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Proteomics analysis to reveal 
biological pathways and predictive 
proteins in the survival of high-
grade serous ovarian cancer
Hongyu Xie1, Wenjie Wang1, Fengyu Sun2, Kui Deng1, Xin Lu3, Huijuan Liu1, Weiwei Zhao1, 
Yuanyuan Zhang1, Xiaohua Zhou4, Kang Li1 & Yan Hou1

High-grade serous ovarian cancer (HGSC) is an aggressive cancer with a worse clinical outcome. 
Therefore, studies about the prognosis of HGSC may provide therapeutic avenues to improve patient 
outcomes. Since genome alteration are manifested at the protein level, we integrated protein and 
mRNA data of ovarian cancer from The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) and utilized the sparse overlapping group lasso (SOGL) method, a new 
mechanism-driven variable selection method, to select dysregulated pathways and crucial proteins 
related to the survival of HGSC. We found that biosynthesis of amino acids was the main biological 
pathway with the best predictive performance (AUC = 0.900). A panel of three proteins, namely EIF2B1, 
PRPS1L1 and MAPK13 were selected as potential predictive proteins and the risk score consisting of 
these three proteins has predictive performance for overall survival (OS) and progression free survival 
(PFS), with AUC of 0.976 and 0.932, respectively. Our study provides additional information for further 
mechanism and therapeutic avenues to improve patient outcomes in clinical practice.

Epithelial ovarian cancer (EOC) is composed of four major histologic subtype: serous, clear cell, endometri-
oid, and mucinous adenocarcinomas. Among them, high-grade serous ovarian cancer (HGSC), accounting 
for approximately 70% of EOC1, is an aggressive ovarian cancer that associated with a worse clinical outcome2. 
Despite initial aggressive treatment, patients always have an extremely poor overall survival (OS) with the 5-year 
survival rate less than 40%3, 4. The underlying biological characteristics relevant to the prognosis of ovarian can-
cer still remain unclear and thereby present the challenge of explaining how molecular alterations drive cancers.

With the development of microarray technologies, studies about genetic markers and gene expression profiles 
have sought to elucidate the molecular determinant of outcome in serous ovarian cancers5–7. However, alterations 
observed at the genome levels are manifested at the protein level, because proteins link genotypes to phenotypes. 
Although most previous studies have been used to explore the association between specific proteins and prog-
nosis of ovarian cancer8–10, cancer is a heterogeneity disease that does not only involve individual molecule but 
also combination of molecules associated with the processes of cancer. Yang et al. identified nine protein markers 
significantly associated with progression free survival (PFS) based on the least absolute shrinkage and selection 
operator (lasso) and constructed a protein-driven index of ovarian cancer (PROVAR) scores to predict the recur-
rence time for ovarian cancer patients11. However, Zhang et al. performed an external validation in 67 patients 
and found that the PROVAR signature was prognosis of survival (Benjamini-Hochberg adjusted p value = 0.11). 
Meanwhile, Zhang et al. utilized trans-affected protein data from the most influential copy number alterations 
(CNAs) (four altered regions on chromosomes 2, 7, 20 and 22) to build a model to predict the overall survival12. 
However, the predictive performance and clinical practicability of the model were not validated by other stud-
ies, and it deserved further study to explore OS of ovarian cancer from the perspective of protein and mRNA 
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convergence systematically. The most important goal of cancer survival is to identify the dysregulated molec-
ular pathways and individual molecule to reveal the mechanism of cancer and develop the effective treatment. 
Although univariate cox regression and lasso are effective in identifying signatures associated with the prognosis 
of cancer patients13–15, these methods seldom combined biological information to select biomarkers, thereby 
it is one of the reasons that these biomarkers are not widely used in clinical practice. Although in recent years, 
network-based biomarker selection methods have been proposed16, 17, these methods would lead to overfitting 
when the predictive model included all selected molecules from network analysis18. Therefore, biomarker selec-
tion based on a priori biological pathway knowledge, especially in the condition that overlapped variables across 
pathways and in line with the realities needed.

In this paper, we integrated protein and mRNA data of ovarian cancer from The Cancer Genome Atlas 
(TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) and characterized HGSC based on the 
common information from mRNA to protein. In addition, the sparse overlapping group lasso (SOGL) method18, 
a mechanism-driven biomarker selection method, was utilized to select the main biological pathways and crucial 
proteins related to OS and further identified predictive proteins for OS in ovarian cancer patients. Meanwhile, we 
constructed a protein-driven biomarker risk score to predict OS and PFS in HGSC. Prognosis analysis of biolog-
ical pathways could provide basis for further mechanism research, and selected biomarkers of OS could provide 
molecule-targeted treatment and improve patient outcomes.

Results
Proteome-genome analysis of TCGA HGSC samples.  HGSC and clinical data from 169 patients 
were analyzed at two independent centers, JHU (n = 119) and PNNL (n = 82). 32 samples were analyzed at both 
centers and utilized to correct the batch effects between two sites, and merged them into a single dataset prior 
to analysis12. In order to present the comprehensive understanding of the information from mRNA to protein, 
we integrated the proteomics and genomics characterization of HGSC and 3,329 unique proteins paired pro-
teome-genome were used to further analysis. The median OS time of patients was 34.4 months (range, 0.3–182.7 
months) and median PFS time of patients was 15.6months (range, 0.3–182.7 months) in this study.

KEGG enrichment analysis for proteins.  We firstly matched the corresponding KEGG-IDs for 3,329 
proteins and mapped the KEGG-IDs of the proteins to the pathways using KEGG PATHWAY. In total, 3,259 pro-
teins were enriched to 284 KEGG pathways. A total of 75 pathways were potentially involved in the OS of ovarian 
cancer with an adjusted pathway false discovery rate (fdr) < 0.05 (see Supplementary Table S1). The number of 
proteins in each significant pathway ranged from 11 to 450.

Identification of the dysregulation pathways and crucial proteins.  We utilized the SOGL to iden-
tify the key pathways and crucial proteins associated with the OS based on the results of KEGG enrichment 
analysis. Schematic diagram of SOGL was presented in Supplementary Fig. S1. Since nonzero coefficient for 
each feature and its involved pathway based on SOGL were thought to be associated with OS of HGSC. Although 
455 proteins across 75 pathways associated with OS of HGSC (see Supplementary Table S2, Fig. S2) have been 
identified, 200 proteins are across at least two pathways. The remaining 250 proteins appear in 50 pathways as the 
potential biomarkers. We hypothesized that proteins across pathways might be indicators of key regulators with 
strong impact on OS. As an example, the protein MAPK13 participants in seven different pathways, which might 
be an important indicator. The analysis process was presented in Fig. 1.

Pathways associated with overall survival.  To gain better insight into the protein interactions that 
affect clinical outcome, we constructed a relative pathway score for each pathway, which defined as a linear com-
bination of the proteins in each pathway and the coefficients subjected to the SOGL coefficients. Time-dependent 
AUC19 was utilized to evaluate the predictive accuracy of 10-year survival of ovarian cancer patients for each 
pathway and the results were listed in Supplementary Table S3. We found metabolic pathways played important 
roles to the prognosis of ovarian cancer (Fig. 2). Biosynthesis of amino acids pathway, one of the metabolic path-
ways, was defined as a main biological pathway related to the OS of ovarian cancer with time-dependent AUC of 
0.90 (Fig. 3).

Predictive proteins and a protein-driven risk score.  Three proteins, namely as EIF2B1, PRPS1L1 and 
MAPK13 were selected as potential predictive proteins based on univariate AUC > 0.90 (see Supplementary 
Table S3) and spearman correlation coefficient (CC) < 0.30 between each pair of proteins. The protein-driven 
risk score, a linear combination of three proteins, was displayed as follows and the coefficient for each protein was 
the weight in Cox-regression:

= − . × + − . ×
+ − . ×

B LPredictive risk score ( 0 947 EIF2 1) ( 0 623 PRPS1 1)
( 0 578 MAPK13)

OS

= − . × + − . ×
+ − . ×

B LPredictive risk score ( 0 384 EIF2 1) ( 0 260 PRPS1 1)
( 0 675 MAPK13)

PFS

where protein expression is scaled.
Kaplan-Meier analysis and log-rank test were performed to compare the discriminant capability of predictive 

risk score for OS and PFS among low, medium, and high risk groups (P = 0.0012 and P = 0.0007) (Fig. 4a,b).
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Predictive performance of the risk score for HGSC.  To test whether the risk score was an independent 
predictor for HGSC, both univariate and multivariate analysis were performed using a Cox proportional hazards 
model with the predictive risk score and clinical factors. Factors with univariate analysis P value < 0.05 were used 
for further multivariate analysis. The multivariate analysis results for OS and PFS were presented in Table 1 (OS: 
risk score (P = 2 × 10−4), stage (P = 0.300) and Platinum status (P = 6.5 × 10−11)) and Table 2 (PFS: risk score 
(P = 0.010), stage (P = 0.022) and Platinum status (P < 2 × 10−16)). Predictive risk score and platinum status were 
consistently significant for both OS and PFS regardless of univariate or multivariate analysis. Pathological stage 
was the only significant for PFS, but not with OS. Ovarian cancer patients sensitive to the platinum chemotherapy 
would live longer or had a longer PFS time compared with those who were resistant, and the higher the stage was, 
the shorter the PFS time was.

We explored the predictive performance of protein-driven risk score alone and together with clinical factors, 
separately. The results indicated that the protein-driven risk score had a great predictive accuracy for 10-year 
OS of ovarian cancer with an AUC value of 0.976 (Fig. 4c). The protein-driven predictive risk score with plati-
num status achieved a time-dependent AUC value of 0.984 (Fig. 4e), which significantly improved the predictive 
performance of platinum alone (AUC = 0.645). In addition, we further evaluated the predictive capability of 
protein-driven risk score alone and together with clinical factors (platinum status and pathological stage) to 
the PFS for ovarian cancer with AUC values of 0.932 (Fig. 4d) and 0.958 (Fig. 4f), separately. These results indi-
cated that the utility of combination of our predictive proteins and clinical factors improved prognosis predictive 
accuracy.

Discussion
It is known that prediction of therapy outcome may provide therapeutic avenues to improve patient out-
comes. Due to the heterogeneity of clinical outcomes in ovarian cancer patients, it is urgent to explore the 
outcome-related molecular signatures, that could provide additional information for molecular mechanism and 
prognosis prediction. In this study, we integrate the proteomic and genomic profiles of HGSC to systematically 
identify potential pathways and proteins for predicting therapy outcome. Biosynthesis of amino acids and three 
potential predictive proteins are found to have excellent predictive performance in the prognosis of ovarian can-
cer. Our study extended our understanding about molecular mechanism of ovarian cancer from protein level and 
might provide molecule-targeted treatment to improve patient outcomes in clinical practice.

Previous studies have showed that there was association between the prognosis and specific proteins. 
Lokman et.al. showed high stromal annexin A2 immunostaining was significantly associated with reduced PFS 
(P = 0.013) and OS (P = 0.004), and high cytoplasmic S100A10 staining was significantly associated with reduced 

Figure 1.  The overview workflow of the analysis process. (a) Subdivision of proteins into groups based on 
KEGG database (b) Selection of dysregulated biological pathways and crucial proteins related to the OS of 
ovarian cancer based on SOGL method. The coefficients of proteins with gray shadow were estimated to zero; 
The coefficients of proteins with red shadow were estimated to nonzero, these proteins defined as crucial 
proteins related to the OS and pathways of them were defined as dysregulated biological pathways. (c) Survival 
related pathway identification and survival related predictive proteins selection.
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OS (P = 0.027)20. However, they did not evaluate its predictive performance of ovarian cancer prognosis and 
only the specific protein was studied. Although recent large-scale genomic, proteomic and metabolomic analyses 
have been performed to identify the potential biomarkers in the OS prediction across various cancers21–23, these 
biomarkers are not widely used in clinical practice. One of the main reasons is that the statistical methods that are 
used for biomarker selection do not consider the interaction between proteins or genes, which lead to undupli-
cated biomarkers. In this study, the SOGL method can combine priori biological knowledge to select the potential 
biomarkers. These results are in line with the reality of biological relationship.

Metabolic pathways have been reported to play an important role in the diagnosis, progression and prog-
nosis across various cancers24–27. Our current study also confirmed that dysregulated metabolic pathway has 
strong association with the prognosis of ovarian cancer, which consists of carbon metabolism, nicotinate and 
nicotinamide metabolism, TCA cycle, Alanine, aspartate and glutamate metabolism, and biosynthesis of amino 
acids. Among all the sub-pathways, biosynthesis of amino acids pathway achieves the best predictive performance 
compared with other sub-pathways in prognosis prediction of ovarian cancer. As known, amino acids often pro-
vide energy to support the proliferation of cancer cells and elevate levels of amino acids and their products are 
pathogenic factors for oxidative stress, neurological disorders and cancers. The tumor cells universally displayed 
high accumulation of amino acid28. Galactose metabolism together with fructose and mannose metabolism, from 
amino sugar and nucleotide sugar metabolism, also have relationship with ovarian cancer survival. Cramer et 
al. demonstrated the increase in galactose consumption is positively associated with the risk of ovarian cancer 
based on a blood galactose metabolism29. Meanwhile, fructose enhances protein and nucleotide synthesis and 
appears to promote a more aggressive cancer phenotype30, 31. Several researches revealed that Carbon metabolism 
is tightly related to the progress of cancers, and found that the activity of ENO3 and PGAM were upregulated 
in tumor cells32, 33, which were consistent with our current study. Tricarboxylic acid (TCA) cycle points to a piv-
otal role of altered glucose and energy metabolism in cancers and Migita et al. indicated that ATP-citrate lyase 
(ACLY), a key enzyme for lipid synthesis, is frequently overexpressed or activated in cancer to promote lipid 

Figure 2.  Overall survival related protein sub-pathways involved in Metabolic pathways. Green boxes were 
selected proteins and red nodes were the protein corresponding compounds, such as metabolites. ↑ Represented 
the coefficients of proteins <0 and indicated highly expressed with the prolongation of the survival time;↓ 
Represented the coefficients of proteins > 0 and indicated lowly expressed with the prolongation of the survival 
time.
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synthesis and tumor progression. ACLY activity was found to be significantly higher than normal lung tissue, 
which is also a chemical inhibitor34–36. Overexpression of pyruvate dehydrogenase B (PDHB) could inhibit the 
growth of ovarian cancer cells37 and researches have linked this pathway to worse prognosis in ovarian, kid-
ney, colon and lung adenocarcinoma38–41. Zhang et al. found three pathways involved in the regulation of actin 
cyto-skeleton, apoptosis and adherens junction were associated with outcome of HGSC based on the enrichment 
of survival related proteins12. These three pathways also selected in our current study, but the predictive perfor-
mance was not satisfactory compared with others.

Three proteins were selected as predictive proteins and highly expressed with the prolongation of the sur-
vival time. EIF2B is essential in all cells of the body for protein synthesis under different stress conditions, and 
there were five eukaryotic initiation factor 2B subunits encoded EIF2B namely EIF2B1, EIF2B2, EIF2B3, EIF2B4, 
EIF2B5, which was known to cause white matter abnormalities42, but no studies have been reported that EIF2B 
might be related with cancers. The relationship between EIF2B and cancers need further study. PRPS1L1 is 
the abbreviation for phosphoribosyl pyrophosphate synthetase 1-like 1 and with the function of kinase activ-
ity, lipoate-protein ligase B activity, magnesium ion binding, ribose phosphate diphosphokinase activity, trans-
ferase activity. PRPS1L1 participates the biosynthesis of amino acids pathway. Evidence shown that activity of 
RAS-MAPK pathway could drive cell proliferation43. However, Annabell et al. revealed that hyperactive of MAPK 
induced loss of ERα expression in breast cancer and tumors, which could allow for restoration of tamoxifen sen-
sitivity. In present study, higher expression of MAPK13 and MAPK14 were correlated with a better prognosis, 
which led to patients more sensitive to the chemotherapy and prolong the survival time of cancer patients44.

In summary, we utilized a reliable and novel biomarker selection method and strategy to identify the dysregu-
lated molecular pathways and individual molecule that associated with survival in HGSC. Biosynthesis of amino 
acids and a panel of three proteins are associated with the survival of HGSC patients. More importantly, a risk 
score, which might be transformed into clinical practice, facilitates and improves the current clinical predictors. 
Our study provides additional information for further mechanism research and therapeutic avenues to improve 
patient outcomes.

Methods
Patient dataset.  The present analysis dataset was obtained through the CPTAC database (https://cptac-da-
ta-portal.georgetown.edu/cptac/s/S026), as described previously12, which consists of 9600 proteins and clinical 
data from 169 HGSC patients at two independent centers, Johns Hopkins University (JHU, n = 119) and Pacific 

Figure 3.  Overall survival related proteins involved in biosynthesis of amino acids.

https://cptac-data-portal.georgetown.edu/cptac/s/S026
https://cptac-data-portal.georgetown.edu/cptac/s/S026
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Northwest National Laboratory (PNNL, n = 82). Zhang et al. indicated all patients in this study were newly diag-
nosed with ovarian serous adenocarcinoma without pretreatment and underwent surgical resection.

Data preparation.  We firstly computed the median, log2 relative protein abundance over 4,476 pro-
teins presented in every sample and used re-centering to achieve a common median of 0 to overcome the dif-
ferences in laboratory condition. 32 samples were overlapped at JHU and PNNL, which were used to correct 
for laboratory-related differences in the log2 relative abundances at individual protein levels between the two 
sites. The specific method was shifting the PNNL data at individual protein levels so that median abundances 
of each protein estimated over the 32 overlapping samples at PNNL and JHU were equalized and eliminated 
the batch effects. Proteins with missing data were excluded from the analysis to avoid problems associated with 
the imputation of missing values. The mRNA expression for the 169 HGSC tumors analyzed in this study was 
obtained from FIREHOSE (https://confluence.broadinstitute.org/display/GDAC/Home). 3,586 proteins paired 
proteome-genome were used to further analysis. Due to more than one protein was mapped to a gene, we selected 
a representative (minimum RefSeq ID) protein and reduced the number of proteins from 3,586 down to 3,329.

Figure 4.  Evaluation of predictive performance of risk score. (a,b) Kaplan-Meier curve and log-rank test 
among low, medium and high expression groups for protein-driven risk scores (a: OS, b: PFS). (c,d) Time-
dependent ROC curves evaluating predictive accuracy of ten-year overall survival based on protein-driven 
risk scores (c: OS, d: PFS). (e,f) Time-dependent ROC curves evaluating predictive accuracy of ten-year overall 
survival based on the comprehensive predictive risk score combined the protein-driven predictive risk score 
with clinical factors (e: OS, f: PFS).

Factors P value HR 95% CI

Univariate analysis

 Risk score 6.5 × 10−5 2.714 1.661–4.432

 Age (vs. ≤50 > 50 y) 0.093 1.559 0.929~2.618

 Stage (I vs. II vs. III vs. IV) 0.031 1.523 1.041~2.230

 Tumor residual (No macroscopi disease vs. 1~10mm 
vs. 11~20 mm vs. > 20 mm) 0.990 0.999 0.823~1.214

 Platinum status (Resistant vs. Sensitive) 6.1 × 10−11 0.193 0.118~0.316

Multivariate analysis

 Risk score 2.0 × 10−4 2.983 1.677–5.307

 Stage (I vs. II vs. III vs. IV) 0.300 1.242 0.822–1.876

 Platinum status (Resistant vs. Sensitive) 6.5 × 10−11 0.179 0.106–0.299

Table 1.  Univariate and multivariate Cox regression analysis of risk score alone and clinical factors associated 
with overall survival. Abbreviations: versus (vs); Hazard ratio (HR); Confidence interval (CI).

https://confluence.broadinstitute.org/display/GDAC/Home
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Protein pathway enrichment.  KEGG is a database resource integrate molecular-level information, espe-
cially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental 
technologies. KEGG PATHWAY is a collection of manually drawn pathway maps representing our knowledge on 
the molecular interaction and reaction networks45, 46. To group the proteins into different pathways based on the 
biological function, r packages “org.Hs.eg.db47” and “clusterProfile48” were utilized to identify the corresponding 
KEGG-IDs of proteins and performed KEGG enrichment analysis for them, respectively. Enrichment pathways 
analysis that fdr value < 0.05 were selected for further study.

Identification of survival related biological pathways and crucial proteins.  Since one protein may 
map to multiple biological pathways in the process of KEGG enrichment analysis and SOGL49 is effective for 
sparse linear predictors in both predefined groups and within groups, especially for the condition that over-
lapping features in different groups. We took SOGL method to identify the main pathways and crucial proteins 
related to the OS of ovarian cancer. Coefficients of proteins had effect on the outcomes were estimated to nonzero, 
when the coefficients < 0 mean highly expressed with the prolongation of the survival time and coefficients > 0 
mean lowly expressed with the prolongation of the survival time. Pathways of selected proteins were regarded as 
dysregulation pathways related to survival. Here the groups were defined as the biological pathways and within 
groups’ features were defined as proteins in each pathway based on the KEGG enrichment analysis.

Relative importance of pathways in predicting OS.  In order to compare the pathway importance 
to the OS among the selected pathways, a relative pathway score was defined as a linear combination of pro-
teins in each pathway and coefficient for each protein was weighted by their respective sparse linear coefficient. 
Time-dependent area under the receiver operating characteristic (ROC) curve50, allowing characterization of 
diagnostic accuracy for censored survival outcomes, was explored to evaluate the predictive accuracy of sur-
vival based on each pathway score. Plug-in MetScape app for Cytoscape was utilized to visualize the relationship 
between selected proteins and corresponding compounds biologically.

Protein-driven risk score and its predictive performance.  In order to facilitate the clinical applica-
tion, we selected predictive proteins based on univariate AUC > 0.90 and CC < 0.30 between each pair of pro-
teins, which indicated that these predictive proteins had high predictive accuracy but relative independence. We 
further constructed a protein-driven risk score, a linear combination of predictive proteins, coefficient for each 
protein in the predictive risk score was weighted by their respective Cox regression coefficients. Cox proportional 
hazards model was utilized to analysis whether protein-driven risk scores were independent of clinical predictors 
for HGSC survival including univariate and multivariate analysis. Time-dependent AUC was explored to evalu-
ate the predictive performance of protein-driven risk scores alone and protein-driven risk scores together with 
clinical factors in OS and PFS. In order to visualize the relationship between predictive risk scores and survival 
time (OS & PFS) clearly, we categorized predictive risk score into low, medium, and high risk groups, based on 
its corresponding 25th and the 75th percentiles as cutoffs. Survival curves of the risk score were calculated by the 
Kaplan-Meier method and compared using the log-rank test among groups.

Sparse overlapping group lasso.  Sparse overlapping group lasso method aiming to solve the problem 
that duplicated variables in different groups. SOGL is derived from the lasso51 and group lasso method52. The 
coefficients of variables are as follows:

ˆ
n

X v X v d v vargmin 1 [log( ( exp( ) ))] {(1 ) }
(1)i D j R

j i
g

g
g

2 1
i

∑ ∑ ∑β λ α α= − + − +
β ς∈ ∈ ∈

∼ ∼ ∼ ∼∼ ∼

where 1⋅  and ⋅ 2 is the Euclidean norm, X∼ is an × ∑ | |ς∈n g( )g -duplicated matrix. v is a n g( )g× ∑ | |ς∈

-dimensional vector. dg  is a positive weight (i.e., the size of the g th group), α ∈ [0,1] -a convex combination of the 
lasso and group lasso penalties, λ used to adjust the sparsity of the solution, v g  is a group latent variables53, D is 

Factors P value HR 95% CI

Univariate analysis

 Risk score 1.3 × 10-3 2.702 1.474–4.953

 Age (vs. ≤50 > 50 y) 0.220 1.310 0.815~2.019

 Stage (I vs. II vs. III vs. IV) 0.008 1.602 1.131~2.268

 Tumor residual (No macroscopi disease vs. 
1~10 mm vs. 11~20 mm vs. > 20 mm) 0.250 1.103 0.933~1.304

 Platinum status (Resistant vs. Sensitive) <2 × 10-16 0.066 0.038~0.117

Multivariate analysis

 Risk score 0.010 2.456 1.237–4.878

 Stage (I vs. II vs. III vs. IV) 0.022 1.533 1.063–2.211

 Platinum status (Resistant vs. Sensitive) <2 × 10-16 0.072 0.041–0.128

Table 2.  Univariate and multivariate Cox regression analysis of risk score alone and clinical factors associated 
with progression free survival. Abbreviations: versus (vs); Hazard ratio (HR); Confidence interval (CI).
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the set of failure indices, Ri is the set of indices, j, with ≥ yyj i (those still at risk at failure time i). In the actual data 
analysis, X are the submatrices by group, Y corresponding to failure/censoring times and the status for each 
observation (failure/censoring). This method can perform not only group selection but variable selection within 
the selected groups, especially in the condition that duplicated variables in different groups. There were two 
parameters, λ and α, in the model of SOGL. We fixed the mixing parameter α and computed solutions for a path 
of λ values (as λ regulates the degree of sparsity). The values of λ was sufficiently large to set β̂  = 0, and decrease 
λ until we are near the unregularized solution. In current study, we expected strong group-wise sparsity and we 
have used α = 0.05. The model was fit for a path of 20 λ-values with λmin = 0.1λmax. The final value of λ was set to 
the value where the minimum value of negative log likelihoods of the model by 10-fold cross-validation54.

Time-dependent AUC.  Time-dependent AUC was utilized to evaluate the predictive performance of a con-
tinuous diagnostic marker, X, with the outcomes are time dependent, D(t). If a patient has died prior to time 
t, D(t) = 1and zero otherwise. Heagerty et al. proposed summarizing the discrimination potential of a marker 
X, measured at baseline (t = 0), by calculating ROC curves for cumulative disease or death incidence by time t, 
which we denote as ROC(t)19. The time-dependent sensitivity and specificity functions are defined as:

c t P X c D tsensitivity( , ) { ( ) 1} (2)= > =

c t P X c D tspecificity( , ) { ( ) 0} (3)= ≤ =

The corresponding ROC(t) curve for any time t is defined as the plot of {sensitivity(c, t)} versus {specificity(c, t)},  
with cutoff point c varying55. In the current study, a 10-fold cross-validation was used to evaluate the predictive 
performance.
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