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Abstract

Many paediatric clinical research studies, whether observational or interventional, have as an 

eventual aim the identification or quantification of causal relationships. One might ask: does 

screen time influence childhood obesity? Could overuse of paracetamol in infancy cause wheeze? 

How does breastfeeding affect later cognitive outcomes? In this review, we present causal Directed 

Acyclic Graphs (DAGs) to a paediatric audience. DAGs are a graphical tool which provide a way 

to visually represent and better understand the key concepts of exposure, outcome, causation, 

confounding, and bias. We use clinical examples, including those outlined above, framed in the 

language of DAGs, to demonstrate their potential applications. We show how DAGs can be most 

useful in identifying confounding and sources of bias, demonstrating inappropriate statistical 

adjustments for presumed biases, and understanding threats to validity in randomised controlled 

trials. We believe that a familiarity with DAGs, and the concepts underlying them, will be of 

benefit both to researchers planning studies, and practicing clinicians interpreting them.

Introduction

A wide variety of studies are undertaken with the aim of understanding and improving 

paediatric health, and in particular to identify the causal processes that lead to the 

development of health outcomes or disease. To achieve this, it is helpful to define a number 
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of variables (for the benefit of the reader unacquainted with the technical language that 

follows, we have created a Supplemental Glossary available online). For example, in a study 

looking at the relationship between screen time (time spent watching television, using 

computers or games consoles) and childhood obesity (1), the authors hypothesised that more 

screen time (the exposure) may lead to an increased risk of childhood obesity (the outcome). 

The exposure may cause the outcome not directly but through an intermediate process – a 

direct reduction in physical activity (the intermediate variable or mediator). Finally, we want 

to identify factors which influence both the exposure and the outcome, but are not directly in 

the causal pathway. An example is low parental education, which is a cause of both 

increased screen time and an increased risk of obesity/overweight (2,3). In this situation, low 

parental education acts as what is called a confounder. If not recognised and controlled for, 

this could lead to a false interpretation of the true relationship between the two variables, for 

example by falsely attributing obesity solely to increased screen time.

We will not attempt to summarise the history, philosophy and applications of causal 

inference, but instead in this review focus on the use of a graphical tool, causal Directed 

Acyclic Graphs (DAGs). DAGs provide a simple way of graphically representing, 

communicating, and understanding key concepts of relevance to practicing clinicians and 

researchers, and are particularly helpful in delineating and understanding confounders and 

potential sources of bias in exposure-outcome relationships. A bias is a systematic, incorrect 

interpretation of the true relationship between the exposure and the outcome. Biases differ 

from random error in that they distort our interpretation of true causal relationships in a non-

random way: repeating a study, or increasing the sample size, will not lead to the elimination 

of bias. Confounders and biases may distort our interpretations in a variety of ways. If the 

researcher is not aware of confounders, and does not appropriately control for them, a 

variable may erroneously appear to cause the outcome where there is no causal relationship, 

or the magnitude of this relationship may be distorted. Conversely, if a researcher treats 

variables associated with both exposure and outcome as confounders when they in fact are 

not (see below), and inappropriately controls for them, this too may cause bias.

We first discuss how to create and interpret DAGs, using paediatric examples to demonstrate 

how they can identify, and appropriately correct for, confounders and biases in observational 

studies that can affect our ability to draw correct conclusions about causal relationships. We 

then outline how they can be helpful in interpreting interventional studies, and understanding 

potential threats to validity in these. After outlining some of the limitations of DAGs, we 

conclude with some thoughts on how they might prove useful for researchers and clinicians.

Creating and interpreting a DAG

Diagrams have been used to represent causal relationships for many years, in a variety of 

fields ranging from genetics to sociology (4–7). However, in recent years an epidemiological 

literature outlining a standard terminology and set of rules (8), has grown around DAGs. In a 

DAG, causal relationships are represented by arrows between the variables, pointing from 

cause to effect. As seen in Figure 1a, an arrow from screen time to obesity means that we 

hypothesise that a change in screen time causes a change in adiposity. DAGs must obey two 

rules. First, they must be acyclic, which means that it is impossible to start at any variable in 
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the DAG, follow the directed arrows forward, and end up at the same variable. In other 

words, a DAG must not contain a feedback loop where a variable causes itself. A corollary 

of this is that a causal relationship between two variables must be unidirectional: they cannot 

cause each other. Bidirectional arrows, often used to depict feedback loops, are in fact a 

simple graphical expedient to show as a single variable what in reality is a sequence of 

variables(9). Second, for a DAG to be complete, the shared cause of any two variables in the 

DAG must be included (10).

In a DAG, two variables can be connected by what is called a “path” between them. Open 

“paths” represent statistical associations between two variables; closed “paths” the absence 

of such associations (the correspondence between path “openness” and associations in 

DAGs derives from mathematics)(8). Variables and arrows can be combined into three main 

types of paths:

1) Directed Paths: all arrows point in the same direction, and the association 

between these variables reflects a causal relationship. Such a path is open. 

Increased screen time leads directly to reduced physical activity, which in turn 

leads to an increased risk of obesity [Figure 1b].

2) Backdoor Paths: this is where two variables share the same cause. Looking at 

Figure 1c, increased screen time and childhood obesity are influenced by low 

parental education. In the terminology of DAGs, screen time and childhood 

adiposity are said to be connected by a backdoor path through low parental 

education. This path (one that connects exposure and outcome through a third 

variable, including an arrow entering rather than emanating from the exposure) 

is open, and depicts a statistical association between screen time and adiposity, 

through low parental education. However, the association transmitted by this 

backdoor path is non-causal, and represents the basic structure of confounding.

3) Closed (or blocked) Paths: this is when two variables have the same effect, 

called a collider [Figure 1d]. For example, both screen time and obesity have 

been found to increase the risk of low self-esteem, self-harm and suicidal 

ideation in adolescents (11–13), that is self-harm is a collider between physical 

activity and obesity. In this situation, unlike directed and backdoor paths, this 

path is closed: there is no association between screen time and adiposity 

transmitted through self-harm.

Researchers can change the status of a path from open to closed, or vice versa, by acting on 

(conditioning on, or controlling for) a variable, which can occur through study design or 

statistical adjustments such as restriction, stratification, matching, standardisation, or 

multivariable regression. Controlling for parental education (a confounder) in our example 

will close this backdoor path, and lead to a less biased relationship in the directed path 

between screen time and adiposity. Conversely, conditioning on a variable in a directed path 

between two variables (a mediator), physical activity in our example, closes this path, and 

could lead to an incorrect estimate of the true overall association between the variables. 

Finally, conditioning on a variable in a closed path (a collider) opens this path and leads to 

transmission of a non-causal association. If we were to mistakenly identify self-harm as a 

confounder, and condition on it, this would distort the true relationship between the exposure 
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and the outcome. Equally, if a study examined the relationship between screen time and 

obesity in a group of adolescents selected because they had a history of self-harm, this 

would again represent conditioning on a collider, in this case by restriction (see “selection 

bias” below).

Using DAGs to understand confounding: Paracetamol and wheeze

In the language of DAGs, a confounder is defined as a common cause of the exposure and 

the outcome. This situation occurs in nature; it is not created by the researcher. Confounders, 

if not identified and appropriately adjusted for (conditioned on), can distort the true causal 

relationship between an exposure and an outcome. As an example, a number of 

observational studies (14,15) found an association between receiving paracetamol in the first 

year of life and later risk of developing wheeze/asthma. DAGs have proven useful in 

examining this relationship (16).

In fact, the increased risk of later wheezing may not be due to paracetamol, but to 

confounding. Viral respiratory tract infections – for which paracetamol is prescribed - are 

common in children, trigger wheezing and might increase the risk of later wheeze (17,18). 

That is, viral infections act as a confounder in the relationship between paracetamol usage 

and wheezing [Figure 2a] (so-called confounding by indication)(19,20). Therefore we might 

expect these two variables (paracetamol use and wheeze) to be statistically associated 

through a common cause, even if there is no direct causal association. To identify the true 

causal relationship between paracetamol use and later wheeze, one should condition on viral 

infections. Conditioning in a DAG is generally shown as a box around the variable, and as 

described previously changes an open path (in this case a backdoor path) to a closed path 

[Figure 2].

Once we have closed this backdoor path by making the appropriate statistical adjustments, 

and assuming there are no other confounders, we should be able to identify the true 

magnitude -if any - of the relationship between paracetamol use and wheeze. Supporting this 

hypothesis, studies which have conditioned on respiratory tract infections in early life find a 

diminished relationship between paracetamol use and later wheeze, suggesting that part of 

this apparent relationship may be due to confounding (16,21,22).

Risks of inappropriate adjustment: Overadjustment

Whilst failing to identify confounders can threaten the validity of findings, the converse, 

inappropriately identifying other variables as confounders, can also be problematic (23). 

Take the relationship between the administration of antenatal steroids (the exposure) and the 

outcome of bronchopulmonary dysplasia (BPD) [Figure 3a]. A number of studies found that 

administration of antenatal steroids was not associated with a decreased risk of BPD (24–

26), despite reducing several known risk factors for BPD. These studies adjusted for 

variables such as severity of neonatal disease (24), and need for mechanical ventilation (24–

26), the rationale being that these factors are associated with both the administration of 

antenatal steroids and an increased risk of BPD.
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However, these variables do not fulfil the definition of a confounder (they are not causes of 

both exposure and outcome), but act as mediators between the exposure (antenatal steroids) 

and the outcome (BPD) [Figure 3b]. Conditioning on a mediator closes one of the causal 

paths between antenatal steroids and BPD and distorts the overall relationship between the 

two. This is represented in Figure 3c by the boxes surrounding the two intermediate 

variables. Adjusting for (conditioning on) an intermediate results in overadjustment. With 

this process we remove the part of the association between antenatal steroids and BPD 

mediated through the reduction of severe illness, or the reduced need for mechanical 

ventilation (27). This adjustment can attenuate the true causal effect of the exposure or even 

reverse it, leading to counterintuitive results.

Supporting the interpretation that overadjustment might explain the apparent lack of effect 

of antenatal steroids on the development of BPD, a cohort study (28) found a negative 

(protective) association between antenatal steroid administration and mediators (severity of 

neonatal disease and the need for mechanical ventilation), and a positive association between 

the mediators and the risk of the BPD. The authors found a protective effect of steroids on 

BPD when intermediate factors were not adjusted for, but not when they adjusted for these 

intermediate variables [Figure 3c]. That is, inappropriately conditioning on mediators led to 

a distortion of the true (likely protective) relationship between antenatal steroids and risk of 

developing BPD. Of note, whilst conditioning on mediators distorts the overall relationship 

between an exposure and an outcome, Figure 3c also shows that this should reveal the direct 

effect of steroids on BPD (with the highly simplified assumption that there are no other 

common causes of steroid administration, BPD, or the mediators); this concept underlies the 

field of mediation analysis (29,30).

Selection bias in the language of DAGs

In observational or interventional studies, selection bias occurs when both the exposure and 

the outcome affect whether an individual is included in the analyses. In the language of 

DAGs, selection bias occurs due to inappropriate conditioning on a collider. An example are 

studies that examined HLA subtypes (the exposure) as risk factors for the development of 

acute lymphoblastic leukaemia (ALL, the outcome). Initial cross-sectional studies using 

prevalent (i.e. already diagnosed) cases and matched controls (31–33) found an increased 

risk of developing ALL in individuals with the HLA-A2 serotype [Figure 4a].

However, a subsequent study (34) examined patients presenting with a new diagnosis of 

ALL (incident cases), and found that the frequency of HLA-A2 in these individuals matched 

that of the general population. When examining survivors at the time of typing, they found 

that the frequency of HLA-A2 was higher than in the general population, and that length of 

survival appeared to be associated with the HLA-A2 serotype. That is, HLA-A2 was not 

associated with an increased risk of developing ALL, but rather with an increased chance of 

survival. Because previous studies had examined a prevalent population (patients with a 

previous diagnosis of ALL) rather than an incident one (those presenting with a new 

diagnosis), they had examined the relationship between HLA-A2 and leukaemia in a sample 

restricted to survivors, and an incorrect association was inferred between the exposure and 

the outcome.
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Presented as a DAG, the source of this bias, also called “incidence-prevalence” or Neyman’s 

bias (35,36), can be seen to be due to conditioning on a collider. In this case, both the 

exposure and the outcome influence a third variable, survival, which acted as a collider 

[Figure 4b]. If we consider all patients - surviving or not - by including newly diagnosed 

patients, the two variables are not associated (the path is closed). Conditioning on survival 

(by restricting the inclusion to patients surviving a certain time, as shown by the box 

surrounding survival in the figure), opens the path through the collider, and we enrich the 

sample for individuals with HLA-A2 among ALL patients, creating a (spurious) association.

Overadjustment and selection bias

Overadjustment and selection bias can also coexist. Take the relationship between maternal 

pre-eclampsia (the exposure) and subsequent cerebral palsy (the outcome): pre-eclampsia is 

hypothesised to be directly causative of cerebral palsy. However, pre-eclampsia is also 

associated with a higher risk of medically indicated preterm birth, which in turn is associated 

with a higher risk of cerebral palsy [Figure 5a]. We might think to examine the effect of pre-

eclampsia after adjusting for preterm birth or gestational age (as if this represented 

confounding) [Figure 5b], shown by the box around this variable. However, here preterm 

birth is an intermediate between pre-eclampsia and cerebral palsy, and not a common cause 

of both.

By (over)adjusting, we take away part of the detrimental effect of pre-eclampsia, that 

mediated through preterm birth. This adjustment can attenuate the true effect of the exposure 

and even reverse it. An early study found that maternal pre-eclampsia was protective in very 

preterm infants, but detrimental to those born at a later gestation (37). This was a surprising 

result – as a pathologic condition, we would expect pre-eclampsia to be detrimental across 

the entire spectrum of gestations (38,39). Visualised as a DAG, this finding could be due to 

the conditioning on gestational age at birth. In this case, conditioning does not take place 

through statistical adjustment, but by stratification (performing separate analyses in two 

groups) based on the criterion of gestational age at birth (preterm birth). This closes the 

causal path from pre-eclampsia to cerebral palsy via preterm birth, and could lead to bias.

However, the true situation is probably more complex. Examining a more realistic DAG, to 

which chorioamnionitis (as another cause of both preterm birth and cerebral palsy) has been 

added [Figure 5c], one can see that gestational age, as the shared effect of both pre-

eclampsia and chorioamnionitis, also acts as a collider. Critically, closing one path between 

two variables may lead to a change in other potential paths between the two. Conditioning 

on gestational age opens a previously closed path, from pre-eclampsia to cerebral palsy 

through preterm birth and chorioamnionitis. This creates a new source of bias, and another 

reason for the counterintuitive association found in our example. If we analyse the 

relationship between pre-eclampsia and the outcome within the group of preterm infants, a 

faulty comparison group and a spurious association will be created. If a preterm baby is born 

to a mother who has pre-eclampsia, the baby will be less likely to have chorioamnionitis and 

vice versa. Among preterm infants the effect of pre-eclampsia on cerebral palsy will be 

compared with the effect of another significant cause of cerebral palsy, chorioamnionitis, 

and pre-eclampsia will falsely appear to be protective. Thus, the estimated direct causal 
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effect of pre-eclampsia on the outcome will be biased (through the effect of 

chorioamnionitis). Although widely used, conditioning on gestational at birth in studies of 

prenatal exposures and their relationship to postnatal outcomes may not reduce but actually 

lead to bias through overadjustment and faulty comparisons as illustrated above (40–43), and 

generate counterintuitive results and apparent changes of effect in different groups of 

patients.

Disentangling confounders from mediators and colliders can prove challenging. Statistical 

tests reveal only the strength of an association between two variables, not the causal 

relationship between them, and in this context the researcher must rely on causal reasoning 

(44). Here, DAGs, supported by subject-matter knowledge, can be helpful as they illustrate a 

modern definition of confounding (45,46): a common cause of both the exposure and the 

outcome under study. This demonstrates how older definitions (47,48), focusing on factors 

associated with the exposure and also related to the risk of disease in the unexposed, and not 

being an intermediate (i.e. on associations rather than presumed causal relationships), may 

lead to biased statistical estimates due to inappropriate adjustment for a common effect of 

two variables (conditioning on a collider).

The language of DAGs as applied to interventional studies

The DAG in Figure 6a shows the causal structure of a randomised controlled trial (RCT) 

randomising women to an intervention promoting breastfeeding, the Baby Friendly Hospital 

Initiative (BFHI) (49), to examine cognitive development in childhood (50). Random 

assignment determines the exposure (BFHI) which in turn influences the outcome (cognitive 

development) via mediators such as breastfeeding (and probably others, not shown). Even if 

there are confounders that influence both the chance of breastfeeding and the outcome, they 

do not bias the causal effect of the random assignment on the outcome, as breastfeeding is a 

collider in the path between random assignment and cognitive development via potential 

confounders, and blocks this path. Therefore, as regards confounding, an intention-to-treat 

analysis (according to how a mother was randomised) is likely to be unbiased, and DAGs 

demonstrate the critical value of randomisation in inferring unbiased causal relationships. A 

per-protocol analysis of whether a mother actually breastfed is not immune to confounding, 

as it resembles an observational study where a backdoor path exists between breastfeeding 

and the outcome via any confounders (51). Of course, the effect of treatment actually 

received may be of interest, and a per-protocol analysis, carefully controlled for 

confounders, may be justified to extract the maximum of information from clinical trials 

(52).

Whilst RCTs and intention-to-treat analyses minimise threats to validity posed by 

confounding, they are not immune to other biases, including information bias (see glossary) 

and bias due to differential loss to follow-up. It is plausible that the BFHI might lead to 

differences in health awareness in the intervention group, leading to a different likelihood of 

follow up clinic attendance. In addition, mothers with a child exhibiting signs of impaired 

cognitive development could also be more likely to attend follow-up to find out whether 

their child was developing normally. Seen as a DAG [Figure 6b], both the BFHI and the 

outcome have a causal effect on the chance of follow-up. Examining data only on children 
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who attend follow-up (conditioning on follow-up, represented by the box around clinic 

attendance), introduces bias into the relationship between the intervention and cognitive 

development via a faulty comparison, opening an otherwise closed path. Conditioning on a 

collider leads to what is called collider stratification bias (53,54). This example illustrates 

that whilst RCTs minimise confounding, they are still susceptible to bias such as that 

introduced by loss to follow up.

Limitations of DAGs and some caveats on their use

One limitation of DAGs is their non-parametric nature: they neither specify the form of the 

causal relationships, nor depict the size of the associations, and remain qualitative in nature. 

A DAG shows that uncontrolled confounding might bias the results, but does not give a 

quantitative measure of this (10,55). Another is that a DAG can only be as good as the 

background information used to create it (56); a DAG is complete and therefore has a causal 

interpretation only if it contains all common causes of any two variables (all confounders), 

including both measured and unmeasured variables. A further limitation is the inability of 

DAGs to depict random, as opposed to systematic, error. For instance, randomisation 

allocates known and unknown confounders equally between groups in the “average” ideal 

case. This does not always happen in real-world RCTs, where confounding, due to random 

differences at baseline, can - and indeed often does – occur, but is not shown by DAGs. 

Ignoring random error also means that when examining misclassification (information) bias, 

concepts such as non-differential measurement error (where error is randomly distributed 

across the groups being studied) cannot be incorporated into a DAG.

More subtly, and of relevance not only to DAGs but to any analytical approach, the research 

question influences how we consider variables and therefore analyse the data. A variable 

may be simultaneously a mediator, a collider, or a confounder, can be interpreted differently 

in separate research questions using the same data, and these will dictate different analytical 

strategies. For example, in the study looking at the relationship between antenatal steroids 

and BPD, one could ask about the effect of steroids (exposure) on the outcome. Here the 

need for mechanical ventilation is a mediator and should not be conditioned on. However, if 

one were to investigate the effect of mechanical ventilation (treating it as an exposure) on the 

risk of BPD, antenatal steroids are a confounder in the backdoor path between mechanical 

ventilation and the outcome, and should be conditioned on. In addition, it is possible that 

two researchers might ask the same research question, using the same variables in their 

analyses, but choose to condition on different variables because they have different opinions 

regarding the underlying causal relationship. Representing their analyses as DAGs allows an 

explicit comparison between the two approaches should their findings differ.

Finally, throughout this article we have of necessity presented simple examples to illustrate 

our key points. Partly, this is inherent to the approach: any graphical method is likely to 

over-simplify the complex biological reality being investigated. DAGs have for this reason 

attracted criticism because they may lead to oversimplification in the field of causal 

inference (57,58). DAGs however do not lead per se to oversimplified analyses, but only 

explicitly present their underlying assumptions. There are also a number of theoretical 

points, such as the exact distinction between selection bias and confounding, that remain 
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contested (59,60). We therefore direct interested readers to more in-depth reviews about the 

theory and limitations of DAGs (8,10,61,62).

Conclusion

The aim of much clinical research is to elucidate and test causal relationships. In 

epidemiological terms, we want to establish exposures that might be amenable to 

modification, and test interventions acting on these leading to an improvement in health 

outcomes. Critical to a correct interpretation of causal relationships is correctly identifying 

and appropriately adjusting for confounders and potential sources of bias. In this review we 

have shown that DAGs can illustrate threats to validity found to greater or lesser extents in 

virtually all clinical research: confounding, selection (or collider-stratification) bias, and 

overadjustment. We believe that DAGs are useful for practicing clinicians in interpreting 

research that deals with proposed causal relationships, by allowing them to frame research 

questions and findings using the concepts of exposures, outcomes, intermediates, 

confounders and colliders. They remind those planning observational studies to collect 

sufficient data to condition on possible confounders, and to appropriately adjust for these in 

analyses, whilst refraining from inappropriate adjustments. Finally, they show that whilst 

randomisation does minimise the risks of confounding in interventional studies, possibilities 

for bias remain, for example through loss to follow-up.

Supplementary Material
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Figure 1. 
a. Screen time (the exposure) causes obesity (the outcome).

b: Screen time acts on obesity through the mediator of physical activity.

c: Low parental education increases both screen time and obesity, and is therefore a 

confounder.

d: Self-harm is a collider in the path from screen time to obesity.
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Figure 2. 
a. Viral infections cause both paracetamol use and wheeze, acting as a confounder.

b. This bias can be controlled by conditioning on the confounder (shown by a box around 

viral infections).
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Figure 3. 
a. Antenatal steroids affect the risk of bronchopulmonary dysplasia (BPD).

b. Antenatal steroids also have indirect effects.

c. By controlling for disease severity and mechanical ventilation, we underestimate the true 

overall effect of the antenatal steroids.

Williams et al. Page 15

Pediatr Res. Author manuscript; available in PMC 2018 December 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
a: A possible relationship: HLA subtypes affect the risk of acute lymphoblastic leukaemia 

(ALL).

b: The true causal structure, showing selection bias: both HLA subtype and ALL influence 

survival, and the study is conducted in survivors.
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Figure 5. 
a. Pre-eclampsia increases the risk of cerebral palsy directly, and indirectly by increasing 

preterm birth.

b. By adjusting for preterm birth, we underestimate the overall effect of pre-eclampsia on 

cerebral palsy.

c. Adjusting for preterm birth causes the estimated effect of pre-eclampsia on cerebral palsy 

to suffer from both overadjustment and selection bias.
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Figure 6. 
a. The structure of a randomised controlled trial (RCT); BFHI refers to the Baby Friendly 

Hospital Initiative.

b. Loss to follow up in an RCT creates selection bias.
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