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Abstract

Adrenoceptor and calcium channel modulating medications are widely used in clinical practice for acute neurological and
systemic conditions. It is generally assumed that the cerebrovascular effects of these drugs mirror that of their systemic
effects — and this is reflected in how these medications are currently used in clinical practice. However, recent research
suggests that there are distinct cerebrovascular-specific effects of these medications that are related to the unique
characteristics of the cerebrovascular anatomy including the regional heterogeneity in density and distribution of
adrenoceptor subtypes and calcium channels along the cerebrovasculature. In this review, we critically evaluate existing
basic science and clinical research to discuss known and putative interactions between adrenoceptor and calcium
channel modulating pharmacotherapies, the neurovascular unit, and cerebrovascular anatomy. In doing so, we provide
a rationale for selecting vasoactive medications based on lesion location and lay a foundation for future investigations
that will define neuroprotective paradigms of adrenoceptor and calcium channel modulating therapies to improve
neurological outcomes in acute neurological and systemic disorders.
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cardiovascular conditions, the cerebrovascular and
neurological effects of these medications remain largely
unknown. Adrenoceptor agonists, antagonists, and cal-
cium channel antagonists are among the most common
pharmacotherapies used in the acute care setting. As
such, this review will focus on the cerebrovascular
effects of these medications and their putative effects
on neuronal function in acute neurological and system-
ic illnesses.

The neurovascular unit

Specialized cells

The cerebrovascular network is comprised of special-
ized cells with biological functions that are crucial to
vascular structure and function. Collectively they are
referred to as the neurovascular unit, a concept that

emerged from the first Stroke Progress Review Group
meeting of the National Institute of Neurological
Disorders and Stroke of the National Institutes of
Health (July 2001). The neurovascular unit is thought
to play a central role in cerebral autoregulation, a pro-
cess that is reliant on neurovascular coupling, or the
linking of neuronal activation with blood flow. The key
cellular components of the neurovascular unit that
work in concert to mediate cerebral autoregulation
are of neural and vascular origin (Figure 1).

The neural components involved with neurovascular
coupling include neurons and astrocytes. Under
normal physiological conditions, one mechanism by
which neurons regulate cerebral blood flow is via
neurohormonal action on adrenergic receptors.
Neurohormones, such as norepinephrine, arise from
subcortical nucleus projections to generate molecular
and electrical signals that modulate cerebral perfusion’
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Figure I. Neurovascular anatomy and its associated components. A visual representation of the neurovascular anatomy provided
here in a longitudinal-and-cross sectional fashion along pial and penetrating arterioles, capillary, and venule. Arterioles comprise of a
thick coat of smooth muscle cells, which become thinner and are replaced by pericytes as the vessel transitions into a capillary. A thin
layer of smooth muscle cells reappear as capillaries transition into venules. A continuous endothelial cell layer, as well as a neural
innervation is present along the vascular transition from penetrating arteriole to venule.
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by increasing vasoconstrictor tone typically in small
cerebral vessels along the cortex.> However, it is impor-
tant to recognize that there are multiple, and perhaps
redundant pathways to regulate cerebral blood flow
including ones that are independent of adrenoceptor
modulation, such as through metabolic factors and
somatosensory stimulation.'®!'* Modulation of vascu-
lar tone mediated by neuronal metabolic demands
leads to processes that promote vasodilation, while
increasing vasoconstrictor tone to focus oxygen deliv-
ery to activated areas.® Astrocytes are diverse cell types
that vary substantially in distribution, morphology,
and function. Astrocytic end-feet surround over 90%
of cerebral capillaries and alter their vascular tone in
response to neuronal activation.'* In addition to serv-
ing as a cellular link between neurons and endothelial
cells, astrocytes directly affect endothelial function and
adjacent microvessel diameter via calcium channels.'”

The vascular component of the neurovascular unit
consists of myocytes, pericytes, and endothelia.
Myocytes, found primarily in proximal cerebral arteries,
pial vessels, and penetrating arterioles, are considered the
main modulators of vasomotor tone. This tone is gener-
ated either in response to fluctuations in intravascular
pressure or via neural activity.'® Myocyte-generated vas-
cular tone, predominantly in the penetrating arterioles, is
essential for cerebral autoregulation and is thought to
underlie neurovascular coupling.'’

Further distally along the cerebrovascular tree, as
early as the pre-capillary arterioles, pericytes replace
myocytes. Pericytes appear to contribute to vessel sta-
bility, permeability, remodeling, and angiogenesis.
Like myocytes, pericytes are hypothesized to serve
contractile functions, especially in capillaries proximal
to arterioles,'® however given their morphological het-
erogeneity, they also serve non-contractile functions,
such as maintaining the blood brain barrier and vascu-
lar structure.'®?° Both pericytes and myocytes are intri-
cately linked by a single layer of cells that structurally
comprise the inner walls of cerebral vessels, known as
the endothelium. The endothelium plays a significant
role in modulating vascular tone and cerebral blood
flow via calcium channels, electrical signaling,”” and
longitudinal signaling via endothelial gap junctions.”?

Recent investigations have increasingly focused on
cellular mechanisms that underlie the organization and
function of the neurovascular unit; however, several
gaps remain in our understanding of specialized cell
roles, and the essential mechanisms and factors neces-
sary to affect cerebral blood flow. Better characteriza-
tion of mechanisms relevant to producing physiologic
responses in the regulation of cerebral blood flow is
warranted. In general, current paradigms of treatment
with vasoactive pharmacotherapies do not account for
the nuances and complexity of cerebrovascular

anatomy, and future research is needed to develop cur-
rent therapeutic paradigms that account for these
factors.

Architecture

The organization of vascular endothelium and neuro-
nal innervation varies significantly along the cerebro-
vascular tree. Branching off from the circle of Willis
anteriorly and the basilar artery posteriorly, cerebral
arteries progressively give rise to the pial arteries.
This network of interconnecting arteries courses
along the surface of the brain, which then infiltrates
the surface to produce the penetrating arteries and sub-
sequently become the parenchymal arterioles.** Vessel
organization and anatomy vary at different segments
along the cerebrovascular tree (Figure 1)— as pial arter-
ies penetrate deep into the brain to become parenchy-
mal arterioles, the myocyte layer becomes thinner until
a single layer remains,” perivascular nerves become
sparse”® and eventually, the perivascular space is oblit-
erated.?” At these levels, a single or discontinuous layer
of myocytes and astrocytic end-feet encase arterioles,”®
displaying features that are unique to the neurovascu-
lar unit.

As arterioles transition into the extensive capillary
network of the brain, pericytes replace myocytes to
surround capillary endothelium along with the basal
lamina. Along the pre-capillary vessel, pericytes are
tightly wrapped around the endothelium in a perpen-
dicular axis. Here, pericytes are thought to provide
contractile support given their orientation to the endo-
thelium and for expressing a similar marker to myo-
cytes— smooth muscle o-actin.®> At the level of
capillaries, the function of pericytes remains controver-
sial since they either express less or lack smooth muscle
a-actin'®?® with shifting orientation'®* along the
endothelium suggesting that they may not have con-
tractile properties.

Given their large surface area and ability to produce
large changes in flow with minimal changes to individ-
ual diameters, capillaries are thought to be well-suited
to rapidly regulate cerebral blood flow to address the
metabolic demands of neurons, which are positioned in
close proximity.*® The role of capillaries in neurovas-
cular coupling was studied in mice by Cai et al who
identified that first- and second-order capillaries initiate
dilation in response to neurovascular coupling signals
before penetrating arterioles and higher order capillar-
ies.’! Similar findings were reported during cerebral
ischemia.?” These findings suggest that capillaries prox-
imal to penetrating arterioles may play a role in regu-
lating local blood flow, however, identifying the exact
role of capillaries in neurovascular coupling and the



696

Journal of Cerebral Blood Flow & Metabolism 41(4)

cell types that first sense and then generate the vascular
response remain unclear.

The cerebral venous system comprises of valveless
veins that transition from venules to superficial cortical
veins that empty into the dural venous sinuses and
finally into the jugular veins. As cerebral capillaries
transition into small venules, endothelium remains
lined with pericytes with stellate cell bodies and many
branch-like projections. Contrary to arterioles, these
projections do not encircle endothelium and randomly
orient with respect to vessel axis, forming a dense
meshwork. Given this organization in post-capillary
venules, pericytes are thought to have minimal veno-
constrictive properties,'” however there is some evi-
dence that they may produce contractile forces to
help regulate blood flow.>* As small venules become
larger, they are surrounded by a small layer of myo-
cytes. The membrane potentials of myocytes and peri-
cytes are modulated via voltage dependent calcium
channels that can be inhibited by calcium channel
antagonists.®® In bovine retinal pericytes grown in
tissue culture, norepinephrine has also been shown to
induce action potentials, which are dependent on extra-
cellular calcium.** Given the similar types of special-
ized cells in both arterioles and venules including
myocytes and pericytes, (Figure 1), it is possible that
adrenoceptor and calcium channel modulation may
influence venular tone and blood flow; however, this
remains an active area of research at this time with
unknown clinical implications.

The organization of vascular components is
matched in complexity by their organization and inner-
vation by astrocytes and neurons along the cerebrovas-
cular tree. Pial arteries and arterioles receive
sympathetic, parasympathetic and sensory innervation
from peripheral autonomic ganglia, specifically the
superior cervical, trigeminal, and sphenopalatine gan-
glia respectively.>*> Peripheral innervation is progres-
sively lost as arteries enter parenchymal tissue.
Parenchymal arterioles and cortical microvessels are
thought to receive input by adrenergic nerve projec-
tions originating from locus coeruleus, raphe nucleus,
basal forebrain, or cortical interneurons.*>=® Nearly
half of the cerebrovascular resistance is thought to be
mediated via parenchymal arteriolar contribution.?” At
the capillary level, there is continuous astrocytic end-
feet coverage of basal lamina, with only sparse support
by neurons. Additionally, perivascular innervation for
both serotonin and norepinephrine is thought to
decrease when moving from rostral to caudal vascula-
ture, such that the internal carotid arteries are more
densely innervated than the vertebrobasilar system.™®
Neuronal input to the neurovascular tree presents in
the form of neurohormones, such as norepinephrine,
which target adrenoceptors, specifically alpha (o)- and

beta (B)-receptors on endothelium, pericytes and myo-
cytes (Figure 2). These adrenoceptors serve as targets
that are thought to modulate cerebrovascular tone in
response to vasoactive medications that exert agonistic
and antagonistic effects (Table 1).'%3 ¢

Adrenoceptors and calcium channel
subtypes

Neurohormonal receptors, in coordination with the
neurovascular unit, are thought to play a central role
in modulating cerebrovascular autoregulation.*’
Although the neurovascular unit has unique compo-
nents that help modulate cerebral blood flow, the pres-
ence of adrenoceptors and calcium channels is a feature
shared with the systemic vasculature. Clinically, it is
widely assumed that the therapeutic cerebrovascular
effects of medications that act on adrenoceptors and
calcium channels mirror the systemic effects; however,
careful consideration of the components of the neuro-
vascular unit and cerebrovascular anatomy suggest this
assumption to be less plausible given the substantial
heterogeneity in receptor distribution along the cere-
brovascular tree, among other factors.

Adrenoceptors

Adrenoceptors consist of two major classes, o- and
B-receptors, which mediate the actions of the neuro-
transmitter hormones norepinephrine and epinephrine.
The direct binding of norepinephrine to adrenorecep-
tors is believed to trigger G-protein receptor coupled
pathways that activate a cascade of biochemical events
that affect a multitude of physiological functions.?**®
Examples of such adrenoceptor-mediated functions
include: al- and B2-receptor modulation of vascular,
genitourinary, and gastrointestinal smooth muscle
tone, al- and Bl-receptor-mediated control of cardiac
inotropy and chronotropy, al- and B2-receptor-medi-
ated regulation of glycogen and glucose metabolism in
the liver, o2- and P2-effect on insulin secretion from
pancreatic cells, a2- receptor- mediated effects on plate-
let aggregation, vascular smooth muscle contraction,
and feedback inhibition of the sympathetic transmis-
sion in neurons.*’ Adrenoceptor dysfunction is
implicated in several neurological and systemic patho-
physiological states. For instance, ol-receptors are
implicated in neurodegenerative diseases, such as
Alzheimer’s disease,”® while B1- and B2- receptor dys-
function contribute to cardiac pathology,”’ and
o2-receptors regulate sympathetic tone, neurotransmit-
ter release, and blood pressure.’>?

Although it is widely assumed that the effects of
sympathetic innervation of cerebrovasculature mirror
that of the systemic vasculature, the high variation in
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Figure 2. Schematic description of subtypes, distribution, and density of adrenoceptors and calcium channels along the cerebro-

vascular tree.

Distribution and density of adrenoceptor subtypes and calcium channels depicted by color and column height along principal cerebral
vessels, respectively (Figure Legend and insets). Also shown is the cell-specific localization of adrenoceptor subtypes and calcium

channels.

type, density and distribution of adrenergic receptors in
the cerebrovasculature suggest that medications that
act on these receptors may have differential effects
based on location and pathology.’*° Further, a
large body of basic and clinical evidence has recently
come to demonstrate cerebrovascular effects of extrin-
sic neurohormonal modulation via pharmacotherapies,
which are commonly prescribed in the acute care
setting.

Adrenoceptor agonists and antagonists are widely
used in the care of neurologically ill patients, most
often to modulate systemic and cerebral blood pressure
with the intent to optimize cerebral blood flow. Several
animal and human studies have attempted to clarify
the identity and nature of adrenoceptor subtypes in
different regions of the cerebrovascular tree by using
adrenoceptor modulating agents such as epinephrine
(al-, o2- and P2- receptor agonist), norepinephrine
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(x1- and o2-receptor agonist), phenylephrine (ol-
receptor agonist), prazosin (al-receptor antagonist)
and yohimbine (o2-receptor antagonist). A summary
of adrenoceptor subtypes and relevant medications is
provided in Table 1.%°7%¢37°! Prior studies have iden-
tified al-receptors in regulating cerebrovascular tone
and cerebral blood flow via action on myocytes.®* In
addition to myocytes housing adrenoceptors, Elfont
and colleagues studied pericytes and endothelial cells
of bovine cerebral microvessels to find Bl- and [2-
receptors predominantly on endothelial cells and o2-
receptors on pericytes® (Figure 2). Alpha2-receptors
have also been identified in neurons and are involved
with analgesic and sedating effects.®*

The anatomical distribution of adrenoceptor sub-
types and concentrations along the cerebrovascular
tree is believed to be variable, as demonstrated in var-
ious human and animal studies (Figure 2). In rat and
bovine cerebrovasculature, a relative abundance of
al-receptors on pial and superficial cerebral arteries,
a2-receptors on intraparenchymal cerebral microves-
sels, and relatively high concentrations of 2-receptors
on cerebral microvessels have been described.** Ayajiki
and Toda also studied bovine cerebrovasculature and
found al-receptor mediated vasoconstriction of rostral
arteries (internal carotid, anterior cerebral, and middle
cerebral arteries) and Pl-receptor mediated vasodila-
tion of caudal arteries (posterior communicating, pos-
terior cerebral, and basilar arteries).***" Although the
precise mechanism of Bl-receptor mediated vasodila-
tion remains unclear, studies suggest nitric oxide
release through activation of Bl-receptors on endothe-
lial cells.® Gaw and Wadsworth investigated
post-synaptic o -receptors in sheep by applying norepi-
nephrine to basilar, middle cerebral, and small pial
arteries.*® The effects on pial and middle cerebral arter-
ies were larger compared to the basilar artery (78%,
92%, and 28% of maximum contraction respectively),
which is in line with previously noted regional differ-
ences in adrenoceptor distribution. Norepinephrine
induced contraction with ol-receptor activation in
middle cerebral arteries has been demonstrated, in var-
iable degrees, in humans and numerous other species of
animals.*!"** Vasoconstriction via norepinephrine use
was also reported in postmortem human basilar
artery*® while vasodilatory properties, or no response,
were reported along the posterior circulation in various
other animal species.*! Stimulation of a2-receptors did
not result in rat cerebral vasoconstriction.*> These ana-
tomical patterns suggest variability in distribution of
adrenoceptor concentrations and types along the cere-
brovascular tree (Figure 2) and that differential activa-
tion of these adrenoceptors may affect regional cerebral
perfusion patterns.

Alpha and B-receptor antagonists are typically used
in clinical practice to treat hypertension-related emer-
gencies. For these indications, B-receptors are more fre-
quently targeted via the use of Pl-receptor selective
agents, such as esmolol, atenolol or metoprolol, and
B-receptor non-selective agents, such as propranolol
(Table 1). Data regarding the effects of B-receptor
antagonists on cerebrovasculature are limited, however
studies have suggested that propranolol may have vas-
odilatory properties in rat and porcine basilar arter-
ies.®® Early propranolol administration in patients
with moderate to severe traumatic brain injury may
provide neuroprotective effects and improved mortali-
ty.® These observed clinical benefits of therapy may
address hyper-adrenergic states related to norepineph-
rine and epinephrine surges as seen in traumatic brain
injury and subarachnoid hemorrhage.®” In mice with
traumatic brain injury, propranolol was associated
with improved cerebral perfusion and neurologic
recovery.®®

It is unclear whether the benefits from B-receptor
antagonism in traumatic or stress induced brain
injury may be related to systemic or central effects.
Potential central benefits of B-receptor antagonism
are speculative and may be mediated through
decreased cerebral metabolism and blood flow.
Similar findings have been demonstrated with esmolol
use during recovery from neurosurgical anesthesia
where cerebral hyperemia from sympathetic overactiv-
ity was blunted with esmolol administration, resulting
in decreased cerebral blood flow velocity, heart rate
and cardiac output.®” Beta 1- and P2-receptors have
been identified in various cerebral structures in
animal models. Rainbow et al used '**I-labeled pindo-
lol and identified high levels of Pl-receptors in the
axons or cell membranes of neurons in the hippocam-
pus, layers I and II of cerebral cortex, thalamic medi-
odorsal and ventral nuclei, and cingulate gyrus and
high B2-receptor concentrations in the cerebellum, pia
mater, thalamic central, paraventricular and caudal lat-
eral posterior nuclei, and paraventricular structures.””
These findings suggest central effects of certain adreno-
ceptors may be related to blood flow and cellular
metabolism.

Alpha and B — receptor modulating pharmacothera-
pies hold important clinical relevance as these receptors
are seen in multiple organ systems, including myocar-
dial vasculature (Table 1). Such therapies are utilized in
critical care and emergency settings to treat acute shock
and hypotensive states. Relatively more is known
about the systemic and coronary effects of adrenocep-
tor modulating therapies; thus, they are commonly
used with limited understanding of their short- and
long-term effects on cerebrovasculature and neuronal
health. In one study, Gedeborg et al investigated the
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effects of high-dose epinephrine on cerebral blood flow
during experimental cardiopulmonary resuscitation in
cows to find that high-dose epinephrine (200ug/kg)
used during resuscitation resulted in attenuated blood
flow in superficial cerebral cortex, as well as higher
coronary perfusion pressures.”' As a consequence,
high doses of epinephrine resulted in the redistribution
and physiologic shunting of blood flow from the super-
ficial cortex, making this region vulnerable to ischemia
and possibly reperfusion injuries.””> An even earlier
experiment by Greenfield and Tindall from 1968 inves-
tigated the effects of norepinephrine and epinephrine
on internal carotid artery blood flow in humans and
reported differential effects of arterial versus intrave-
nous administration of norepinephrine and epinephrine
on cerebral blood flow.”® Taken together, these studies
suggest that vasopressors may alter cerebrovascular
hemodynamics  through multiple adrenoceptor-
mediated mechanisms that are not clearly defined at
this time.

Calcium channel receptors

Voltage gated calcium channels perform important
physiological roles that help facilitate cerebral blood
flow through various mechanisms, such as coupling
of excitation-contraction functions in myocytes’* or
via transmitter or hormone release in neuronal synap-
ses.”” Electrophysiological studies on vertebrates have
shown that the al-subunit of voltage gated calcium
channels determines both the pharmacological and bio-
physical properties of calcium currents.”® The Cayl
family of calcium channels, which are characterized
by long-lasting inward currents during depolarization
or “L-type” channels, are mainly involved with skeletal
muscle contraction, however other subtypes of chan-
nels within Cay1 family are located in neurons,”” adre-
nal chromaffin cells,”® and cardiomyocytes and
sinoatrial nodes’® to induce cellular excitation. The
Cay2 family of calcium channels are primarily located
in synapses and are thought to drive evoked synaptic
transmission® of neurotransmitters®' or hormones®
via synaptic vesicle formation and release and assist
with conductance via calcium-activated potassium
channels.®® Finally, the Cay3 family of calcium chan-
nels are characterized by rapidly decaying calcium cur-
rents, termed transient or “T-type” channels, that allow
for regulation of rapid changes in neuronal, cerebro-
vascular, and cardiac functions.®***¢ A summary of cal-
cium channel physiology and relevant medications is
provided in Table 2.5793

The types, density, and distributions calcium chan-
nels in cerebrovasculature have been examined in select
animal studies. Relatively high concentration of Cay1.1
were reported in human basal ganglia by

Takahashi et al.”* Schlick et al reported similar Cay
subtypes expressed in the cortex and hippocampus of
adult mice brain, which were strikingly different in the
cerebellum.” Similar findings highlighting a heteroge-
neous population of calcium channels were mirrored in
a study by Kuo et al, who reported dihydropyridine
—insensitive and sensitive channels in the basilar and
middle cerebral arteries and their branching small
vessel myocytes of rats”® and Nikitina et al, who
reported low-voltage-activated T-type channels in bas-
ilar artery myocytes in dogs.”? However, although find-
ings in both studies suggest species variation,
insensitive channels were more prominent in smaller
vessels while sensitive channels, but of both L- and
T-types, were present in basilar and middle cerebral
arteries.”” In addition to myocytes, which express
both L- and T-type channels, pericytes express L-type
voltage gated calcium channels with excitation-
contraction coupling that is much less in comparison
to myocytes,”>?*7 and endothelial cells express T-type
channels whose function is yet to be determined.’> The
regional variations in calcium channel subtypes along
with differing responsiveness to dihydropyridine based
therapies suggest that opportunities may exist to select
calcium channel antagonist therapy that is tailored to
the characteristics of the underlying neurological
pathology and intended neurological outcome.

The vascular component of the neurovascular unit
utilizes an intrinsic response to intravascular transmu-
ral pressures, referred to as the myogenic response, to
maintain adequate cerebral blood flow.”® This response
was previously thought to be exclusively in arteries and
arterioles,”” however, more recently it has been hypoth-
esized that a myogenic response may also occur in the
venous circulation due to the presence of myocytes in
venules.”” Myocytes are recognized as key components
of the myogenic response, due to their ability to serve
as the main effectors of vascular diameter and tone.
The myogenic response consists of a cascade of
events, initiated by increased transmural pressures
that depolarize the myocyte membrane and activates
multiple ion channels, including calcium, potassium
and chloride channels.'” The calcium influx into the
depolarized myocytes via opened voltage-gated calcium
channels increases myosin light-chain phosphorylation,
producing vasoconstriction, while the binding of drugs
to the pore-forming ol-subunit inhibits inward flow of
calcium ions and halts membrane depolarization, lead-
ing to vasodilatation.'”" Cay1.2 is the main calcium
channel in the cardiac and systemic vascular systems
and is also thought to be the prominent channel
involved in the cerebrovascular myogenic response,
although other Cay channels are present in certain seg-
ments of small parenchymal arterioles.'®
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Clinical manifestations of pathophysiological condi-
tions related to calcium channels are often associated
with congenital genetic disorders, such as hypokalemic
periodic paralysis,'” Timothy Syndrome,'® and
Brugada syndrome.'” Calcium channelopathies are
also associated with neurological conditions, such as
episodic ataxia'®® and various epilepsy syndromes.'%®
Impaired vascular relaxation has also been reported
to occur in calcium channelopathies,'®” which suggests
that calcium channels may play a role in cerebrovascu-
lar neuropathology. Neuropathological conditions,
such as cerebral ischemia, may affect the myogenic
response, due to endothelial damage or myocyte-actin
cytoskeletal depolymerization.®” It is unclear whether
various neuropathological conditions may alter calci-
um channel physiology and function. One study dem-
onstrated differential effects of non-specific calcium
channel antagonism based on calcium channel subtypes
in the systemic circulation. Specifically, Liao and
Soong demonstrated how alternative splicing of Cay
1.2 channels raises the possibility of expressing
unique splice variants of calcium channels in different
organ systems, under normal and non-physiologic con-
ditions and even at different time points during a dis-
ease course.'” Greater understanding as to how
alternative splicing influences calcium channel pharma-
cology in different cerebrovascular disease processes may
help to develop individualized therapies that minimize
unintended consequences of less discriminate calcium
channel antagonism given that the effects of non-
specific calcium channel antagonism on specific calcium
channel subtypes in the cerebrovasculature are unknown.

Inconsistent and unexpected findings from clinical
studies of calcium channel antagonism further high-
light the importance of gaining a more complete under-
standing of the cerebrovascular and neurological
effects of these medications. For example, a recent clin-
ical study assessing cerebrovascular hemodynamics
using transcranial doppler imaging demonstrated a
paradoxical distal cerebral vasoconstrictive effect of a
dihydropyridine calcium channel antagonist, nicardi-
pine, which may be modulated by the medication’s
effects on cerebral venous circulation.'” Similarly,
studies using nimodipine, also a dihydropyridine calci-
um channel antagonist used in patients with aneurys-
mal subarachnoid hemorrhage, demonstrate modestly
improved overall outcomes despite negligible effects on
angiographic vasospasm.''® These findings suggest that
the neuroprotective effects of nimodipine may not be
related to reducing vasospasm as was previously widely
believed, but instead be due to neuroinflammatory ben-
efits arising from its pleiotropic effects including
decreased intracellular influx of calcium.'"!

Conclusion

This review draws upon basic research and clinical
studies to provide an in-depth analysis of the cerebro-
vascular effects of adrenoceptor and calcium channel
modulating medications. The reviewed findings demon-
strate a strong justification to consider cerebrovascular-
specific effects of these vasoactive medications that may
differ from their systemic effects.

There are important potential clinical implications
of tailoring vasoactive medications to neurological end-
points. For example, several neurological and systemic
conditions that are treated with vasoactive medications
are highly comorbid with neurological impairments,
including stroke, anoxic brain injury, after cardiopul-
monary resuscitation, septic shock, and acute respira-
tory distress syndrome. Despite improvements in
survival''*'"3 and biomarkers''* of cardiac and neuro-
logical function,'' the use of vasopressors in these
conditions is associated with considerably high rates
of neurocognitive impairment and it remains unknown
to what extent this morbidity can be mitigated through
neuroprotective paradigms of vasopressor selection.
For example, vasopressors that prioritize perfusion of
hippocampal and frontal cortical structures may result
in improved neurocognitive clinical outcomes, such as
delirium, which is exceedingly common in the acute
care setting.

This review further provides a rationale to select
vasoactive pharmacotherapies based on lesion location
and consideration of the regional variability in distri-
bution and density of adrenoceptor subtypes and cal-
cium channels along the cerebrovasculature. Future
investigations are needed to determine if pathology-
directed or neurocentric selection of vasoactive drugs
that modulate adrenoceptors and calcium channels can
improve neurological outcomes in acute neurological
and systemic conditions.
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