded that the electrostatic repulsion was not strong enough to overcome any at-
tractive interactions (e.g., van der Waals) acting between the droplets, thereby leading
to droplet aggregation at pH 2 and 3 [61]. Xanthan gum can keep viscosity constant
within a wide range of temperatures and pH, forming high viscous samples when at low
concentrations [30]. Emulsions with surfactin, on the other hand, remained stable only
when the pH was between 6.0 and 9.0, because lower pH conditions, which are easily
found in food, cause the precipitation of the aspartate and glutamate acid byproducts, as
stated by Hoffmann et al. [62]. It suggests the low applicability of this last compound in
food emulsions.

3.6.2. Biosurfactant Isolation Influence on Emulsion Stability

Since guar gum and carboxymethylcellulose remained stable after 30 days, they were
selected for the investigation of the influence of the biosurfactant isolation method on



Foods 2022, 11, 561 9 of 12

the stability of the emulsions. The stability parameters were evaluated according to the
absence of serum and the separation of phases when the concentration of the biosurfactant
was varied. The collected data is presented in Table 4 and the ‘+’ sign was attributed to
two-phase samples while the ‘−’ sign represented visually stable emulsions.

Table 3. pH measurement for mayonnaise-like sauces produced with isolated biosurfactant from
Candida bombicola and different thickening agents.

Thickening Agent
(% p/p) pH

Xanthan gum
0.2 3.70
0.5 3.70
0.8 3.71

Guar gum
0.2 3.56
0.5 3.63
0.8 3.70

Carboxymethylcellulose
0.2 3.78
0.5 3.76
0.8 3.66

Arabic Gum
0.2 3.71
0.5 3.71
0.8 3.71

Table 4. Presence and absence of phase separation in mayonnaise-like sauces with guar gum and
CMC according to the concentration of biosurfactant isolated by LE and AP.

Biosurfactant Concentration
(% v/v)

Guar Gum Carboxymethylcellulose

LE Isolation AP Isolation LE Isolation AP Isolation

0.2 + − − +
0.3 + + + −
0.4 + + − +
0.5 − − − −
0.6 − − − +
0.7 − + + −
0.8 + + − −

As can be seen in Table 4, when the biosurfactant is at 0.5% v/v, all the products
exhibited the desirable stability of emulsions. However, the serum was observed for three
out of the four formulations when the concentration or biosurfactant was at 0.3%. The
concentration of the biosurfactant was then selected at 0.5% for further analyses.

Campos et al. [28] investigated the manufacturing of mayonnaise-like sauces with a
biosurfactant from Candida utilis in the presence and absence of thickening agents. The
authors reported the best results when guar gum was associated with 0.7% of biosurfactant,
preserving the emulsion after 30 days. Chen et al. [63] employed saponin, which ranged in
concentration from 1.5–3.0% (w/v) in ultrasonic emulsification, and they found out that the
higher the surfactant concentration, the larger the interfacial area, which lowered the liquid
interfacial tension compared to other emulsifiers, even after 30 days of storage.

3.7. Microbiological Analyses

None of the samples presented microbial contamination after 180 days of storage. Ac-
cording to the results, the absence of Salmonella sp./25 g was noted, the coagulase-positive
staphylococci levels were below 10 CFU·g−1, and the coliforms below 3.0 MPN·g−1 at
45 ◦C. The microbiological analyses were in accordance with the mayonnaise-like emulsion
presented by Campos et al. [49] with a biosurfactant from Candida utilis. These results
corroborate the premises that all the steps of the production process were monitored from
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the selection to the use of ingredients and with respect to good manufacturing practices to
prevent any risks to the health of consumers.

4. Conclusions

In the present work, the production of biosurfactant by Candida bombicola was attained
in the laboratory at a large scale using a low-cost growth medium. The product presented
surfactant and emulsifying properties and a desirable yield. The scale-up in bioreactors
favored the process for future industrial applications. The isolated biosurfactant exhib-
ited no toxicity, which shows it is safe to incorporate in sauces and dressings due to its
attractive physical, chemical, and textural properties. The success in the properties of a
mayonnaise-like sauce could be observed. Thus, the biosurfactant demonstrated promising
characteristics to act as an emulsifying additive in food products.
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