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Clustering knowledge and dispersing abilities
enhances collective problem solving in a network
Charles J. Gomez 1* & David M.J. Lazer2,3

Diversity tends to generate more and better ideas in social settings, ranging in scale from

small-deliberative groups to tech-clusters and cities. Implicit in this research is that there are

knowledge-generating benefits from diversity that comes from mixing different individuals,

ideas, and perspectives. Here, we utilize agent-based modeling to examine the emergent

outcomes resulting from the manipulation of how diversity is distributed and how knowledge

is generated within communicative social structures. In the context of problem solving, we

focus on cognitive diversity and its two forms: ability and knowledge. For diversity of ability,

we find that local diversity (intermixing of different agents) performs best at all time scales.

However, for diversity of knowledge, we find that local homogeneity performs best in the

long-run, because it maintains global diversity, and thus the knowledge-generating ability of

the group, for a longer period.
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For a given amount of diversity in a social system, is it better
for similar types to be grouped together? There is a common
thread across multiple literatures that there are generative

benefits that come from the mixing of different types of indivi-
duals and their ideas, allowing for the identification of novel
solutions1–6. Diversity tends to generate more and better ideas in
social settings7–13, ranging from small-deliberative groups13–17 to
tech clusters and cities that are viewed as more creative and more
efficient13,18,19. Implicit in this research is that mixing different
individuals, ideas, and perspectives helps to identify new knowl-
edge1–6. These benefits largely stem from cognitive diversity9,
which reflects the various and distinctive ways we think about
and interpret the world to solve problems.

Our focus is how the distribution of cognitive diversity (hen-
ceforth diversity) impacts the performance of problem-solving
collectives, such as small-deliberative groups, knowledge-intensive
industries, and even diverse, modern democracies15,20–26. Indeed,
this is a growing issue of concern with far-reaching implications.
For instance, innovation in knowledge-intensive organizations is
often heralded as the result of the synergies across diverse, multi-
disciplinary efforts, like engineers and product designers working
on the latest handheld mobile device. Here, the distribution of
diversity tends toward local heterogeneity with extensive inter-
mixing, which is shown to generate innovative ideas and enhance
adaptability and error detection6,12,13,15,16,27–29.

While most of the preceding literature on the role of diversity
within groups has been substantially explored in the social sci-
ences, computer scientists, geneticists, and operations researchers
have explored diversity in learning and search algorithms8–10,30–32.
Findings from both empirical research and agent-based models
consistently suggest that diversity supports collective creativity in
problem solving. However, these efforts focus on the impact of
having a fixed amount of global (or group-level) diversity in a
system and overlooks the effects of the distribution of that diversity
within a system7,8,10,33,34. To the best of our knowledge, no work
to date has tested how instead the distribution of a fixed amount
diversity shapes overall outcomes. As such, our focus takes group-
level diversity as a constant and varies the mixing across types
within groups. We build upon the rich tradition of agent-based
modeling35,36 and focus on the impact of how diversity is
distributed within communicative social structures20,33,37–39.
Following Lazer and Friedman39 and Hong and Page7, we utilize
agent-based models situated in social networks to examine the
emergent consequences of agent interaction for parallel problem
solving. Agent-based models are particularly useful and appro-
priate to explore this because, as “computational experiments,”36

they (1) yield empirically testable propositions across a wide range
of settings (e.g., online and small-group experiments, etc.); and (2)
allow us to quickly and efficiently test for causality across various
permutations of structure (e.g., networks) and agency (e.g., agents
with different heuristics)36,39. They can also inductively explore
how incremental changes in agent behavior have non-linear and
synergetic system-wide results36. Furthermore, social networks are
useful as their structures can prohibit or enhance access to novel
information40–42.

That is, what impact do structures have on how connected
are actors of different types to each other? At a trivial level, a
“group” in which different types of individuals never commu-
nicated with each other presumably does not get the creative
dividends from its apparent diversity. However, beyond “there
should at least be a single tie connecting different types of
actors,” the literature offers little guidance as to the impact of
connectivity between different types of actors in a collective
with a given level of diversity.

To that end, our analytic question is simple: How does the
distribution of types of agents within a network affect the

collective performance of the system? Is it better to have similar
types intermixed together or relatively separated? Our approach
to modeling the distribution of diversity, or what we call the rate
of intermixing, varies the extent to which identical agents or
identical ideas are clustered together. Our mode of inference is
experimental36—we have a number of starting conditions where
we manipulate whether the networks are intermixed or not,
generate an arbitrarily large number of cases, and compare
outcomes.

From a modeling perspective, this yields two subsidiary
questions: (1) how to model diversity and (2) how to model
its intermixing within a network? We focus on two types
of diversity: ability and knowledge. Our focus here is on
problem solving and how distribution of knowledge and
ability within the network of a group contributes to the
performance of the group. In the context of problem solving,
we define knowledge as knowing that a particular solution
produces a given level of performance, and ability as the
capacity to act upon given knowledge to produce new knowl-
edge. For instance, consider the smallest of possible social
systems, made up of two agents. They might have the same set
of knowledge at time t (i.e., low diversity of knowledge), but
different capacities to incrementally move toward new knowl-
edge (i.e., high diversity of ability). Alternatively, the two agents
might have different states of knowledge (i.e., high diversity of
knowledge), but share the same capacity to move toward new
states of knowledge (i.e., low diversity of ability). Our question
here is simply: is it best for agents with similar abilities
(knowledge) to be placed near or far from each other in the
group’s network?

The underlying metaphor of the model for this paper is that an
essential truth about the world is that there are sets of actors with
diverse knowledge and skills that are all trying to solve the same
or similar complex problem. That problem might be high schools
trying to educate their students; academics trying to build suc-
cessful careers; or states trying to produce public policy that
improves the health of their citizens. In each of these cases,
performance of an actor is not substantially affected by the per-
formance of other actors (e.g., success with the current opioid
crisis in one state probably does not have a great direct effect on
the opioid crisis in other states), there is some feedback from the
environment, and there is the potential to learn from other actors.
This is the general framework of “parallel problem solving.”39

Prior research, for example, highlights that the efficiency of
communication within a system of parallel problem solvers
increases the initial speed of improvement of solutions within the
system, but at a long-run cost of performance due to reduced
exploration for new solutions. Working from this motivating
metaphor, we offer formalizations of complex problems, social
networks through which actors learn from each other, and
diversity.

A complex problem is one that has many dead ends where an
agent can get stuck (local optima), and a few “excellent”
solutions. It is, according to Herbert Simon43 (p. 198), “the
capacity of the human mind for formulating and solving
complex problems is very small compared with the size of the
problems whose solution is required for objectively rational
behavior in the real world—or even for a reasonable approx-
imation to such objective rationality.” Complex problems can
be visualized as a rugged terrain, like a mountain range, and
agents can be thought of as myopic climbers on these terrains
seeking a global optimum: the highest possible peak in the
terrain, and many lower peaks that can trap climbers at a lower
altitude. The key attribute of any problem space is how rugged
it is, which is an indication of how difficult it is for agents to
find the optimal solution. This determines how rugged the
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space is: essentially, how many (lower) peaks there are that
climbers might get stuck on.

The NK problem space has been a standard formalization used
to model complex problems44–50 (We explain many of the design
and analytic decisions in the “Methods” section, but offer a
conceptual overview here.) An NK space is an N-dimensional
space, which are each associated with one of several potential
scores. What determines the exact score for any particular point
in this space depends on a fixed tuning parameter K that sets up
the NK space as either more rugged (higher values of K) or
smoother (lower values of K). In an NK space with a low value of
K, agents with different search strategies (i.e., say some search
strategy A and B) can readily find the best solution (global
optimum) with ease. However, in an NK space with a high value
of K, agents meander about local optima that are less profitable in
terms of score than the easily achievable low-K global optimum
space. So much so, agents with narrow search capabilities can get
stuck in local valleys. Figure 1 offers a stylized characterization of
a comparison of two NK spaces, one with a low K, and one with a
high K.

Every point in an NK space is defined by an address, repre-
sented by a sequence of length N of 1s and 0s. Agents in a
simulation are given this address and manipulate it in various
ways iteratively and myopically (e.g., changing one of the random
1s in the address to a 0 or vice-versa, for instance) to jump to a
new point in the space that might have higher score. NK spaces
that are very simple allow agents to quickly jump to points with
higher scores, and those that are very complex are typically very
difficult for agents for find paths that lead to the global optimum.
Hence, tuning K allows us to create a challenging but searchable
space to explore. The scores for each NK space are normalized
such that the global optimum is assigned a score of 1 and the
worst possible solution is assigned a score of 0.

NK spaces are analytically useful for agent-based models but
are conceptually abstract and difficult to ground to real-world
examples. Here, we can instead understand an NK problem’s
complexity in terms of how incremental contributions made by
any subset of activities are also contingent on other activities.
Thus, a solution that an agent comes up within the NK space—
captured by a unique sequence of 1s and 0s—reflects a basket of
activities people undertake to solve a real-world problem, where a
1 represents the presence of an activity and a 0 its absence.

There are many examples of social collectives solving a com-
mon problem that are analogous to the NK space setup. In these
instances, the solutions and performances are visible at least some
subset of other actors, and there are no positive or negative
externalities from one actor to another (beyond the informational
spillover). For instance, consider national ministries of health of
various countries. They all have different approaches to health-
care (e.g., insurance markets like in Germany or Austria or a

single-public option like in Canada or the U.K.). And the
improvement or decline of one country’s healthcare does not
adversely affect or hamper the healthcare of another. The interest
of some countries in the policies employed by other countries
may be limited by physical adjacency or similar political systems
or cultures, so their information about the “problem space” is
more localized.

To expound on this a bit further with respect to the NK space,
consider superintendents of high school districts50. Here, super-
intendents can learn from the best practices and performance of
superintendents from other high school districts, specifically
where they can see the practices and performance of other local
schools. The improvement or decline of one school or district
does not necessarily affect another. Furthermore, superintendents
are diverse in that they employ approaches that differ from other
superintendents as to how they view the schools in their districts:
Some may view their schools more as administrators, while others
view it more pedagogically. As such, one “activity” that a super-
intendent as an administrator might employ at their schools is to
hire better teachers or to change to block scheduling. Alter-
natively, a pedagogically oriented superintendent may work to
improve the curriculum collaboratively with local teachers.
However, these activities do not exist independently. Instead, they
have synergies among them such that this approach only works in
the presence of other tactics (e.g., certain curriculum improve-
ments only work with block scheduling.). As such, the NK space
captures the interaction of activities and these synergies. In other
words, it is contingent on “sub-problems” related to the
wider goal. Nevertheless, pulling on the diverse skillset and
solutions across the department, finding the optimized solution is
possible.

The severity of this problem’s complexity is not additive or
linear in nature, but interdependent on all of the sub-problems
that need to be solved for this to work. Furthermore, adopting a
solution might have unintended, if not non-linear, consequences
to the system’s overall outcome that were not obvious or fore-
seeable. For instance, allowing students to use their mobile
phones in schools might seem like a good idea to improve class
engagement through other media, but an unintended con-
sequence might be distraction or discouraging deeper critical
thinking. The objective of the NK space is to capture the complex
interaction among activities that yield performance. The NK
problem space’s popularity in modeling human decision-making
stems from its verisimilitude with the complex and multi-
dimensional problems that face problem-solving tasks, and
because researchers can easily generate a large number of statis-
tically similar problem spaces for robustness checks7,36,51.
(We note, however, in order to make sure our results are not an
artifact of the idiosyncrasies of the NK problem space, we repli-
cated all of our results in another rugged problem space, the
Traveling Salesperson Problem—findings available in Supple-
mental Methods in Supplementary Fig. 2 through 9 and 11).

Typically, in any search problem we assume that agents can
only view a subset of the landscape (i.e., there are no omniscient
agents that can simply view the entire landscape and pick the
global optimum). Instead, we assume that people generally are
very myopic with respect to the choices they make (i.e., they can
see the consequences of only the neighborhood of choices around
their status quo choice, and not the longer-term possibilities that
those choices open up or foreclose). In our model, we therefore
endow our agents with search capacities in the problem space that
allows view of only a tiny fraction of the entire problem space.

To that end, we build on the paradigm of “parallel problem
solving,” where agents seek to improve their solution to a com-
plex problem they confront39 and the performance of one agent
does not adversely affect another. For instance, principals whose
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Fig. 1 NK space. Hypothetical plot of two NK problem spaces with varying
levels of K
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expertise is in school administration and principals whose
expertise is in pedagogy all work in parallel and collaboratively by
sharing best practices to improve their high schools. For example,
the pedagogically oriented principals find that flipped-classrooms
improve standardized test performance, which the
administratively-oriented principals adopt in their schools and
then improve upon in their own way. (The alternative case where
this leads to worse outcomes also shows how one good solution
discovered by one agent may in fact lead to a worse solution by a
different agent with different search abilities; and globally leads to
a worse overall solution as compared to the case where peer-
review was effective.)

Our motivation behind developing our model in this way is
that it ought to be authentic, robust, and replicable, where sim-
plicity is a critical means to all of those ends36. On the one hand,
much of what happens in the real world is glossed over with this
level of abstraction: For instance, the value of diversity might
come at the cost of mistranslations (e.g., administrative principals
do not readily speak the same language as pedagogical principals).
On the other hand, a model that directly accounted for all of the
complex dynamics of interpersonal interactions associated with
large-scale projects would have low external validity to other
similar situations, like cross-functional brain-storming sessions in
an innovative tech startup. Here, abstracting the model may not
be a catch-all for all of the details and richness found in real-
world settings, but allows us to manifest the effects of diversity
distributions with limiting contextualization to any specific case
or situation for future empirical work to expand upon.

The network and experimental setup. For our experiment, we
distribute one hundred agents in a communicative torus net-
work52–54, where every agent in the torus network has four
neighbors: two agents to their immediate left and right. We do so
because the torus network is a useful communication model that
strongly differentiates between local and systemic proximity55. In
other words, agents are limited to a “local” neighborhood of other
agents that can be highly diverse or homogeneous, but can be
readily exposed to a distant part of the “global” network by
randomly “rewiring” a connection to another agent far away.
(The latter is part of our robustness checks in the Supplemental
Methods and in the Supplementary Figs. 5, 6, 10, and 11.) This
allows us to better isolate the effects of diversity in this setup.

Each agent begins with a random piece of knowledge of a very
large problem space they will explore (e.g., the address to some
random starting point in the NK space), with the goal of finding
the best possible solution (a point with a higher score). These
pieces of knowledge (referred to as their “state of knowledge”) are
randomly distributed such that every agent receives a unique one
for each problem space they will explore. (As explained in more
detail later and in the Supplementary Methods, while they are
randomly and uniquely assigned to agents in the network for each
problem space, they are the same across experimental setups to
render them comparable.) Our focus here is how various
distributions of diversity affect parallel problem-solving perfor-
mance. However, if everyone in the department constantly
communicated with everyone else, then distributing people with
similar-types or cross-functionally is a moot point, as everyone
can communicate with everyone else.

Starting in round 1, every agent looks at the current states of
knowledge (i.e., solutions and associated performance) of its
neighbors (i.e., the other agents it is connected to in the network).
As inspired by March20, agents then engage in one of two
behaviors: exploitation and, if that fails to produce a better result,
exploration. First, by exploitation, the agent will copy the current
state of knowledge of a more successful neighbor (i.e., exploits the

neighbor’s state of knowledge at time t), if one exists. If none of
the agent’s neighbors’ states of knowledge are currently better at
time t, the agent will attempt to explore for better states of
knowledge. The agent does so by incrementally changing its
current state of knowledge. This is how we define our first form of
diversity, ability, which we discuss and set up in the next section.
If its new (read: experimental) state of knowledge that results
from a random incremental change has a higher score than its
current state of knowledge, the agent adopts this new state of
knowledge as its own. Otherwise, the agent remains with its
current solution.

All agents in the network engage in this behavior in a single
round. The next round of the simulation (t+ 1) repeats the
aforementioned steps, but now agents begin with their current
state of knowledge from the previous round t, where they found a
new solution from exploring the problem space, copied a
neighbor with a better solution, or continued with their status
quo solution. This process continues for a number of rounds until
the entire system reaches an equilibrium, which is the point at
which no more unique knowledge (i.e., solutions) is being
generated by agents in the networks.

We identify two types of diversity: ability and knowledge.
Knowledge broadly speaking is an agent’s knowledge of the
relationship between its behavior and its performance. In our
models below, we assume that there is no memory, so an agent’s
knowledge at time t is simply its solution and performance score
at time t. Thus, in an NK space with an N of 5, an actor with a
solution 01000 would simply know what performance was
associated with that bit string. Ability is the capacity to convert
knowledge into new knowledge. Different types of agents, given
the same starting point, will have different capacities for creating
new knowledge. Thus, one actor might be able to turn single 0s to
1s, and thus, from 01000 could evaluate the performance
associated with 11000; 01100; and so on; and another actor
might be able to turn single 1s to 0s. We discuss our formalization
of these two types of diversity in turn below.

Diversity of ability is modeled by creating two “species” of
agents7 in the network: an A species agent with a distinct ability
to search the problem space and a B species agent with a different,
but also distinct, ability. A and B agents produce mutually
exclusive sets of knowledge from the same starting point. (Here,
our focus is on mutually exclusive capacities; see more about this
in the robustness discussion and the Supplemental Methods and
Supplementary Fig. 2 through 6.) All agents can only see a small
portion of the problem space from a given starting point, given
their limited search heuristic, which operates like a tiny
“spotlight” on a vast terrain. While agents A and B cannot see
the same areas of the problem space (i.e., non-overlapping
spotlights), how agents A and B explore the problem space (or its
search heuristic) is unique. For each problem space, agent A and
agent B are each assigned a unique search heuristic that are
mutually exclusive from the other. This is done to ensure that
how agents explore any problem space is not driving these results
(this is explained in detail in the “Methods” section). As such,
referring to an agent as either “A” or “B” is just nomenclature:
There is nothing inherent about the nature of an A agent or a B
agent other than they both explore the problem space with
mutually exclusive search heuristics. With this setup, when agents
communicate with one another, one agent can lead the other
agent to a better state of knowledge that they would have never
been able to reach alone. In other words, agents can more readily
find better states of knowledge than by communicating with
similar agents (e.g., A with A or B with B)7,8.

A and B agents are distributed in the network along a spectrum
with two extremes, as shown in Fig. 2. In the case where there is
minimal intermixing, all agents of the same species are adjacent
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to each other, clustered into two large blocs of 50 agents. Here,
different agents are almost fully segregated from one another,
connected to other types of agents only at the edges of their
respective clusters, at two points. We then alter the distribution of
agents into blocs of 25 (low intermixing), 10 (moderate
intermixing), and 5 (high intermixing). In the condition with
full intermixing, the two types of agents simply alternate. For our
torus network, agents are exposed to equal proportions of similar
and different species of agents.

There are, however, multiple types of diversity (of ability)
present in many real-life situations, such as multidisciplinary
efforts at research universities that span several disciplines. Our
model employs two types of agents at a time (e.g., A and B), as
our focus is not on the additive benefits of additional forms of
diversity7–9, but instead on whether preserving local diversity
reaps any systemic benefits. We can best highlight and isolate
these effects by keeping the model simple enough to clearly
underscore the interactions of two types of agents at a time. (For
robustness, in the Supplemental Methods and Supplementary
Fig. 1, we also test models that employ five types of agents set up
in the exact same way as explained here. We find that our results
still hold.)

We model diversity of knowledge by varying the distribution of
the starting state of knowledge in the network. Whereas before we
focused on agents with differing abilities, here we focus on agents’
states of knowledge and assume agents have identical abilities.
Recall that at the start of each simulation, agents are given initial
starting states of knowledge. Juxtaposed to the diversity of ability
setup, we distribute five initial states of knowledge (instead of
100), but to a population of 100 agents in the network (of just one
species, instead of two). This species of agent is the same as the A/
B configuration in the diversity of ability setups such that each
simulation is assigned a unique search heuristic, to ensure that the
trends are not driven by the choice in agents (but the same search
heuristic is used across all levels of intermixing to compare across
setups).

The initial states of knowledge are distributed in a similar
fashion as the agents were distributed with the diversity of ability
simulations, shown in Fig. 3. In the first configuration with
minimal intermixing, five blocs of 20 adjacent agents are all
assigned the same initial state of knowledge (i.e., 20 adjacent
agents assigned to some state of knowledge State1 and the next 20
adjacent agents assigned to another state of knowledge State2, and
so forth). Furthermore, initial states of knowledge are distributed
in to 25 blocs of 4 agents with the same state of knowledge (low
intermixing), 20 blocs of 5 agents with the same state of
knowledge (moderate intermixing), 50 blocs of 2 adjacent agents
(high intermixing). In each of these mixing setups, the five states
of knowledge are randomly assigned to each of these blocs. For
instance, the first bloc of agents may get State1, but the next bloc
of agents may get State3, and the following bloc might get State5,
etc. This is because always having agents (or blocs of agents) with
State1 always next to State2, or State4 always next to State5, (and
so forth) will negate opportunities for agents with State1 to
interact with agents with State4 or State5, and vice-versa. Thus,
randomization allows for multiple pathways for agents to explore.

Finally, for the last setup, the five states of knowledge are
randomly distributed in equal proportions across the 100 agents
(random intermixing).

Results
Analytic setup. For our baseline results presented here, we run
10,000 simulations, each with a distinct NK problem space and a
simple torus network of agents with no contagion effect. We
group our findings into two major results. For the diversity of
ability models, systemic performance improves with increased
intermixing and these results are consistent for all time scales.
The simulations were run so that each of the five levels of
intermixing had identical starting points—for 10,000 starting
points. We could thus compare how well each level of intermixing
did by comparing their average NK scores across agents for each
network and then comparing these average network perfor-
mances across NK problem spaces.

Diversity of ability. Figure 4a summarizes the results for the
diversity of ability simulations in NK spaces. The y-axis measures
the average NK score across problem spaces for each intermixing
setup, which are ordered on the x-axis from minimal intermixing
on the left to full intermixing on the right. In other words, each of
these setups are given the exact same problem space and starting
solutions. The only thing that differs among them is how the A
and B agents are distributed (i.e., intermixing rate). As soon as
each of the five setups reach an equilibrium state (i.e., no more
new solutions are being introduced), their final scores are aver-
aged across all of the agents in the network for each round in the
simulation. (In the case of equilibrium, all agents have the same
solution and, thus, scores.) These values are then averaged across
all problem spaces for each intermixing setup. This is represented
by the dots and the different colored plots corresponding to rates
of intermixing in Fig. 4. The dots in 4 are the average scores for
each network setup across 10,000 NK problem spaces. As such,
we also include the standard errors from these spaces as error
bars in this figure and all subsequent figures. Since Fig. 4a only
shows the final average result of these simulation runs, Fig. 4b
plots these average NK scores in the same way, but over time,
from start to equilibrium (along with the standard errors just as
in Fig. 4a).

Out of 10,000 NK spaces, networks with minimal intermixing
had an average NK score of 0.47, while networks that were fully
intermixed had an average of 0.95. We find that each increment
of intermixing is associated with improved performance. As
intermixing increases, the overall performance of the system
improves monotonically. Why does intermixing yield better
systemic results and why does this hold across time scales? Prior
research highlights the benefits of maintaining diversity of ability
in group deliberation, and we find a similar pattern here: the
more locally diverse systems are (i.e., the more intermixing), the
greater the number of unique states of knowledge generated. That
is, if we imagine an actor of type A that finds a good solution, an
adjacent actor of type B can copy that solution and build on it. If
there is no actor B nearby, then that good solution may be

Minimal
intermixing

Low
intermixing

Moderate
intermixing

High
intermixing

Full
intermixing

Fig. 2 Intermixing of diverse abilities. Intermixing distributions of A and B agents in networks for the diversity of ability simulations
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replaced by a “better” solution that is a local optimum for both A
and B (and thus a dead end for further innovation).

Figure 5 plots the average number of unique states of
knowledge generated by the five distributions in the NK spaces.
For ease of presentation, we transform these plots such that they
are the marginal performance over the minimal intermixed
system (hence, the minimal intermixing networks is set to zero,
and the other trends are the number of unique solutions
subtracted by the minimal intermixing network trend). In other
words, the more intermixing there is in a system, the more unique
solutions are generated, here measured relative to the number of
unique solutions generated by the minimal intermixing networks.
In short, the more intermixing, the more knowledge the system
produces. As Page9 notes, “Each of us walks around carrying a

toolbox filled with a variety of tools” (p.103), that “enable
collections of people to find more and better [states of knowl-
edge].” (p.13) However, this work focused on small groups with
plenary discussion and varying group composition7,8, but no
variation in network configuration, as is explored here. Indeed,
this result extends his collective work7–9 to a network of problem
solvers, illuminating that it is important to maximize the number
of tools available to apply to a given solution in order to maximize
the number of new states of knowledge that can, in turn, be
generated. The way to maximize the number of tools available for
each state of knowledge generated in a system is to have the
maximum possible intermixing of the abilities of different actors.

Intermixing with respect to initial knowledge states shows a
dramatically different pattern. For the diversity of knowledge,
there is a tradeoff of systemic performance in time: intermixing
improves short-run but hurts long-run performance.

Diversity of knowledge. Figure 6 refers to our diversity of
knowledge results in the NK problem space. These results parallel
our presentation of the diversity of ability results. Like the pre-
vious Fig. 4a, Figure 6a measures the average NK score found by
agents in the network in a particular round for a specific NK
problem space. These scores are then averaged across NK spaces
for each of the five intermixing setups, represented by the dots
and the different colored plots corresponding to rates of inter-
mixing in the same way as they were setup for Fig. 4a, b. (And the
standard errors reflect the averages of networks across the NK
spaces, just as before.) Similarly, Fig. 6b plots this performance
over time, from start to equilibrium.

Here, however, we find quite different results: intermixing
hampers systemic performance. Furthermore, there is a tradeoff
in systemic performance over time, as seen in Fig. 6b. Networks
with some form of intermixing perform better in the short-run.
However, the network with the minimal possible intermixing
performs worse in the short-run but best in the long-run. In other
words, this suggests an “all or nothing” trade-off over time: the
configuration with the least amount of intermixing possible
(minimal) performs worse in the short-run, but better in the
long-run, while any gradation of increased intermixing yields the
same rank-ordering in performance as their counterpart networks
in the diversity of ability simulations.

Agents in the intermixed network setups explore for solutions
early on in the simulation, which is a double-edged sword. In the
short-run, with more intermixing, agents quickly turn to
exploitation, as they merely take solutions that are marginally
better relative to other setups but are still mediocre in absolute
terms. Said differently, agents in setups with at least some
intermixing quickly coalesce to whatever the few agents that did
explore the problem space found, which are often not the best
solutions possible. So, exploring the problem space using worse
solutions often leads to modest gains. However, the agents in
setups with minimal intermixing are more commonly exploring,
rather than exploiting, because their neighbors’ initial solutions
are less optimal than their counterparts in intermixed networks.
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intermixing
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intermixing

High
intermixing

Random
intermixing

Fig. 3 Intermixing of diverse knowledge. Intermixing distributions of the five initial states of knowledge in networks for the diversity of knowledge
simulations
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This is because there is minimal exposure to diversity in these
minimal setups, which inadvertently produces poor solutions in
the short-run but allows for more exploration to find better
solutions in the long-run. In other words, by finding better
solutions through exploration, agents more often uncover path-
ways to better solutions earlier on. The end result is that the long-
run performance of setups with minimal intermixing is best.

Figure 7 sheds some light as to why little intermixing leads to
better long-run systemic results across NK spaces. For each of the
intermixing setups, we calculate the average number of unique
states of knowledge (i.e., solutions) introduced into the network
for each round. Figure 7 plots this for each of the five intermixing
scenarios, and they are measured with respect to random
intermixing, the setup that performs the worst in the long-run.
(Hence, random intermixing is set to zero, and the other trends
are measured with respect to it.) Networks with low to random
intermixing introduce fewer unique solutions, on average, when
compared to networks with minimal intermixing. In so doing,
networks with minimal intermixing buffer promising but initially
inferior solutions from being wiped out from the system
prematurely, preserving alternative pathways to better states of
knowledge. By preserving these initially inferior solutions, the
system takes a hit in performance in the short-run, but maintains
more pathways into the solution landscape, allowing more
exploration, and thus greater performance, in the long-run.

Discussion
In sum, we find that more intermixing monotonically increases
systemic performance across time for diversity of ability. How-
ever, for diversity of knowledge, intermixing results in higher
levels of performance only in the short run, as minimal inter-
mixing preserves systemic diversity in the long-run. (In the
Supplemental Methods and Supplementary Fig. 7 through 11, we
show that these results hold in other problem spaces, contagions,
and network structures.)

These findings come with particular scope conditions, that
derive from the model’s assumptions. They are relevant to

optimization problems that individuals (imperfectly) solve, typi-
cally getting stuck in local optima, but where those individuals
can learn from others. Individuals are myopic—i.e., able to pro-
duce solutions within a small neighborhood around the current
solution. All individuals are attempting to solve the identical
problem; but individuals vary in their position in the network,
and in their ability to produce new solutions given their knowl-
edge. This potentially encompasses a broad set of human problem
solving. Examples of social learning that approximately fit into
this paradigm might include superintendents of high school
districts (as discussed above); graduate students trying to succeed
in their program; or small-business franchises. In each case, the
relevant agents are trying to solve a complex problem, and can
learn from the behavior of other actors, with whom they are
generally not in direct competition with. However, our approach
excludes a broad set of collective problem behavior; e.g., where
skill in groups is coupled with specialization of roles. These
results have little implication, for example, for the success of a
baseball team; or for scenarios where agents are solving sub-
stantially different problems (e.g., career success in very different
fields).

As such, this work is meant to be a platform for further
research, both on the modeling side and with behavioral research.
For example, there are other mechanisms through which diversity
may be maintained33,56–58. Actors may have exogenous drivers of
attitudes56,57,59; successful spreading may require multiple, rein-
forcing signals58; and individuals may simply be stubborn. Actors
may also have better answers to sub-problems, which might
increase the amount of “knowledge recombination” that occurs.
Future work also ought to offer agents opportunities for search
capabilities that are learned from other agents, as people learn
skills and perspectives from others who are different to them (e.g.,
Burt41). Finally, an agent ought to be able to exchange ties with
the chance that these newer ties might connect with better per-
forming agents.

Future research should integrate behavioral research, both
experimentally in lab settings (by varying the network structure of
problem solving groups17,33,60), and in field settings. This can
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evaluate the micro-behavioral assumptions (e.g., around social
learning), test the propositions regarding emergent behaviors,
examine whether there are countervailing behavioral effects (e.g.,
whether local diversity reduces prosocial behavior61,62), and
perhaps iterate in evaluation of alternative specifications for
further ABMs.

More critically, this work is meant to shed light on how the
distribution of diversity affects deliberative problem-solving
across multiple scales and social collectives, ranging from small
groups to modern democracies. Given that research on how
people tend to organize themselves is strongly biased towards
homogeneity, we need to consider multiple levers to facilitate or
inhibit the distribution of diverse individuals and ideas. To that
end, our findings highlight the potential value of creating loci for
multidisciplinary collaboration in settings such as universities and
knowledge-creating companies. However, the flip side is that
there may be value in creating an array of “hot houses” of
exploration by likeminded sets of individuals, temporarily shel-
tered from systemic forces of conformity.

Methods
Experimental setup. All of our models were written and executed in Python 2.7, a
high-level object-oriented programming language. The NK problem spaces were
generated as text files that contained the address of every point in the space

(sequence of 1s and 0s of length N that identifies every point in the NK space) and
its score for the tuning parameter set to K= 5.

A simulation is comprised up of a torus network of 100 agents that completes
after some number of rounds when all of the agents reach equilibrium (i.e., they are
not generating any new unique solutions). A simulation begins with a problem
space for agents to explore. Each agent is given some state of initial knowledge (e.g.,
a random sequence of 1s and 0s of length N). For robustness, agents start with the
same sequence of 1s and 0s in each simulation. However, since each problem space
is completely distinct and different for all other problem spaces, there is nothing
intrinsically good or bad about any of these solutions when used in different
problem spaces. In other words, a solution in one problem space may be
exceptionally good, but very bad in another. (Changing an agent’s initial solutions
for each solution results in no discernable change in any of our results.).

We do hold our solution and problem space setup constant across our various
treatments (i.e., intermixing of diversity), and across our robustness checks (i.e.,
network structure, contagion, etc. that we outline in our Supplemental Methods
and Supplementary Fig. 2 through 11). Thus, our setups are identical in every way
except for how we intermix diversity in the network, along with our robustness
checks.

Problem spaces. An NK space is operationalized by an N dimensional sequence of
0s and 1s, where the marginal contribution to performance of a given 1 (or 0) is
contingent on K other bits (where each contingency is generated by a uniform
distribution between 0 and 1). The 1s may be viewed as the presence of an activity,
and the 0s its absence. If a cluster of activities, together, produces a notable
improvement in performance that is greater than the sum of each of these activities
in isolation, these activities may be viewed as synergistic. The higher K for a given
N, the more local optima there will be in an NK space. We used the parameter
values of N= 20 and K= 5 for our simulations and all NK scores are normalized to
each space’s global maximum. Hence, an NK score of 1.0 is the maximum that can
be obtained for any given NK space. As with Lazer and Friedman39, a monotonic
adjustment is made to the score by raising the raw score produced in the standard
NK model to the 10th power and then divided by a constant so that the trans-
formed values are between 0 and 1, yielding a distribution where the model ran-
dom solution is quite poor relative to the optimum.

Every agent is associated with a unique array of length N, called a[i], as show in
Fig. 8. Each entry in the array contains either a 0 or a 1. The specific sequence of 0s
and 1s will ultimately yield a normalized and cumulative score, or NK score, for
this particular array. Each of the N entries in the array is associated with one of
several potential scores, a decimal value between 0 and 1, exclusively. The
determination of this score depends on two things: (1) whether the entry in the
array has a value of 0 or 1, and (2) whether K other entries in the array have the
values 0 or 1. These K dependencies are unique and different for each of the N
entries. To illustrate this point, consider the fifth entry in this hypothetical array
show in Fig. 8, which, for simplicity, we will say is dependent on K= 2 other
entries: say, the second and sixteenth values in the array, for instance. Each entry
can only take on a value of a 0 or a 1, so there are a total number of 8 combinations
of 0s and 1s, because each entry that depends on the values of K other entries in the
array can potentially represent 2K+1 scores. Each of these eight combinations is
associated with a particular decimal score between 0 and 1, exclusively. So, if the
second, fifth, and sixteenth entries all had 0, then the fifth entry would be
associated with some unique score (i.e., 0.15 as per Fig. 8). If the second entry were
instead a 1, then the fifth entry would be associated with a different unique score,
and so forth. The scores for each entry in a[i] are iteratively calculated averaged
together to reflect the unique score for this particular string of 0s and 1s. In other
words, the resulting product is the NK score associated with this agent’s particular
array (i.e., state of knowledge).

Modeling diversity. There are different ways of envisioning diversity of ability.
Different types of agents may have non-overlapping (i.e., mutually exclusive)
search capabilities, meaning that when agents are given the same state of knowl-
edge, the new knowledge that they can generate is completely different. Or, they
might have a much larger search capability than other agents and can generate the
knowledge that other agents can, plus additional sets of knowledge. Hong and
Page7 model diverse types of agents based on having different perspectives of their
problem space and heuristics for manipulating potential sets of knowledge (i.e.,
solutions) while exploring the space. The interactions of these distinct pairings of
agents might still lead to the same state of knowledge, but more often than not,
they open pathways to optimal states of knowledge that agents could not have
found alone. Here, our focus is on mutually exclusive capacities (see more about
this in the Supplementary Methods and Supplementary Fig. 2 through 6).

We model the agents that differ in ability as two species of agents—the A
species and the B species—with two non-overlapping methods for generating new
solutions. Agents explore a problem space by manipulating a state of knowledge
with a specific heuristic unique to that species of agent. Here, we focus on how
agents explore the NK problem space. Recall that a state of knowledge in the NK
space is a bit array of 0s and 1s of length N= 20 that refers to the address of a point
in the NK space holding a particular score. (For instance, an example is
“10011100110011010100” refers to some score between 0 and 1 inclusive, where 1
refers the highest possible score in any particular space.)
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Each simulation generates a unique form of ability diversity such that A and B
ought to have mostly non-overlapping search capabilities. This ensures that the
results are not the result of one particular type of heuristic that any one agent
engages in. Thus, referring to agents as either “A” or “B” is merely nomenclature to
distinguish them, rather than anything that is inherent about the quality of being
an “A” agent or a “B” agent.

The agents are randomly assigned a manipulation mask (or mask for short) for
each problem space (and held constant cross all five intermixing setups). The mask
is simply the unique bits in the NK string of 1s and 0s that it will manipulate. One
agent is randomly assigned anywhere from 2 to N-2 random bits that it can
manipulate, while the other agent is randomly assigned anywhere from 2 to some
number of bits less that is than the number assigned to the other agent. For
instance, the A agent may be assigned bits 3-5-10-18 (where 3 refers to the third bit
in the sequence of 1s and 0s; 5 refers to the fifth bit; etc.) while the B agent may be
assigned 6-13-14-15-16-19. The only strict criterion is that A and B agents can
never use the same mask at the same time. Similarly, agents are then randomly
assigned one of four manipulation behaviors for each problem space and these
selections are held constant across all five intermixing setups. Again, the only strict
criterion is that A and B agents can never the same manipulation behavior at the
same time. In the NK space, agents can (1) turn every bit in its mask to a 1; (2) turn
every bit in its mask to a 0; (3) randomly jumble all of the bits in its mask; or (4)
turn every bit in its mask to its opposite, or from 1 to 0 and 0 to 1.

To ensure that agents do not easily become stuck at local optima, agents explore
the NK problem space by “shifting” their mask in a step-wise fashion (one bit at a
time) and apply their manipulating behavior to each of the N= 20 “shifted mask”
bits. And out of the N= 20 possible mutations, the agent adopts the best state of
knowledge. For instance, consider an agent who has the mask above (3-5-10-18)
and turns each bit in this mask to a 1. So the agent takes the state of knowledge

given by 10011100110011010100 and converts this to 10111100110011010100.
(The third bit which was a 0 becomes a 1, while the fifth, tenth, and eighteenth bits
which were all 1s remain 1.) After the score associated with this particular
manipulation is calculated, the agent then shifts the mask by one (3-5-10-18
becomes 4-6-11-19). This shifted mask (using the same behavior of turning each
bit to 1) is applied to the original state of knowledge (10011100110011010100) and
turns it to 10011100111011010110. (The fourth and sixth bits remains a 1, while
the sixth bit and eleventh bits change from a 0 to a 1.) This process continues until
20 manipulations are calculated (and their associated scores for each step) through
the N= 20 bits. (When the bit in the shifted mask is greater than N, the bit cycles
back to the beginning, such that the “21st” bit is really the 1st bit in the state of
knowledge, and so forth.) Finally, the agent adopts the best state of knowledge out
of the 20 possible setups it can possibly create after altering the original state of
knowledge.

Robustness. We evaluate the robustness of our findings by rerunning all of our
experiments varying several dimensions: (1) the problem space the agents
explore; (2) the information contagion that dictates the rate of information
diffusion in the network; (3) and the network structure that preserves inter-
mixing. Given the large array of permutations of computational experiments we
ran, and for simplicity of presentation, we present our robustness checks in
the Supplementary Methods but only directly reference our main results from
our baseline condition (i.e., a simple torus network with no contagion effect in
the NK problem space with A and B agents) in the results section. However, we
note that the qualitative pattern of our findings is notably robust across this
wide-array of model specifications.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The code used to generate the data are available on Harvard’s Dataverse: https://doi.org/
10.7910/DVN/8ZXFHI.

Code availability
All code used to run these simulations are available on Harvard’s Dataverse: https://doi.
org/10.7910/DVN/8ZXFHI.
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