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The information from the tick cattle microbiota suggests that the microbial populations

may modulate a successful infection process of the tick-borne pathogens. Therefore,

there is a need to know the microbial population and their interactions. In this mini-review,

we present several examples of how microbiota regulates the survival of pathogens

inside the tick and contributes to fitness, adaptation, and tick immunity, among others.

The communication between the tick microbiota and the host microbiota is vital to

understanding the pathogen transmission process. As part of the tick microbiota, the

pathogen interacts with different microbial populations, including the microorganisms

of the host microbiota. These interactions comprise a microsystem that regulates

the vectorial capacity involved in tick-borne diseases. The knowledge we have about

the vectorial capacity contributes to a better understanding of tick-borne pathogens.

Additionally, using approaches based on multi-omics strategies applied to studying the

microbiota and its microbiome allows the development of strategies to control ticks. The

results derived from those studies reveal the dynamics of the microbiota and potential

targets for anti-tick vaccine development. In this context, the anti-microbiota vaccines

have emerged as an alternative with a good prognosis. Some strategies developed

to control other arthropods vectors, such as paratransgenesis, could control ticks and

tick-borne diseases.

Keywords: bovine host, vector of transmission, metagenomics, microbiota, microbiome, vectorial capacity, ticks

INTRODUCTION

Infectious diseases have been one of the main restrictions worldwide for animal production
improvement, with significant economic losses. The significant risk that endangers animal health
is the arthropod vector and the pathogens they transmit and those that have been controlled or
eradicated, and after a while, they reemerge. Ticks are hematophagous ectoparasites, the main
biological vectors of numerous infectious diseases (tick-borne diseases) (1–3) (Figure 1).

Although the study of the tick microbiota and the biological processes in which it participates
are still in progress to date, there is not enough information about its role in the vectorial
capacity, infection, and pathogen transmission. This study opens up a research field to study
and elucidate new targets for developing drugs/vaccines to prevent diseases that affect animals,
including humans. The development of anti-tick vaccines based on the microbiota represents a
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promising approach to control tick infestations. In this regard,
the study of the tick microbiota contributes to elucidate the
interactions that may be influencing vital processes and then
avoiding the transmission of pathogens (4, 5). However, there
is much work to obtain an effective drug or vaccine to control
tick-borne diseases and the pathogens that cause them.

A BRIEF OVERVIEW OF TICK-BORNE
DISEASES IN CATTLE

During the last years, the number of tick-borne diseases caused
by bacteria Anaplasma, Ehrlichia, and Coxiella has increased,
affecting livestock productivity (6). Anaplasma marginale causes
bovine anaplasmosis resulting in economic losses to the
cattle industry due to a significant reduction of beef and
dairy production (7). More recently, some coinfections with
piroplasmas and other Anaplasmataceae reported in cattle and
buffaloes show the circulation of diverse genotypes of A.
marginale worldwide (8).

So far, there exist more than 20 genomes and draft genomes
of A. marginale, whose content could contribute to the
identification and participation of the genes involved in the
microbiota–vector–host interaction (9–11).

Ehrlichia ruminantium is transmitted by Amblyomma and
causesHeartwater, the most important livestock disease in Africa
and the Caribbean, while the emerging Ehrlichia minasensis also
infects cattle (12–14). As an example of the intrinsic interaction
between pathogen and the host cell, molecular studies reveal
that the genome of Ehrlichia sp. has lost genes associated with
metabolism whose activities are covered by the host cell (15).
In the genomic context, only a few genomes are available for
Ehrlichia species (16, 17).

In European livestock, coxiellosis, caused by Coxiella burnetii
and transmitted by Hyalomma spp. and Rhipicephalus spp. has a
significant prevalence in the Mediterranean countries (18).

At the moment, there exist more than 75 Coxiella genomes
reported that contain a large number of genes participating
in adhesion, invasion, intracellular trafficking, host-cell
modulation, and detoxification (19).

In Africa, Ben Said et al. (20) interestingly identified the
spirochaetes, Borrelia burgdorferi, in goats, sheep, camels, and
cattle, transmitted by Rhipicephalus and Hyalomma. The recent
molecular detection of Rickettsia spp. and C. burnetii in cattle
and water buffalo in Luzon Island of the Philippines reveals
the potential zoonotic transmission mediated by Rhipicephalus
microplus (21).

Hemoplasmosis is not strictly considered a tick-borne disease;
however, Mycoplasma wenyonii and Candidatus Mycoplasma
haemobos reported in cattle are probably transmitted by
ticks (22–25).

CATTLE TICK MICROBIOTA
INTERACTIONS AND VECTORIAL
CAPACITY

The microbial communities that comprise the tick microbiota
include pathogens, symbionts, and commensals acting as a

dynamic and integrative microecosystem, changing in time and
scale, that interact into a macrosystem that includes the host
(26, 27). Additionally, external factors modulate the diversity
of the microbiota: temperature, humidity, geographic location,
sex and species, blood intake from the vertebrate host, or even
the physical location inside the organs of the tick (gut, ovaries,
salivary glands) (28, 29).

Interestingly, this microbiota also contributes to fitness,
nutritional adaptation, development, and reproduction and is
also involved in establishing pathogens inside the tick (30, 31).

Currently, there exists a close relationship between pathogens
and the tick microbiota, which affects their vectorial capacity.
Also, colonization, replication, ormaturation of an infective form
of a pathogen depends mainly on the microbiota composition.

During the blood intake, the hematophagous vector can
acquire pathogens from an infected host that transmit to a
new host. This is known as vector competence, the ability
of a vector to maintain the pathogen development until its
transmission to a new host. Vector competence is a component
of vectorial capacity that comprises the interactions between
vector–pathogen and vector–host, influenced by behavioral and
environmental factors such as vector density, longevity, host
preference, and feeding habits (32).

In tick cattle, the study of interaction microbiota–vector
is still scarce. However, the results reported in other species
could be applied as alternatives to identify new targets to
control ticks. In addition, after blood intake, some complex
interactions are carried out by the triad microbiota–vector–host
involved in the pathogen transmission from one host to another
(Figure 2). In this regard, the first interaction occurs between
the tick and the microbiota of the bovine skin, in which several
families of bacteria are present, including Corynebacteriaceae
and Staphylococcaceae (teat skin), and Firmicutes, Spirochaetae,
Bacteroidetes, and Actinobacteria (interdigital skin) (33, 34)
(Figure 2). The microorganisms penetrate from the surface of
the skin host deeper into the dermis and might be inducing local
immunomodulation (35). For instance, the bacteria Prevotella sp.
and Neisseria sp., usually found in the skin and mucosal surface
of the host, respectively, have been identified in the midgut of
I. ricinus blood-fed females, regardless of the time point of the
blood feeding course (36, 37). In contrast, Miranda-Miranda et al.
(38, 39) found that bacteria Staphylococcus saprophyticus and
Staphylococcus xylosus, located in the skin of bovine, can produce
a lethal infection in fully engorged female ticks that lose the ability
to oviposit and lead them eventually to death. These findings
show that the composition of the microbiota does not always
favor tick infestations and pathogen transmission.

A second interaction occurs when the microbiota of the
salivary glands is in contact with the pathogen that enters the
tick. Here, the microbiota has an essential interaction with the
pathogens, as in Amblyomma americanum, where the Coxiella-
related symbionts in the salivary glands impair the transmission
of Ehrlichia chaffeensis (40). These studies illustrate the pathogen
interactions occurring in the salivary glands and highlight the
role of the tick microbiota that regulates pathogen growth.
Alternatively, during the pathogen inoculation, the microbiota
of the saliva interacts with the host’s components regulating the
pathogen passage from the salivary glands to a new bite site.
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FIGURE 1 | Mode of acquisition of tick-borne pathogens. The different stages of tick (larva, nymph, and adult) may transmit bacteria to intermediate or final host.

The tick gut microbiota possesses different microorganisms
that participate in metabolic and digestive processes. In this
tissue, the blood and the pathogens ingested interact and alter
the microbiota, and a third interaction occurs. In such a way, the
altered microbiota, which usually provides cofactors, vitamins B,
and folate (e.g.,Coxiella, Francisella, Rickettsia, respectively), may
affect the tick’s development, as occurs in Ornithodoros moubata,
where antibiotic-based elimination of Francisella endosymbionts
compromise the nutritional status of vitamin B, which results in
some anomalies in tick development and hampers nymph growth
and molting to adults (41). Another role of the microbiota is to
regulate the pathogen colonization of the tick gut. For example, in
Ixodes scapularis a gut microbiota composed of a high abundance
of Rickettsia, Thioclava, and Delftia, and a low abundance
of Aquabacterium, Brevibacterium, and Novosphingobium may
influence B. burgdorferi colonization negatively (42).

Once established, the pathogens cross the peritrophic
membrane and the gut barrier to disseminating to other tissues
through the hemolymph. Here, the presence of hemocytes and
effector molecules of the tick immune response represents a
hostile environment for the pathogen; however, the information
about the role of the microbiota of the hemolymph and its
interaction is scarce except for the finding of Staphylococcus
aureus in Rhipicephalus decoloratus and Rhipicephalus geigy,
which were isolated from the adult females hemolymph (43).

Finally, the pathogen could likely take two routes. The first,
pathogens redirect to the salivary glands and transmit to a
new host, and the second, pathogens transmit by transovarial

transmission. In both cases, the pathogen would be interacting
with the microbiota of the tissue.

Although the information about the effect of tick-borne
pathogens and microbiota is scarce, the report of co-occurences
in epidemiological studies has suggested the impact of pathogens
on the tick and vice versa (27). For example, the microbial
community in the tick gut is related to the virulence and
proliferation of Anaplasma sp. and Babesia sp. (27). Adegoke
et al. (44) reported that microbial diversity and composition
of R. microplus decreases when infected with Theileria sp.; this
phenomenon is called pathogen-induced dysbiosis. A similar
effect occurs in D. andersoni where endosymbiont Francisella sp.
increases the successful pathogenic colonization of Francisella
novicida and A. marginale (45, 46).

To address the potential role of the I. scapularis gut bacteria
in modulating B. burgdorferi, (42) compared dysbiosed larvae
and larvae fed on gentamicin-treated mice. They found that both
types of larvae significantly increased engorgement weights and
decreased B. burgdorferi colonization, suggesting that tick-altered
gut microbiota impairs pathogen colonization.

On the other hand, the induction of I. scapularis
antifreeze glycoprotein (IAFGP) occurs in the presence of
A. phagocytophilum, which sequesters IAFGP to alter its
accumulation in the tick midgut to inhibit the development of
biofilms, thus allowing the colonization and establishment of the
vector (47, 48).

Understanding how microbial diversity of ticks changes in
the presence of pathogens could help propose better strategies
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FIGURE 2 | Modulation of the interaction microbiota–pathogen–tick–host during blood intake. Upper panel, the microbiota of the tick interacts with the pathogens

ingested during blood intake in different organs of the tick (salivary glands, gut, ovary). The microbiota of these organs promotes the establishment and reproduction

of the pathogens and, in some cases, in the vectorial capacity to transmit the definitive host. Lower panel, interaction of the microbiota of the bovine blood with the

microbiota of the tick. The microbiota of the bovine’s skin also interacts with the tick. Created in the Mind the Graph platform.

to prevent colonization and establishment in the vector (49).
Also, the interaction of the tick microbiota with the host
microbiota affects vector competence; therefore, the elucidation
of the mechanisms involved in these interactions allows the
identification of molecular drivers for tick-borne disease (50).

METAGENOMIC APPROACHES TO STUDY
PATHOGENS TRANSMITTED BY TICKS

So far, we have known that ticks have a great capacity to transmit
various pathogens that cause different diseases in cattle. However,
the function of the microbiota within the tick life cycle is
still unclear due to the significant limitation of their isolation,
cultivation, and propagation in culture media and the difficulty
of infesting animals with ticks under controlled experimental
conditions (30, 51). Because of these drawbacks, the use of
next-generation sequencing, molecular techniques, and or multi-
omics technologies represents valuable tools in the study of the
tick microbiota and its microbiome.

In this regard, the use of 16S rRNA gene-targeted
metagenomics provides new insights into tick-borne pathogens
(52). The use of this technique has allowed the identification of

bacteria in ticks such as R. microplus, Hyalomma anatolicum,
and Haemaphysalis montgomery from cows, where Ralstonia,
Staphylococcus, and Francisella were some genera detected (53).
Metagenomics studies show that the microbiota of R. microplus
captured in a rural area in Peru has 147 bacterial genera (54).
In contrast, the sequencing of internal tissue and salivary
glands from unfed larvae and female ticks of I. ricinus revealed
commensal bacteria, endosymbionts, and several pathogenic
microorganisms (54, 55). Also, metagenomic analysis of Ixodes
persulcatus and Dermacentor nuttalli revealed 10 predominant
genera of cattle pathogens and also coinfections (56).

A deeper metagenomic study elucidated the taxonomic and
functional profiles of the microbiome of female and male ticks,
Ixodes ovatus, I. persulcatus, and Amblyomma variegatum (57).
The results of this study showed significant differences in the
abundance of genes involved in metabolic pathways between
female and male ticks of the same species, suggesting their
different lifestyles exert and sex-specific evolutionary pressure
independently of the phenomes and microbiomes of the tick
gut microbiota.

Complementary information to metagenomics studies in
microbiota derives from other multi-omics strategies such as
metabolomics, transcriptomics, and proteomics that contribute
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to advancing knowledge of pathogens and their interactions
with the host and vector (58), as in the case of the studies
that show diverse components of tick saliva are capable of
modulating host immune response through the binding to cell
receptors and regulating the secretion of cytokines, chemokines,
and interleukins (35). However, we propose that tick microbiota
requires an interdisciplinary approach, where the metagenomics
study combined with other multi-omics tools complements the
results to give a complete vision of the microbiota–vector–
host interactions.

PARATRANSGENESIS AS A STRATEGY TO
CONTROL TICKS

Based on the progress of metagenomics study applied to
identify microbiota in other arthropods vectors, such as Aedes,
Culex, and Anopheles, strategies such as paratransgenesis could
control tick infestations. This strategy is an innovative method
with a good prognosis in the vectors control. This strategy
requires knowledge of the tick microbiota. After the symbiont
microorganisms’ identification, they are isolated and genetically
transformed to generate bacteria capable of expressing the
specific inhibitory molecules and then reintroduced to obstruct
vital biological processes of the vector. In this regard, some
reports suggest that the interference of crucial processes
such as ovogenesis and vitellogenesis decreases the fecundity,
development, and hatching rates, which results in the inhibition
of the vector population growth (59). Similarly, another target
is the transformation of bacteria that interfere with the digestive
capacity, leading to reduced vector reproduction and preventing
pathogen dissemination (59). Adopting strategies based on
metagenomic studies allows identifying symbiont bacteria in the
tick microbiota that can be genetically modified and cultivated
with higher efficiency, which overcomes the need to produce
genetically modified vectors (60, 61).

MICROBIAL TARGETS: ANTI-TICK
VACCINES

In response to the presence of acaricide-resistant populations,
several vaccine proposals were developed in the last years,
including the use of antigens such as Gavac, a vaccine based
on protein Bm86 (62). The formulation of cocktail anti-tick
vaccines has been reported using combinations of antigens, like
Bm91 (R. microplus); subolesin 4E6 (I. scapularis); serpins rRAS-
2 and rRAS-4 (R. appendiculatus); and glutathione S-transferase
rGST-Av (A. variegatum), among others (63).

Currently, the use of experimental anti-tick vaccines targeting
the microbiota reveals that modifications in the microbial
populations of the gut could alter essential processes in a tick.
For instance, the use of this experimental anti-tick vaccine
developed after a functional metagenomic analysis shows that

immunization of α-1,3-galactosyltransferase-deficient mice with
Escherichia coli BL21 induces the production of anti-E. coli and
anti-α-Gal IgM and IgG associated with mortality of I. ricinus
nymphs during feeding, which concurred with the abundance of
α-1,3-galactosyltransferase genes and possibly α-Gal identified by
tick microbiome metagenomics analysis (5).

Finally, the search for new vaccine targets should encompass
those proteins of the tick immune response involved in
the tolerance of microbial populations (tick microbiota), like
different proteins identified by immunoinformatic analysis (64).

CONCLUSIONS

Here, we show a general view of different approaches for studying
the tick microbiota and other arthropod vectors, intending to
integrate the current knowledge and present new alternatives
for tick control. From our perspective, in this mini-review, we
include recent results that show that the more knowledge and
manipulation we have of the microbiota, we get closer to new
vaccine development.

The study of the tick microbiota based on metagenomics
approaches allows identifying microorganisms and can elucidate
the genes that shape the microbiome.

Although the microbiota participates in biological processes
like adaptation, development, reproduction, defense against
environmental stress, and immunity, information about the
interactions andmechanisms involved in vectorial capacity is still
scarce and, at the same time, is a field with potential for the
identification of vaccine targets.

Considering that many biological interactions function
as holobionts (host organism and its associated microbial
community) and that, in turn, holobionts make up a more
extensive consortium, it is impossible to think that the tick
microbiota and tick-borne pathogens are isolated processes.

Undoubtedly, deciphering the interaction of the tick and
host–microbiota and how they communicate will provide
invaluable information to develop novel strategies for controlling
ticks and vector-borne pathogens, like those anti-microbiota and
anti-tick vaccine candidates that could benefit animal health and
provide acaricide-free environments.
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