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ABSTRACT

With discovery of diverse roles for RNA, its centrality
in cellular functions has become increasingly
apparent. A number of algorithms have been
developed to predict RNA secondary structure.
Their performance has been benchmarked by
comparing structure predictions to reference
secondary structures. Generally, algorithms are
compared against each other and one is selected
as best without statistical testing to determine
whether the improvement is significant. In this
work, it is demonstrated that the prediction accu-
racies of methods correlate with each other over
sets of sequences. One possible reason for this
correlation is that many algorithms use the same
underlying principles. A set of benchmarks pub-
lished previously for programs that predict a
structure common to three or more sequences is
statistically analyzed as an example to show that it
can be rigorously evaluated using paired two-
sample t-tests. Finally, a pipeline of statistical
analyses is proposed to guide the choice of
data set size and performance assessment for
benchmarks of structure prediction. The pipeline is
applied using 5S rRNA sequences as an example.

INTRODUCTION

There has been an explosion in our understanding of roles
for RNA in cellular processes and gene expression in
recent decades. RNA can form complex three dimensional
structure either alone or with proteins to catalyze RNA
splicing (1), catalyze peptide bond formation (2), guide
protein localization (3), and tune gene regulation (4,5).
Prediction of RNA secondary structure, the set of base
pairing interactions between A-U, G-U and G-C, facili-
tates the development of hypotheses that connect structure
to function. It also underlies a number of applications

such as non-coding RNA detection (6–8), RNA tertiary
structure prediction (9), siRNA design (10), miRNA
target prediction (11) and structure design (12). There
are many algorithms that have been developed to apply
to specific situations with their own strengths and
limitations.
The performance of a given structure prediction method

is usually benchmarked on a set of RNA families by
comparing predicted structures with the known secondary
structures. Two statistical scores, sensitivity and positive
predictive value (PPV), are commonly tabulated to
determine the accuracy of the prediction methods (13).
Sensitivity is the fraction of known pairs correctly predicted
and PPV is the fraction of predicted pairs in the known
structure. The two scores are sufficient to evaluate the
accuracy. Another measure, the Matthews correlation
coefficient (MCC) (14,15), is used as a single score that sum-
marizes both sensitivity and PPV. It is defined as: MCC=

ðTP�TN�FP�FNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP+FPÞðTP+FNÞðTN+FPÞðTN+FNÞ

p
,

where TP, TN, FP and FN represent the number of true positive,

true negative, false positive and false negative base pairs. It can

be approximated by the geometric mean of sensitivity and PPV

(15). Although MCC is a more succinct measure, by combining

sensitivity and PPV it loses the information about capability

and quality of a given method.
Traditionally, the averages of the statistical scores,

either over families or sequences, are calculated to
compare the accuracies of different folding algorithms.
In this contribution, a statistical test is introduced to
evaluate the performance of RNA folding methods
against each other. Specifically, the prediction accuracies
of some methods are shown to be correlated over se-
quences, and the paired two-sample t-test is proposed to
compare accuracies of methods. Finally, precision and
power analyses are suggested to determine the necessary
dataset size for the benchmark to control the probabilities
of hypothesis testing errors. An example is shown for
programs that predict a consensus structure for multiple
sequences, using all 5S rRNA sequences with reference
structures available (16).
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METHODS

Calculation of prediction accuracy

The prediction results of 12 RNA folding algorithms are
taken from a previous study for this statistical analysis
(16). That study reported a new algorithm for predicting
an RNA secondary structure common to three or
more sequences. When calculating sensitivity and PPV, a
predicted base pair, i � j, counted as a correctly predicted
pair if i� j, (i+1)� j, (i� 1)� j, i� (j+1) or i� (j� 1) pair
is in the known structure (17). This is important because
structures are compared to structures determined by com-
parative sequence analysis where there can be uncertainty
in the exact pair match (18). Additionally, thermal noise
can cause the actual structure to sample multiple pairs.
For example, there is evidence in the thermodynamic
studies of single RNA bulges that multiple conformational
states exist (19,20).

Statistical analyses

All the following analyses were performed with the R
statistical environment (21). Scripts are available for
download from the Mathews lab website, http://rna
.urmc.rochester.edu. All the figures were plotted with the
Lattice package in R (22).

Correlation coefficient. To evaluate the independence
between prediction results by twoRNA folding algorithms,
the Spearman rank correlation coefficient was calculated.
It is a Pearson correlation coefficient between the ranks
of two variables. It is calculated using the equation:

�x,y ¼
P
ðxi � �xÞðyi � �yÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi � �xÞ2

P
ðyi � �yÞ2

q
, where

xi and yi are the ranks of average sensitivity or PPV pre-
dicted by the two algorithms on the ith group of sequences,
and �x and �y are the means of the ranks. In case of tied
observations, the arithmetic average of the rank numbers
was used (23).

t-test. t-Tests were performed to calculate P-values in two
ways. Assuming their prediction results were uncorrelated,
an incorrect assumption, independent two-sample
Welch’s t-tests were used to compare the sensitivities or
PPVs predicted by two algorithms with the null hypothesis
that the means of the two samples are the same.
Alternatively, paired two-sample t-tests were performed.
Essentially the differences of individual sensitivities or
PPVs from two algorithms were calculated to reduce the
problem to a one-sample t-test with null hypothesis that
the mean of the differences is zero (24).

Precision and power analysis. The probability of Type I
error, denoted by �, is the probability of rejecting a true
null hypothesis. The precision analysis relates the width of
the confidence interval to the sample size by controlling �.
A (1��) percent confidence interval of a two-tailed
paired t-test is defined as �� t�=2,ðn�1ÞSd=

ffiffiffi
n
p

, where � is
the sample mean of the differences between sensitivities
(or PPVs) of two algorithms, Sd is the sample standard
deviation, n is the sample size and ta/2,(n� 1) is the critical
value for the t distribution with (n� 1) degrees of freedom

at the significance level of �. For an observed Sd,
determining sample size n such that the confidence
interval does not contain the point of zero, i.e.
t�=2,ðn�1ÞSd=

ffiffiffi
n
p�� ��� �, gives the estimated sample size to

reject the null hypothesis with the probability of Type I
error no greater than � (25).

The power of a statistical test is the probability of
rejecting a false null hypothesis. It equals (1� �), where
� refers to the probability of the Type II error, namely, the
probability of failing to reject a false null hypothesis.
The sample size required for a given power can be pro-
spectively estimated as n=Vd (Z1� �+Z1� �/2)

2/�2, where
�, Vd are the hypothetical mean and variance of the
differences between two groups of scores, � and � are
the probabilities of Types I and II errors, and Z1� � and
Z1� �/2 are Z statistics of a standard normal distribution
at the (1��)th and (1��/2)th quantiles (25). Conversely,
a posteriori � can be calculated after the statistical test
from the equation to show the confidence to accept the
null hypothesis with the given sample size and �. While
precision analysis is often used to define the width of
the confidence interval, a priori power analysis is used
more to estimate a sample size to define how small a
difference can be detected and with what degree of
certainty.

Sequential test. Sequential testing is an alternative to fixed
sample size testing (26,27). It is designed to reduce sample
sizes without impacting power. Sample size is adaptively
determined based on the accumulated data in a sequential
test. It avoids the need for a single sample size estimate
that would be larger than required for many cases.
The methodology on the sequential procedure proposed
in this article is in the Supplementary Material. Briefly, to
prevent inflation of the Type I error rate introduced by
sequential testing as opposed to testing with a fixed sample
size, an adaptive rejection rule needs to be defined.

RESULTS

Many structure prediction methods employ similar energy
models, evolve from the same underlying algorithm, or are
extended from a previous version. It is possible that the
prediction results of those related methods are correlated.
In other words, two programs may make similar errors in
structure prediction that would result in similar prediction
accuracies on a number of sequences. The correlation was
tested on a set of benchmark results published previously
(16). This benchmark consists of 400 tRNA sequences (28)
predicted by 12 methods, namely, Fold (29), Dynalign
(30), Multilign (16), FoldalignM (31), mLocARNA (32),
MASTR (33), Murlet (34), RAF (35), RNASampler (36),
RNAshapes (37), StemLoc (38) and RNAalifold (39).
Fold finds the lowest free energy structure for a single
sequence. Dynalign finds the lowest free energy structure
that is conserved for two unaligned sequences.
RNAalifold folds multiple RNA sequences, prealigned
with ClustalW2 in this benchmark. The remaining
methods predict secondary structures of multiple
sequences without requiring that the sequences be
aligned ahead of time.
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In the benchmark, 400 tRNA molecules were randomly
selected and divided into groups of 5, 10 or 20 sequences.
A single calculation was run over multiple sequences
(except for Fold and Dynalign). For Dynalign, one
sequence is chosen to be used with each of the other
sequences in the group for structure prediction, and for
this one sequence, the structure from last Dynalign calcu-
lation is used for scoring (16). The structures predicted
in a single group are dependent on each other because
the algorithms predict consensus structures. Thus, the
sensitivities and PPVs for each sequence from the same
calculation were averaged and this average was used as
a single data point in the following statistical analyses.
The sample size for the 5-, 10- and 20-sequence group
predictions of 400 tRNA sequences are 80 (=400/5),
40 (=400/10) and 20 (=400/20), respectively. By
treating a single calculation as a data point instead of
a single sequence as a data point, the statistical analysis
is conservative in determining statistical significance
because some power is lost in the calculation. This is
specific to statistical tests of methods that use multiple
sequences to find a consensus structure.

Correlation analysis

The most widely used correlation analysis is the Pearson
product–moment correlation. It, however, is a parametric
statistic designed to test a linear relationship between
two variables normally distributed along an interval.
For RNA structure prediction, the sensitivities or PPVs
appear to be distributed far from the normal distribution
(Supplementary Figure S1). Because of this, the Spearman
rank correlation coefficients, which are more robust to
outliers with extreme value, were computed (23). It is a
non-parametric measure calculated with the ranks rather
than the values of the observations. Figure 1 shows the
matrices of correlation coefficients between sensitivities or
PPVs predicted by any two algorithms over tRNA.

Multilign and Dynalign are correlated because
Multilign is based on multiple Dynalign calculations.
The correlation coefficient decreases from over 0.84 to
�0.65 when the number of sequences in one Multilign
calculation increases from 5 to 20. This decreased correl-
ation is expected because increasing the number of se-
quences in the Multilign prediction weakens the
influence of individual Dynalign calculations. This is
more obvious in the scatter plots in Figure 2. The hori-
zontal distances of points from the diagonal line in the
scatter plot of the 10 or 20 sequence predictions are
longer than those of 5 sequence predictions, showing
that the decreased correlation coefficients are at least par-
tially due to the further prediction improvement on a few
sequences by increasing the sequence number from 5 to 20.

Statistical significance

To test whether an algorithm has better performance
than another, the means of their sensitivities and PPVs
are traditionally compared. Comparing mean scores
calculated from a sample of sequences, however, is
usually not sufficient to infer the relationships between

two statistical populations, i.e. the prediction accuracies
of two folding algorithms on all possible RNA sequences.
In addition to reporting means, many studies addition-

ally report standard deviations, but this is also not enough
information to determine whether two methods have
significantly different performance. To statistically
evaluate the prediction accuracy of a method compared
to another, a two-tailed t-test can be used to infer whether
their accuracy means are significantly different. The test
should be two-tailed because the better method is
unknown ahead of time.
Incorrectly, Welch’s t-test of two samples could be

performed. Welch’s t-test is similar to Student’s t-test
but is intended for use with two samples having possibly
unequal variances. This test is performed on sensitivities
and PPVs predicted by any two methods. The P-values are
shown in Figure 3A. The P-value represents the risk of
Type I error of rejecting the null hypothesis, that is the
probability of claiming the two methods predict with
different accuracies when actually their accuracies are
the same.
Welch’s t-test does not require equal variance, but like

the typical (Student) t-test, it assumes the population from
which the sample is drawn is normally distributed and
the two populations are independent. Although the distri-
bution of calculated sensitivities or PPVs is unlikely to
be normal, a t-test is still justified by Central Limit
theorem (CLT) with a large sample size (i.e. n� 30). The
CLT says that ð �x� �Þ=ð�=

ffiffiffi
n
p
Þ ! Nð0,1Þ when the sample

size n is large, where �x is the sample mean, m and � are the
population mean and population standard deviation.
Replacing � with the sample standard deviation s
gives the t-distribution of (n� 1) degrees of freedom,
ð �x� �Þ=ðs=

ffiffiffi
n
p
Þ ! tðn� 1Þ (40). The assumption of inde-

pendence, however, is clearly violated as explained above
by the fact that the methods have correlated prediction
accuracy (Figure 1). This correlation results in a system-
atic overestimation of the P-values by Welch’s t-test
in comparison with the paired test.
Given the observed correlation in prediction accuracy,

a paired two-sample t-test is the appropriate statistical
test. It calculates the differences of each observation
between two methods and tests whether the mean of
these differences is significantly different from zero. In
the presence of significant correlation, paired t-tests have
greater statistical power than unpaired t-tests by canceling
the correlation when the two groups being compared
occur in natural pairs. As shown in Figure 3, the
P-values calculated from independent two-sample t-test
(A) tend to be systematically larger than those from
paired t-test (B). Specifically, the differences of PPVs
and sensitivities between Multilign and Dynalign are sig-
nificant when judged using paired t-tests and an � chosen
to be 5%. The significances, however, are obscured by the
incorrect application of independent t-tests (Figure 3A).

Powering the benchmarks

For those comparisons with P-values larger than 0.05, the
benchmarks fail to demonstrate that there is a significant
difference in prediction accuracies between the two
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methods with a low Type I error. There is a subtle but
important distinction between failing to demonstrate
that there is difference and demonstrating there is no
difference. The caveat is that the benchmark might
lack the power to detect the difference due to the
small sample size and large data variations, if the differ-
ence does exist. How big should the sample size be to
detect small difference with controlled Type I error?
This is non-trivial because benchmarks are costly in
computer time, so choosing an optimally sized data set
can save computation time when comparing two folding

algorithms. On the other hand, if the null hypothesis
cannot be rejected, Type II error, which is the probability
of failing to reject a false null hypothesis, needs to be
controlled. Conventionally the probability of Type II
error is denoted by � and is chosen to be no larger
than 0.2.

Based on that, a pipeline is proposed to statistically
evaluate the performance of algorithms using pairwise
comparisons (Figure 4). During the benchmark, data are
accumulated sequentially over time until the available
computation time or sequences run out or the null
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Figure 1. Spearman rank correlation coefficients between scores of RNA folding algorithms. The upper left triangle shows the correlation
coefficients of PPV and the lower right triangle shows the correlation coefficients of sensitivity. The labeled numbers inside the ellipses indicate
rounded correlation coefficients in percentage. The prediction results of tRNA in 5 (A), 10 (B) and 20 (C) sequence combinations are shown here.
The colored ovals depict the extent of correlation (red) or anticorrelation (blue) between methods.
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hypothesis is proven or disproven. Thus a sequential
paired two-sample t-test can be employed to reach an
early conclusion regarding the comparison of prediction
accuracy. This sequential style of interim estimate,
however, can inflate the Type I error probability (41,42).
Here the critical value is adjusted by simulations to ac-
commodate this inflation. If the null hypothesis cannot be

rejected at any of the interim tests, the power is calculated
to see whether the null hypothesis can be accepted with
high confidence. If no conclusion can be made, the process
proceeds to the next stage of testing with benchmarks on
an additional group of sequences. This step can be iterated
until a conclusion is reached, computer resources are
depleted, or until no more sequences are available.
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Figure 3. P values from t-tests for tRNA structure prediction. P-values in (A) are calculated with the independent two-sample Welch’s t-test with
null hypothesis that the average score predicted by the two algorithms are the same. P-values in (B) are calculated from the paired two-sample t-test.
The upper left triangle shows the P-values of PPV and the lower right triangle shows the P-values of sensitivity. Values are expressed as rounded
percentages. For the multiple (>2) sequence methods, the results of using five sequences in a single calculation are shown here.

tRNA

Dynalign

M
ul

til
ig

n

20

40

60

80

100

20 40 60 80 100

5 sequences

20 40 60 80 100

10 sequences

20 40 60 80 100

20 sequences

PPV SENSITIVITY

Figure 2. Scatter plot of Multilign scores versus Dynalign scores. A dot indicates the sensitivity (open triangle) or PPV (open circle) of a sequence
predicted by Multilign (y axis) and Dynalign (x axis). The dots on the diagonal line mean the sensitivities or PPVs predicted by the two algorithms
are the same. The sensitivities or PPVs of those sequences predicted by Multilign are better than those predicted by Dynalign if the dots are located
above the diagonal line or worse if they are located below the diagonal line. The horizontal (upper triangle) or vertical (lower triangle) distances from
the dots to the diagonal line are the differences of the scores between Multilign and Dynalign. Only the prediction results of tRNA using either 5
(left panel), 10 (middle panel) or 20 (right panel) sequences per Multilign calculations are shown here.

PAGE 5 OF 8 Nucleic Acids Research, 2012, Vol. 40, No. 4 e26



To illustrate the pipeline, the performances of the same
12 methods as above were evaluated on groups of five 5S
rRNA sequences (43). In the Multilign paper, the sample
size for 5S rRNA is only 20 (=100 sequences/5 sequences
per calculation). It is expanded with an additional 1095
sequences to reach the sample size of 239. Then the statis-
tical analysis proceeded sequentially for up to 12 stages,
with 20 more predictions done on an extra 100 sequences
at each stage (except that the last one only has 95 sequences
because all available sequences were used). At the begin-
ning, a t-statistic for the first 20 predictions is calculated
and compared to the adjusted critical values in the same
manner as the paired two-sample t-test. If the null hypoth-
esis is neither rejected nor accepted with defined Types I
and II error probabilities, the t-test is repeated with 20 add-
itional calculations. Many pairwise comparisons are shown
to already have significant difference in the first stage
(Figure 5). Take Multilign versus RNAalifold for
example, Multilign is significantly better than RNAalifold
for both sensitivity and PPV with the original 100 se-
quences. For some cases, the iterative sampling method
does refine the test to be able to draw conclusions. For
example, using the first 20 groups of sequences, the a
priori power analysis estimates that 142 groups of se-
quences are needed to resolve the hypothesis of comparing
the sensitivity between Multilign and Dynalign. This is
much more than the 80 groups eventually used in the se-
quential test, which demonstrates that Multilign does have
a higher average PPV than Dynalign. There are, however,
also many inconclusive comparisons. For example, the null

hypothesis that MASTR is as accurate as RNAalifold
cannot be rejected, and it cannot be accepted either, for
the inability to reject the null hypothesis may be due to
the small power (0.18 and 0.20 for sensitivity and PPV),
not because they truly have the same performance.
Unfortunately, the available 5S rRNA sequences run out
before sufficient power can be achieved to make a
conclusion.

DISCUSSION

Because of the natural variability between measurements
and the limitations on sampling, one cannot conclude that
a method is better than another merely on the basis of
means, especially when the difference in means is small.
In this article, a statistical analysis is introduced to test
the significance of improved RNA secondary structure
prediction accuracy. It shows that the performance of
algorithms can be correlated and a paired two-sample
t-test can be used to compare the performance of two
algorithms in terms of sensitivity or PPV. Even if there
is no relationship between two RNA folding methods,
a paired t-test is still justified because both methods are
tested on the same set of sequences and thus their predic-
tion scores are matching pairs. Another caveat is that a
correlation coefficient of zero does not necessarily mean
the two sets are uncorrelated. An example is the parabola
function y= x2, for which both the Spearman rank
correlation coefficient and Pearson product–moment
correlation coefficient are zero for a sample centered on
x=0, although there is perfect quadratic relationship
between x and y.

Finally, a pipeline of evaluation is provided as illustrated
in Figure 4. After the development and implementation of a
new algorithm, its performance can be compared to
another algorithm with a sequential procedure illustrated
in the flow chart. If no conclusion can be made in the ith
stage, the procedure moves on to the next stage with more
sequences added into the benchmark. The sequential test
used here has the advantages of reducing the total number
of sequences required for the statistical test. In reality, with
the broad range of the scores, the small differences between
the average performances, and limited number of se-
quences available, it is often the case that which of two
methods is better is statistically unknown. Because,
however, the performance difference is usually small, the
two methods may perform similarly in a practical sense on
real data whether they are statistically different or not.

Although all the analyses above were performed on
sensitivity and PPV, they essentially apply to other
scores, such as MCC or the alignment score (sum of
pairs score) without any modifications.

The method presented here, in Figure 4, provides the
means for assessing whether the structure prediction
performance of a program is significantly better than
another on a benchmark set of sequences. It does not,
however, determine whether one program is actually
better than another. One first reason is that the bench-
mark set of sequences needs to be well chosen to represent
the actual way the programs will be applied. A second

Algorithm development and implementation

   P < α? Power > 1- β?

Run predictions of n
i 
sequences           

Yes

No

Reject H0 Accept H0

No

Yes

        Choose proper α and β values 
(customarily 0.05 and 0.2, respectively)

Compare with another method using 
two-sample paired t-test sequentially
H0 : their accuracies are the same
H1 : their accuracies are different

Sequential test design with the total N sequences:
n

i 
sequences for ith stage (                )  

i=1

K

Σ n
i
 = N

i = i + 1

i = K?

Yes

Inconclusive

No

Figure 4. Statistical analysis pipeline. After the implementation of a
new algorithm, its performance can be compared to another method
with a sequential paired two-sample t-test. The total available
sequences (N) are benchmarked in a number of stages (maximum
of K). The next stage is needed only if no conclusion can be made
with controlled Type I and II error probabilities. Note that � is
adjusted as explained in the Methods section to prevent inflation of
Type I error.
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reason is that programs may perform better on some
families of sequences than on others, so a statistically
better performance on one family of sequences may not
result in better performance on a different family of
sequences.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online:
Supplementary Tables 1 and 2, Supplementary Figure 1,
and Supplementary methods.
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Figure 5. Example of 5S rRNA illustrating the flowchart of Figure 4. The 12 methods evaluated against each other on groups of five 5S rRNA
sequences. Starting with 20 calculations (100 sequences), an additional group is benchmarked and statistically tested until the P value is smaller than
�, power is greater than 1� �, or the total 239 groups of sequences ran out. (A) The final conclusions. Red: null hypothesis rejected; green: not
rejected. (B) The final powers between any two methods. These are expressed as rounded percentages. If the null hypothesis is not rejected but the
power is larger than 0.8, then the null hypothesis can be accepted; otherwise, it is inconclusive. (C) The number of groups needed to test the
hypothesis or the total available groups for those inconclusive comparisons (239 maximum groups of five sequences). In each panel, the upper
triangle applies to PPV and the lower triangle to sensitivity. For reference, the average sensitivity and PPV for each program is provided in
Supplementary Table S2.
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