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Abstract

Multiple sulfatase deficiency (MSD) is a lysosomal storage disease caused

by a deficiency of formylglycine-generating enzyme due to SUMF1 defects.

MSD may be misdiagnosed as metachromatic leukodystrophy (MLD), as

neurological and neuroimaging findings are similar, and arylsulfatase A

(ARSA) deficiency and enhanced urinary sulfatide excretion may also

occur. While ARSA deficiency seems a cause for neurological symptoms

and later neurodegenerative disease course, deficiency of other sulfatases

results in clinical features such as dysmorphism, dysostosis, or ichthyosis.

We report on a girl and a boy of the same origin presenting with severe

ARSA deficiency and neurological and neuroimaging features compatible

with MLD. However, exome sequencing revealed not yet described homo-

zygosity of the missense variant c.529G > C, p.Ala177Pro in SUMF1. We

asked whether dynamics of disease course differs between MSD and MLD.

Comparison to a cohort of 59 MLD patients revealed different disease

course concerning onset and disease progression in both MSD patients.

The MSD patients showed first gross motor symptoms earlier than most

patients with juvenile MLD (<10th percentile of Gross-Motor-Function in

MLD [GMFC-MLD] 1). However, subsequent motor decline was more pro-

tracted (75th and 90th percentile of GMFC-MLD 2 (loss of independent

walking) and 75th percentile of GMFC-MLD 5 (loss of any locomotion)).

Language decline started clearly after 50th percentile of juvenile MLD and

progressed rapidly. Thus, dynamics of disease course may be a further clue
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for the characterization of MSD. These data may contribute to knowledge

of natural course of ultra-rare MSD and be relevant for counseling and

therapy.
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1 | INTRODUCTION

Ultra-rare multiple sulfatase deficiency (MSD; OMIM
#272200) is caused by pathogenic variants in SUMF1.1-5

SUMF1 encodes formylglycine-generating enzyme (FGE)
(EC 1.8.3.7), which is essential for sulfatase activation.6

FGE deficiency influences the clinical MSD picture by
effects of the respective affected sulfatases. Correlation with
their remaining activity is missing, and even normal activity
of single sulfatases occurs.1,2,7-9 Deficiency of arylsulfatase A
(ARSA) (EC 3.1.6.8) (also due to pathogenic variants in
ARSA or PSAP revealing metachromatic leukodystrophy
[MLD; OMIM #250100] or SAP-B deficiency [SAP-B;
OMIM #249900]) leads to accumulation of sulfatides caus-
ing neurodegeneration.10 Severe ARSA deficiency is a rela-
tively constant finding in MSD causing MLD-typical
features with neurological symptoms (like spasticity,
tremor, ataxia, or dysphagia) and loss of skills, both phe-
nomena characterizing mainly the later disease stage.11

Deficiency of other sulfatases can result into dysmorphism,
organomegaly, or dysostosis multiplex, resembling different
mucopolysaccharidoses, like mucopolysaccharidosis II
(M. Hunter; OMIM #309900), IIID (M. Sanfilippo-D; OMIM
#252940), or VI (Maroteaux-Lamy-Syndrom; OMIM
#253200) for example due to deficiency of iduronate-
2-sulfatase (EC 3.1.6.13), N-acetylglucosamine-6-sulfatase
(EC 3.1.6.14), or arylsulfatase B (ARSB) (EC 3.1.6.12),
respectively.8 X-linked ichthyosis (OMIM #308100) and
chondrodysplasia punctata-1 (OMIM #302950) are associ-
ated with deficiency of steroid sulfatase (EC 3.1.6.2)12 and
arylsulfatase E (EC 3.1.6.1), respectively. Clinical MSD spec-
trum ranges from severe neonatal presentation to severe/
mild-infantile and milder juvenile types.1,2,5,11,13 Genotype-
phenotype-correlation in MSD is discussed controver-
sially.1-3,7,13-15 MSD spectrum of the age of onset, clinical
signs, and genotypes is described in recent systematic litera-
ture reviews and natural history study.1,2,7 In this study we
investigate how dynamics of the disease course differs
between MLD and MSD—in addition to differences of clini-
cal features and the biochemical profile. Therefore, we com-
pared the long-term disease dynamics of two children
suffering from MSD to a broad cohort of MLD patients. For
this approach, we referred to reliable tools describing

neurodegenerative diseases, as scores for language16 and
gross motor function.17,18 The Gross-Motor-Function-
Classification in MLD (GMFC-MLD) represents all clini-
cally relevant disease stages from normal (level 0) to com-
plete loss of gross motor function (level 6).17,18 It can be
used retrospectively, indispensably for data acquisition in
rare diseases. It has been used for natural history
studies,7,16,18-21 and studies evaluating therapy.22-27

2 | MATERIAL AND METHODS

2.1 | Clinical investigation

Neurological examination of patient 1 was done at the
ages of 7.9 years, 9.3, 10.8, 12.8, 14.3, and 15.5 years,
and of patient 2 at ages 8.8 and 16.0 years. Investiga-
tion included (partly repeated) electroneurography,
neuroimaging, abdominal ultrasound, and X-ray of the
spine. Visual- or hearing tests and electrocardiography
were not performed. For the assessment of language-,
swallowing- and gross motor function, standardized
tools were used (expressive-language-function-
classification [ELFC-MLD],16 eating-and-drinking-
ability-classification-system [EDACS],28 GMFC-
MLD,17,18 gross-motor-function-measure [GMFM-
88]29) (Supplementary Material S1). Neurologic and
somatic exam features and medical complications of
MSD according to Adang et al7 are shown in Supple-
mentary Material S2. Long-term disease course was
followed up until the present (15 years, patient 1) or
death (20 years, patient 2) by regular (non-standard-
ized) telephone contacts.

Synopsis

This article provides information about
differences in dynamics of disease course
in arylsulfatase A deficient patients, com-
paring two individuals with MSD to a broad
cohort of MLD patients.

BECK-WÖDL ET AL. 81



2.2 | Genetic analysis

In both patients, molecular genetic analysis of all exons
of ARSA and PSAP was performed by conventional
Sanger sequencing according to standard protocols. Sub-
sequently, exome sequencing was performed on genomic
DNA from peripheral blood leukocytes of patient 1. Cod-
ing genomic regions were enriched with a SureSelect
Human All Exon Kit V6 (Agilent technologies, Santa
Clara, California) for subsequent sequencing as
2 × 125 bp paired end reads on an HiSeq2500 system
(Illumina, San Diego, California). Generated sequences
were analyzed using the megSAP pipeline (Supplemen-
tary weblinks). Clinical variant prioritization included
different filtering steps (eg, MAF <0.1% in 1000 g, ExAC,
gnomAD and in-house database). Confirmation of the
identified SUMF1 variant in patient 1, diagnostic testing
in patient 2, and carrier testing was done by Sanger
sequencing. Genotype data and some clinical aspects of
the two patients are published in a larger MSD cohort.7

2.3 | Biochemical analysis

Sulfatase activities were measured in leukocytes and
plasma according to standard methods.30-33 Analysis of
urinary sulfatides and glycosaminoglycans was per-
formed according standard protocols34-36 (see Supple-
mentary Material S3).

2.4 | MLD cohort

Disease course of two MSD patients was compared with a
cohort of 59 MLD patients (21 late-infantile, 38 juvenile)
who were recruited within the scope of the nationwide
German research network LEUKONET. Disease onset
before the age of 30 months was defined as “late-infan-
tile”, and between 30 months and 15 years as “juve-
nile”.18 Dynamics of motor and language decline in the
MLD patients was previously published.16,18,19

3 | RESULTS

3.1 | Patient histories

Both patients (Figure 1A,B) were firstborns of healthy
first-degree consanguineous parents originating from the
same district of a village in Denizli province, Turkey.
Both families meanwhile live in different towns in Ger-
many. For detailed description of the patients and their
disease course (birth data, infantile development, disease

onset, clinical and neurological symptoms, and subse-
quent motor-, cognition-, and language decline) see Sup-
plementary Material S1.

3.2 | Clinical investigations

Patient 1 and 2 showed first motor symptoms (GMFC-
MLD level 1) at the age between 30 and 36 months.
Patient 1 lost independent walking (GMFC-MLD level 2)
at the age of 11 years, patient 2 at 9 years of age. Patient
2 showed loss of gross motor function with only head
control preserved (GMFC-MLD level 5) at the age of
10 years, while this did not occur in patient 1 in the
observed period (aged 15 years). Time difference from
GMFC-MLD level 1 to level 2 was 8 years in patient
1 and 6 years in patient 2. Time difference from GMFC-
MLD level 2 to level 5 was 1 year in patient 2 and not
reached in patient 1. Patients' gross motor abilities
assessed by GMFC-MLD levels in comparison to the
MLD cohort are shown in Figure 2. First language
decline (ELFC-MLD 1) occurred 36 months after motor
onset in patient 1 (aged 6 years) and 42 months in patient
2 (6.5 years). Complete loss of expressive language
(ELFC-MLD 4) occurred 8 and accordingly 1 year later
(patient 1 aged 14 years, patient 2 aged 7.5 years). Regres-
sion and loss of language assessed by the ELFC-MLD,
and regression in eating and drinking assessed by the
EDACS are listed in Supplementary Material S1. In both
patients electroneurography revealed reduced motor and
sensory nerve conduction velocities compatible with
mixed axonal and demyelinating polyneuropathy

FIGURE 1 Photographs of two patients suffering from

multiple sulfatase deficiency (MSD) due to homozygous missense

change in SUMF1 (c.529G > C). A, Patient 1 at the age of

14 years. B, Patient 2 at the age of 16 years; note scoliosis of the

spine; the partly patchy skin is mainly due to ichthyosis
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(Table S1). Cerebral MRI showed a severe leukodystro-
phy pattern characteristic for MLD in both patients (MR-
MLD severity score 21 and 29 respectively, Figure S1).
Ultrasonography revealed no organomegaly and X-ray no
bone alterations suggestive of mucopolysaccharidosis in
both patients. None of the patients suffered from visual/
hearing-problems hampering everyday life. Both had
short stature (third percentile), but no microcephalia.

3.3 | Genetic findings

Molecular testing revealed no pathogenic variants in
ARSA or PSAP. Whole exome sequencing (WES) showed
a homozygous missense variant in SUMF1
(NM_182760.3) (c.529G > C, p.Ala177Pro) in patient
1 (not done in patient 2). Biallelic homozygous missense

variants in SUMF1 (c.529G > C, p.Ala177Pro) were con-
firmed in patient 1 and found in patient 2 by Sanger
sequencing. Sanger sequencing revealed that both par-
ents of each patient were heterozygous carriers
(Figure 3).

3.4 | Enzymatic and biochemical
findings

Both patients showed severe deficiency of ARSA activity
(0.00-0.03 units/106 leukocytes) in multiple tests (normal
range 0.4 to 2.5 units/106 leukocytes, mean 1.5 units/106

leukocytes). Patient 1 additionally showed extremely low
N-acetyl-glucosamine-6-sulfate-sulfatase activity, but
only partially reduced ARSB activity, and normal activi-
ties of N-acetyl-galactosamine-6-sulfate-sulfatase,
iduronate-sulfatase and heparan-N-sulfatase
(EC 3.10.1.1). ARSB and steroid-sulfatase in patient
2 were normal (other sulfatases not measured). Test
numbers, patients' ages, activity levels and normal ranges
of respective sulfatases see Figure S2. Both patients
showed high urinary excretion of sulfatides in multiple
measures (Figure S3), but normal excretion of glycosami-
noglycans. In patient 2, urinary excretion of oligosaccha-
rides was normal and serum-protein electrophoresis
revealed increased α2-globulin (14.7%) (normal range
7.2%-11.3%).

4 | DISCUSSION

Both MSD patients presented with clinical and neurologi-
cal findings compatible with MLD like gait disorder,
spasticity, tremor, ataxia, swallowing problems, and psy-
chomotor regression resulting in loss of ambulation and
loss of speech (Supplementary Material S1). Cerebral
MRI showed a pattern of demyelination compatible with
MLD (Figure S1),37 and electroneurography showed
mixed axonal and demyelinating polyneuropathy. How-
ever, both children additionally suffered from dermal ich-
thyosis and were of short stature, symptoms which are
not typical for MLD but suggest MSD.12,13,38 As MSD is a
different disease than MLD despite the above mentioned
similarities, other symptoms resembling different
mucopolysaccharidoses could have been expected (see
below). Focused on the patients´ symptoms, not all clini-
cal assessments required clarifying MSD were done.7

First biochemical findings were compatible with MLD or
MSD revealing severe ARSA deficiency in leukocytes and
sulfatide accumulation in urine (Figures 2 and 3). As
described in MSD, examination of other sulfatase activi-
ties revealed an inconsistent profile (Figure S2).8,9,39,40

FIGURE 2 Dynamics of motor decline of patient 1 and

patient 2 both suffering from multiple sulfatase deficiency (MSD)

due to homozygous missense change in SUMF1 in comparison to a

cohort of 59 untreated patients (21 late-infantile, 38 juvenile) with

metachromatic leukodystrophy (MLD). Age at entry into a

respective level of the Gross Motor Function Classification in

Metachromatic Leukodystrophy (GMFC-MLD) for late-infantile

(dark gray) and juvenile (hatched) forms combined.18 Whiskers

indicate 10% and 90% percentiles, vertical indicates median. GMFC-

MLD level 1: First motor symptoms. GMFC-MLD level 2: Loss of

free walking. GMFC-MLD level 5: Loss of gross motor function but

head control preserved. GMFC-MLD-level 6: Loss of any

locomotion as well as loss of any head- and trunk control. Patient

1 (circle) enters GMFC-MLD level 1 at the age of 2,5 years, and

patient 2 (triangle) at the age of 3 years. Patient 1 enters GMFC-

MLD level 2 at the age of 11 years and patient 2 at the age of

9 years. Patient 1 did not enter GMFC-MLD level 5, and patient

2 enters GMFC-MLF level 5 at the age of 10 years
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ARSB activity was only partially reduced in patient 1 and
even normal in patient 2. In addition, normal activities of
other sulfatases in both patients might explain the
absence of hepatosplenomegaly, bone alterations, or mar-
ked coarse aspects in our patients. MLD and SAP-B defi-
ciency were genetically excluded. Finally, WES revealed
a homozygous c.529G > C, p.Ala177Pro variant in
SUMF1 in patient 1. This was confirmed by Sanger

sequencing in both patients (Figure 3). Critically
reflected, wider assessment of sulfatases or earlier
SUMF1 sequencing would have led to a less delayed diag-
nosis of MSD.7 Early diagnosis prevents MSD patients
from unhealthy therapy.

The SUMF1 variant c.529G > C was absent in >4500
exome datasets of an in-house database and public data-
bases (gnomAD [10/2020]). It has been reported in only

FIGURE 3 SUMF1 mutation of patient 1 and his parents. Integrative genomics viewer presentation of the homozygous missense

mutation in the SUMF1 gene of patient 1 (exon4/9: c.529G > C, p.Ala177Pro), A. Sanger sequencing of SUMF1 showing the base exchange

G > C in parents a heterozygous state, B,C
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one MSD patient of Iranian/Dutch origin in compound
heterozygosity with a frameshift-variant (c.748delC)
showing late-infantile onset and a slightly more progres-
sive course.3,39 Homozygosity of the c.529G > C variant
has not yet been reported. Functional studies in the
meantime have confirmed the pathogenic potential of
this variant.41 In their analysis of 20 patients with SUMF1
mutations Cosma et al3 did not find a consistent
genotype-phenotype correlation, nor did this Hijazi
et al13 in eight Saudi patients. A homozygous SUMF1
stop-mutation described in a baby with severe neonatal
MSD suffering from hydrops fetalis5 could indicate that
biallelic nonsense-mutations are associated with a severe
disease course. Adang et al7 report on poor outcome and
decreased survival in MSD patients bearing two “severe”-
labeled variants (severe-missense/nonsense-alleles). In a
recent meta-analysis (75 publications including 143 MSD
patients and 53 SUMF1 mutations) Schlotawa et al1 dem-
onstrated a correlation of survival and mutation severity
but not sulfatase activities. Correlation of phenotype and
enzyme deficiency seems lacking so far.1,2,7

To investigate whether dynamics in disease course
may serve as an early clue for MSD in children pre-
senting with symptoms of ARSA deficiency, we compared
the clinical course of our two MSD patients (Supplemen-
tary Material S1) to a cohort of 59 (21 late-infantile,
28 juvenile) patients with MLD regarding gross motor-,
speech-, and swallowing decline by the use of standard-
ized tools.16-18,29 This approach was shown as essential
describing natural history of neurodegenerative
diseases.7,16,18-21

Patient 1 and 2 showed first motor symptoms
(GMFC-MLD level 1) definitively later than 90% of
patients with late-infantile MLD do, but earlier than the
earliest 10% of juvenile MLD.18 Thus, motor onset in both
MSD patients occurred between what is described for
late-infantile and juvenile MLD. But progression then
was rather slow as patient 1 lost independent walking
(GMFC-MLD level 2) at the age of 11 years, and patient
2 at the age of 9 years, corresponding the 75th percentile
of juvenile MLD. Also, entry into GMFC-MLD level
5 (loss of gross motor function, only head control pre-
served) was relatively slow, again corresponding to the
second half of juvenile MLD. Time difference from
GMFC-MLD level 1 to level 2 was clearly longer than the
75th percentile of juvenile MLD (8 and 6 years vs
4.3 years). Time difference from GMFC-MLD level 2 to
level 5 corresponded to the 75th percentile of juvenile
MLD in patient 2 and was even not reached in patient
1. This illustrates that the disease dynamics of the two
MSD patients, despite of their earlier onset, was differ-
ently protracted in comparison to the well-known disease
dynamics in juvenile MLD (Figure 2).18,19

First language decline in both MSD patients was rela-
tively late compared with juvenile MLD (clearly after
50th percentile).16 But subsequent decline then was
rather rapid and complete loss of expressive language
(aged 14 years in patient 1 and 7.5 years in patient 2)
occurred corresponding to the 25th and 50th percentile of
juvenile MLD, respectively.16 Thus, concerning language
decline, there was an almost inverse pattern of disease
dynamic compared with motor function—starting later,
but progressing more rapidly. This might support the idea
that language decline is not only due to motor dis-
coordination but also might indicate disabled speech-
concept in line with mental decline. Relevant swallowing
problems (EDACS 2) in patient 2 occurred about 3 years
after onset, corresponding to early cases of juvenile MLD
(median 13 years after onset, range 2-18 years)19, but did
not yet occur in patient 1.

In a recent natural history analysis of MSD, Adang
et al7 found characteristic constellations of “early devel-
opmental delay, ichthyosis, hepatosplenomegaly, and
hearing loss.” Biallelic SUMF1 mutations labeled as
“mild” were associated with onset >1 months of age,
achievement of independent ambulation and multiword
sentences, slower regression, and longer survival.7 Our
two MSD patients clearly belong to this milder group,
however not prototypical as not suffering from organ-
omegaly or deafness. This might be discussed in line with
not yet described homozygosity of their mutation.

In summary, age of onset, occurrence of specific clini-
cal signs, and genotype in MSD are recently discussed as
key variables determining the outcome of the disease.1 In
comparison to a broad cohort of patients with severe
ARSA deficiency due to MLD, we demonstrated different
dynamics of disease course in two patients with MSD.
Although the here presented two individuals seem not
entirely to represent the recently published characteristic
pattern of MSD,7 we though propose disease dynamics as
an additional clue for the characterization of MSD.
Detailed description of long-term course even of single
individuals may contribute to natural course data of
MSD. As an outlook, prospective natural history follow-
up is of urgent interest regarding counseling and further
therapeutic options.
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SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of this
article.

Supplementary Figure 1 Neuroimaging findings in
patient 1 and 2 with multiple sulfatase deficiency
T2-weighted image of patient 1 at 9 years of age (6 years
after first symptoms) showed diffuse white matter
(WM) involvement (including lobar WM and corpus cal-
losum) and atrophy, resulting in an MR severity score for
MLD of 21. Corresponding T2-weighted images of patient
2 at 5.5 and 16 years of age resulting in an MR severity
score for MLD of 14 and 29 respectively demonstrate the
progression of MRI changes and are compatible with

juvenile MLD.37 T2-weighted MRI images refer to coro-
nal and sagittal images.

Supplementary Figure 2 Profile of sulfatase activi-
ties in blood samples from the two patients suffer-
ing from multiple sulfatase deficiency due to
homozygous missense variant in SUMF1
(c.529G > C)
Values as % mean of normal enzyme activities. Gray bars
indicate the normal range of the respective enzyme mea-
surements. Arylsulfatase A, N-Acetyl-glucosamine-6-sul-
fatesulfatase, Arylsulfatase B, N-Acetyl-galactosamine-
6-sulfate-sulfatase, Heparan-N-sulfatase and Steroid-
sulfatase activities estimated in white blood cells, stan-
dardized by cell protein content or cell count; Iduronate-
sulfatase activity estimated in blood plasma, standardized
by volume. In patient 1, enzyme activities of blood sam-
ples at the ages of 12.8 years (red crosses) and 14.3 years
(red filled circles) are shown in the Figure S2 (additional
single ARSA measurements revealing a similar enzyme
activity at the ages 7.9 years, 9.3 years, and 10,8 years are
not shown). In patient 2, ARSA measurements were per-
formed in external hospitals at the ages of 5 (black aster-
isk) and 6 years (blue asterisk), ARSB and steroid-
sulfatase at the age of 6 years (blue asterisk).

Supplementary Figure 3 Urinary sulfatide (sul-
foglycosphingolipid) excretion in patient 2 with
multiple sulfatase deficiency
Sulfoglycosphingolipids determined by two-dimensional
thin layer chromatography of urinary lipid extract.
(Normal control urines usually show no distinct SU spots
with this method in 24 hours collecting urine). Symbols:
st = chromatographic start point of sulfatide standard;
ST = chromatographic start point of patient urinary lipid
extract; su = spots of sulfatide standard (two lipid-chemi-
cal subtypes); SU = spots of patient's sulfatides from
10 mL urine; DHC = dihexosylceramide (major urinary
glycosphingolipid also in normal controls); GSL = (other)
glycosphingolipids; PL = phospholipids; GLC = glucose.

Supplementary Table 1 see extra file

Appendix S1: Supporting Information
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