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Abstract

Atlases provide a framework for spatially mapping information from diverse sources into a common reference space.
Specifically, brain atlases allow annotation of gene expression, cell morphology, connectivity, and activity. In larval
zebrafish, advances in genetics, imaging, and computational methods now allow the collection of such information
brain-wide. However, due to technical considerations, disparate datasets may use different references and may not be
aligned to the same coordinate space. Two recent larval zebrafish atlases exemplify this problem: Z-Brain, containing gene
expression, neural activity, and neuroanatomical segmentations, was acquired using immunohistochemical stains, while
the Zebrafish Brain Browser (ZBB) was constructed from live scans of fluorescent reporters in transgenic larvae. Although
different references were used, the atlases included several common transgenic patterns that provide potential “bridges”
for transforming each into the other’s coordinate space. We tested multiple bridging channels and registration algorithms
and found that the symmetric diffeomorphic normalization algorithm improved live brain registration precision while
better preserving cell morphology than B-spline-based registrations. Symmetric diffeomorphic normalization also
corrected for tissue distortion introduced during fixation. Multi-reference channel optimization provided a transformation
that enabled Z-Brain and ZBB to be co-aligned with precision of approximately a single cell diameter and minimal
perturbation of cell and tissue morphology. Finally, we developed software to visualize brain regions in 3 dimensions,
including a virtual reality neuroanatomy explorer. This study demonstrates the feasibility of integrating whole brain
datasets, despite disparate reference templates and acquisition protocols, when sufficient information is present for
bridging. Increased accuracy and interoperability of zebrafish digital brain atlases will facilitate neurobiological studies.
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Background

Larval stage zebrafish are an increasingly popularmodel for neu-
robiological studies. With a brain that contains an estimated 105

neurons, larvae are similar in complexity to adult Drosophila,
another established neuroscience model. In both systems, re-
searchers can deploy a wide range of genetic tools in efforts
to decode patterns of neural structure and connectivity. In lar-
val zebrafish, optical transparency and constrained physical di-
mensions (fitting within an imaging volume of 1000 × 600 ×
350 μm) allow the entire brain to be rapidly scanned at cel-
lular resolution using diffraction-limited microscopy. In prin-
ciple, this enables researchers to systematically analyze ef-
fects of manipulations on a brain-wide level. However, such
efforts have been hampered by the absence of a comprehen-
sive digital atlas that would provide researchers with a uni-
fied framework in which to aggregate data from different ex-
periments and gain deeper insights from correlations between
neuronal cell identity, connectivity, gene expression, and func-
tion within the brain. Additionally, digital atlases may more
clearly delineate structural boundaries that are difficult to accu-
rately identify within individual brains, allowing for a more rig-
orous mapping of neuroanatomical regions onto experimental
data.

These longstanding problems in zebrafish neuroscience have
recently been addressed by the construction of digital at-
lases using 3D image registration techniques: the Virtual Brain
Explorer for Zebrafish (ViBE-Z), Z-Brain, and the Zebrafish Brain
Browser (ZBB) [1–3]. In these atlases, information on gene ex-
pression, structure (neuronal cell bodies, glia, vasculature, ven-
tricles, neuropil, or axon tracts) and measures of activity (cal-
cium or secondary messenger activity) is consolidated within
a common spatial framework. By using widely available trans-
genic lines or immunohistochemical stains as reference tem-
plates for brain alignment, each of these atlases provides other
researchers the opportunity to register their own datasets into
these digital spaces and take advantage of the information con-
tained within.

ViBE-Z was the first comprehensive 3D digital brain atlas in
zebrafish that used a nuclear stain for the alignment of 85 high-
resolution scans comprising 17 immunohistochemical patterns
at 2–4 days post-fertilization (dpf) [3, 4]. In ViBE-Z, custom al-
gorithms were developed to correct for variations in fluorescent
intensity with scan depth, and a landmark approach was taken
to perform accurate image registration and segmentation into
73 neuroanatomic regions.

In contrast, 2 other recent approaches (Z-Brain and ZBB) have
generated brain atlases at 6 dpf through non-linear B-spline reg-
istration using the freely available Computational Morphometry
Toolkit (CMTK) [5, 6]. Z-Brain includes 29 immunohistochemical
patterns from 899 scans, which form the basis for expert man-
ual segmentation of the brain into 294 neuroanatomic regions.
These partitions facilitate the analysis of phospho-ERK expres-
sion for mapping neural activity [2]. In Z-Brain, each expression
pattern was co-scanned with tERK immunoreactivity and regis-
tered to a single tERK-stained reference brain. For ZBB, we live-
imaged 354 brains from109 transgenic lines andmanually anno-
tated the expression found in each [1]. In place of tERK, a single
vglut2a:dsRed transgenic brain was used as the reference in ZBB,
with transgenic lines crossed and co-imaged with this channel
for registration. Brain browser software enables researchers to
select a transgenic line labeling a selected set of neurons for
monitoring and manipulating circuit function.

While Z-Brain and ZBB are powerful datasets on their own,
we saw an opportunity to merge the 2 atlases because they are
both based on confocal scans of 6 dpf larvae. This would bring
to Z-Brain a large number of additional transgenic lines and
bring ZBB the expert manual segmentation of Z-Brain. Several
similarities between Z-Brain and ZBB suggested that bridging
the atlases would be possible. First, as zebrafish rearing con-
ditions are standardized across laboratories and fish were im-
aged at the same time post-fertilization, Z-Brain and ZBB likely
reflect the same developmental timepoint. Second, images in
both atlases were acquired at similar resolution (0.8 × 0.8 × 2
μm for Z-Brain; 1 × 1 × 1 or 1 × 1 × 2 μm for ZBB) and ori-
entation (dorsal to ventral horizontal scans). Third, despite us-
ing distinct templates (tERK for Z-Brain and vglut2a for ZBB),
Z-Brain and ZBB have several transgenic markers in common
that provide the possibility of bridging the datasets by using
these shared patterns as references for a secondary registration
step.

One of the strengths of larval zebrafish is the ability to rapidly
image at cellular resolution and visualize brain-wide neuronal
morphology, providing valuable information on cell type and po-
tential connectivity. Z-Brain and ZBB both illustrate the feasibil-
ity of performing whole-brain registration with precision suffi-
cient to ensure that the “same” neurons from different fish are
aligned to within a cell diameter (∼8 μm). However, a challenge
for brain registration in zebrafish is to minimize local distor-
tions, so that cellular morphology is preserved while still al-
lowing sufficient deformation to overcome biological variabil-
ity between individual brains or malformations due to tissue
processing.

Here we describe a method to co-register ZBB and Z-Brain,
bridging the 2 existing 6 dpf larval zebrafish brain atlases. By us-
ing the diffeomorphic symmetric normalization algorithm (SyN)
in the Advanced Normalization Tools (ANTs) software package
[7, 8], we were able to overcome differences in tissue shape due
to fixation, optimize the trade-off between preservation of cell
morphology and global alignment, and provide precise registra-
tion in all tested brain regions. Additionally, ANTs provided su-
perior image registration for live-scanned larvae, enabling us to
improve the precision of registration and neuron morphology
within our original ZBB atlas, allowing us to compile a new ver-
sion with increased fidelity (ZBB1.2).

Methods
Zebrafish lines

In order to provide additional options for bridging ZBB and
Z-Brain, we scanned 2 transgenic lines that were not in
the original ZBB release: Et(gata2a:EGFP)zf81 (vmat2:GFP)
and Tg(isl1:GFP)rw0 (isl1:GFP) [9, 10]. Other lines referred
to in this study are Tg(slc6a3:EGFP)ot80 (DAT:GFP) [11],
Tg(-3.2fev:EGFP)ne0214 (pet1:GFP) [12], y264Et [13], s1181tEt
[14], Tg(gad1b:GFP)nns25 (gad1b:GFP) [15], Tg(slc6a5:GFP)cf3
(glyT2:GFP) [16], Tg(-17.6isl2b:GFP)zc7 (isl2b:GFP) [17],
Tg(-3.4tph2:Gal4ff)y228 (tph2:Gal4) [18], TgBAC(slc17a6b:lox-DsRed-
lox-GFP)nns14 (vglut2a:DsRed) [19], Tg(slc17a6:EGFP)zf139 [20],
Tg(elavl3:CaMPARI(W391F+V3987L))jf9 [21], Tg(phox2b:GFP)w37
[22], J1229aGt [23], and several Gal4 enhancer traps from ZBB:
y304Et, y332Et, y341Et, y351Et, and y393Et [1]. All in vivo exper-
imental protocols were approved by the National Institute for
Child Health and Human Development Animal Care and Use
Committee.
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Table 1: ANTs command parameters for image registration

Method Step Function Command

Live registration 1 Register vglut2a pattern
in fish1–01.nii.gz, to the
reference brain
ref/vglut-ref.nii

antsRegistration -d 3 –float 1 -o [fish1 , fish1 Warped.nii.gz] –interpolation
WelchWindowedSinc –use-histogram-matching 0 -r [ref/vglut-ref.nii,
fish1–01.nii.gz,1] -t rigid[0.1] -m MI[ref/vglut-ref.nii, fish1–01.nii.gz,1,32,
Regular,0.25] -c [200 × 200 × 200 × 0,1e-8,10] –shrink-factors 12 × 8 × 4 × 2
–smoothing-sigmas 4 × 3 × 2 × 1vox -t Affine[0.1] -m MI[ref/vglut-ref.nii,
fish1–01.nii.gz,1,32, Regular,0.25] -c [200 × 200 × 200 × 0,1e-8,10]
–shrink-factors 12 × 8 × 4 × 2 –smoothing-sigmas 4 × 3 × 2 × 1vox -t
SyN[0.05,6,0.5] -m CC[ref/vglut-ref.nii, fish1–01.nii.gz,1,2] -c [200 × 200 × 200
× 200 × 10,1e-7,10] –shrink-factors 12 × 8 × 4 × 2 × 1 –smoothing-sigmas 4 ×
3 × 2 × 1 × 0vox

2 Apply transformation
matrix from (1) to a
second channel for fish
1, in file fish1–02.nii.gz

antsApplyTransforms -d 3 -v 0 –float -n WelchWindowedSinc -i
fish1–02.nii.gz -r ref/vglut-ref.nii -o fish1–02 Warped.nii -t fish1 1Warp.nii.gz
-t fish1 0GenericAffine.mat

Fixed registration 1 Register tERK pattern in
fish1–01.nii.gz, to the
reference brain
ref/terk-ref.nii

antsRegistration -d 3 –float 1 -o [fish1 , fish1 Warped.nii.gz] –interpolation
WelchWindowedSinc –use-histogram-matching 0 -r [ref/terk-ref.nii,
fish1–01.nii.gz,1] -t rigid[0.1] -m MI[ref/terk-ref.nii, fish1–01.nii.gz,1,32,
Regular,0.25] -c [200 × 200 × 200 × 0,1e-8,10] –shrink-factors 12 × 8 × 4 × 2
–smoothing-sigmas 4 × 3 × 2 × 1vox -t Affine[0.1] -m MI[ref/terk-ref.nii,
fish1–01.nii.gz,1,32, Regular,0.25] -c [200 × 200 × 200 × 0,1e-8,10]
–shrink-factors 12 × 8 × 4 × 2 –smoothing-sigmas 4 × 3 × 2 × 1vox -t
SyN[0.1,6,0] -m CC[ref/terk-ref.nii, fish1–01.nii.gz,1,2] -c [200 × 200 × 200 ×
200 × 10,1e-7,10] –shrink-factors 12 × 8 × 4 × 2 × 1 –smoothing-sigmas 4 × 3
× 2 × 1 × 0vox

2 Apply transformation
matrix from (1) to a
second channel for fish
1, in file fish1–02.nii.gz

antsApplyTransforms -d 3 -v 0 –float -n WelchWindowedSinc -i
fish1–02.nii.gz -r ref/terk-ref.nii -o fish1–02 Warped.nii -t fish1 1Warp.nii.gz
-t fish1 0GenericAffine.mat

Immunohistochemistry

Immunolabelingwas as described [2], with the following adapta-
tions. Larvae were fixed overnight at 4◦C in phosphate-buffered
saline (PBS) with 4% paraformaldehyde and 0.25% Triton X-100.
Samples were then washed in PBS containing 0.1% Triton X-100
(PBT) 3 times for 5 minutes. For antigen retrieval, samples were
incubated in 150 mM Tris-HCl ph 9.0 for 5 minutes at room tem-
perature (RT), followed by 15minutes at 70◦C and washed in PBT
2 times for 5 minutes at RT [24]. Critically, samples were then
permeabilized on ice in fresh 0.05% trypsin-EDTA for no more
than 5 minutes. If pigmented, samples were incubated in PBT
with 1.5% H2O2 and 50 mM KOH for 15 minutes, rinsed 2 times
in PBT, and washed again for 10minutes, all at RT. Samples were
then blocked in PBT containing 5% normal goat serum (NGS) and
0.2% bovine serum albumin (BSA) for 1 hour at RT before incu-
bation at 4◦C with tERK antibodies (Cell Signaling, 4696) diluted
1:500 in PBT with 5% NGS and 0.2% BSA for a minimum of 6
hours. Samples were then washed with PBT 4 times for 30 min-
utes at RT before incubation at 4◦C for a minimum of 2 hours
with fluorescent secondary antibodies (Alexa Fluor 488 or 548)
diluted 1:1000 in PBT with 5% NGS and 0.2% BSA. Samples were
finally rinsed 4 times for 30 minutes at RT prior to imaging.

Registration

Registrations were performed using the Computational Mor-
phometry Toolkit version 3.2.3 (Computational Morphometry
Toolkit, RRID:SCR 002234) and ANTs version 2.1.0 (Advanced
Normalization Tools, RRID:SCR 004757) running on the Na-
tional Institute of Health’s Biowulf Linux computing cluster.
Registrations were parallelized using Slurm-based bash scripts

(available upon request). For CMTK, previously optimized regis-
tration parameters thatminimize computation timewhilemax-
imizing precision were used (affine parameters: registrationx –
dofs 12 –min-stepsize 1; elastic parameters: warpx –fast –grid-
spacing 100 –smoothness-constraint-weight 1e-1 –grid-refine 2
–min-stepsize 0.25 –adaptive-fix-thresh 0.25). For ANTs registra-
tions, the parameters used are cited in the relevant text, and
figures with optimized parameters are listed in Table 1. All de-
formable transformations are initiated with a rigid and affine
step (parameters included in Table 1). Aside from the use of
ANTs, the basic imaging and registration workflow was per-
formed as previously described [1]. Image volumes were ren-
dered within the Zebrafish Brain Browser, ImageJ [25], or code
written in IDL (Harris Geospatial Solutions). For the conversion
to/from NIfTi format required for ANTs, we used the ImageJ plu-
gin nifti io.jar written by Guy Williams [26].

Volume rendering and 3D visualization

Binary masks corresponding to 25 anatomical regions from Z-
Brain aligned to ZBB were converted into meshes using the
Create Surfaces tool in the IntSeg 3D.jar plugin for ImageJ [27].
Edges for individual meshes were iteratively reduced below
5000, and vertices (single-precision floating points of the tri-
angular meshes) written as OBJ files. As there is no intrinsic
color or color conventions as of yet for these brain structures,
we used color hue as a nominal categorical coding for each re-
gion. Tomaximize accessibility, we renderedmeshes in Extensi-
ble 3D (X3D) format, an International Organization for Standard-
ization standard developed by the not-for-profit Web3D Con-
sortium [28]. This format allows portability between numerous

https://scicrunch.org/resolver/RRID:SCR_002234
https://scicrunch.org/resolver/RRID:SCR_004757
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tools and applications as well as deployment across a broad
spectrum of platforms. For the rendering, OBJs were transcoded
into ImageTextureAtlas PNGs using X3D’s standard Indexed-
FaceSet to represent mesh information and then tiled at dif-
ferent resolutions (4096 and 8192 pixels squared) using Atlas-
ConversionScripts [29]. Additionally, dask and pyimg python li-
braries were used to generate volume norms (image and Image-
TextureAtlas files) by gradient descent. All renderings were then
merged into a single X3D XML scene, which was losslessly com-
pressed (in SRC/glTF) to a final size of 4.5 MB. This makes the
scene compact enough to be visualized on a cell phone, while re-
taining details for visualization and editing in immersive virtual
reality environments. Finally, X3D fileswere published to HTML5
via the X3DOM library, and a simple user interface was created
that allows for the visibility of different structures to be toggled
on and off. Brain meshes were converted to FBX files for import
into Unity using Blender 2.78a (Blender foundation, Amsterdam,
the Netherlands), andmobile app development for Google Card-
board VR headsets was performed in Unity 5.4.2 (Unity Tech-
nologies SF, San Francisco, CA, USA) using the Google VR for
Unity SDK (Google, Mountain View, CA, USA). Custom scripts
controlling movement and mesh display were written for Unity
in C#.

Measurements

Mean landmark distance
To assess registration precision using mean landmark distances
(MLDs), corresponding landmarks were located and annotated
on the reference brain and on unregistered brains. In each case,
landmarkswere chosen to bewidely distributedwithin the brain
and readily recognized in corresponding brain scans. In addi-
tion, to verify recognizability, the vglut2a landmarks in the refer-
ence brain were located by 3 blinded scorers; the mean distance
from each of the 10 reference points ranged from 1.7 to 11.8 μm
(mean = 4.5 ± 0.9 μm). Using ImageJ, we positioned a 3-micron
cube centered on each landmark in a second channel for each
brain scan; then, after registering the brain scan using the first
channel, we applied the resulting transformation matrix to the
second channel, using nearest neighbor interpolation for both
CMTK and ANTs. Landmark distance was taken as the distance
between the geometrical center of the corresponding cubes in
the reference image and in the registered image.

Hausdorff distance
We manually segmented cells in a vglut:DsRed brain scan in a
second channel and applied transformation matrices for regis-
tration to this second channel. Segmented cells were broadly
distributed to ensure that distortion measures sampled the
entire brain and cell masks conservatively drawn within the
boundaries of the soma. We then compared the morphology of
cells after registration (A) to their original shape (B) by calculat-
ing the partial Hausdorff distance [30]. Briefly, for every point in
a segmented cell mask before registration, we found the mini-
mumdistance to a point in the samemask after registration. The
Hausdorff distance is the maximum of all such distances, calcu-
lated for both A→B and B→A. Because the Hausdorff distance is
highly sensitive to cell alignment and registration displaces cells
from their original location, we found the optimal alignment for
comparisons using a 2-step process. First, we aligned the geo-
metric center of each cell in the original and transformed im-
ages. Second, we searched for the minimal Hausdorff distance
across 4940 rigid transformations of the aligned cell within a 3
× 3 × 3 micron cube (0.25 micron steps in each dimension). Fi-

nally, as Hausdorff distances are sensitive to outliers, we used
the 95th percentile distances instead of themaximumHausdorff
distance for all measures [30].

Cell volume
For each segmented cell, we calculated its change in volume as
the absolute value of the fractional change in the number of pix-
els after application of a transformation matrix.

Elongation index
For each pixel in a segmented cell, we found the maximal dis-
tance (MD) to any other pixel in the mask. The elongation index
for a given cell was the 95th percentile largest value ofMD,which
we take as an approximation of the diameter of the cell across
its longest axis.

Cross correlation
Cross correlation between the tERK-stained reference brain and
registered tERK stains was performed using the c correlate func-
tion within IDL version 7.0. Correlations were run within 18 50-
μm side cube sub-regions of the image volumes that were man-
ually selected to encompass high-contrast boundaries, and the
mean of the 18 values was taken as the mean cross correlation
(MCC) for each brain in Fig. 3.

Jaccard index
Anti-tERK immunohistochemistry intensely stains tectal neu-
ropil. Thus for measuring the accuracy of registration of the
tectal neuropil, we manually segmented the left tectal neuropil
area in 6 confocal scans of tERK-stained larvae and our reference
brain. We applied transformation matrices to these masks, then
calculated the Jaccard index as the volume of the intersection
between each registered mask (A) and the reference brain (B),
divided by the total volume of the union of A and B.

Results
Optimization of ANTs-based registration of live
vglut2a:DsRed image scans

Brain registration in Z-Brain and ZBB used the B-spline elastic
transformation in CMTK. Before attempting to co-align Z-Brain
and ZBB, we tested an alternate algorithm for brain alignment,
the SyN method in ANTs, because: (i) SyN has been shown to
outperform B-spline transformations for deformable image reg-
istration in a variety of imagingmodalities [31, 32]. (ii) ANTs per-
mits registration using multiple reference channels, potentially
allowing the use of multiple complementary expression pat-
terns as references for improved registration fidelity. (iii) By cal-
culating forward and reverse transformations simultaneously,
SyN transformationmatrices are intrinsically symmetric, ensur-
ing that bridging registrations would be unbiased and that we
could easily perform reciprocal transformations to register each
dataset into the other’s coordinate system.

To calibrate registration parameters, we assessed the align-
ment precision and distortion of cell morphology after the regis-
tration of 6 representative vglut2a:DsRed scans to the original vg-
lut2a:DsRed reference brain in ZBB (vglut2aZBB; file vglut-dsred-ref-
01.nii.gz) (procedure summarized in Fig. 1a) (available from [33]).
Similar to CMTK, we employed a 3-step registrationwithin ANTs
where rigid and affine steps were used to initialize a deformable
registration using the SyN diffeomorphic transformation with
cross correlation (CC) as the similarity metric. We tested a range
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Figure 1: Optimization of parameters for registration of live brain scans using ANTs. (a) Overview of parameter optimization for live brain scans using ANTs. A
calibration set of 6 vglut2a:DsRed confocal stacks with 10 point-based landmarks and 107 cell masks was registered to the vglut2aZBB reference with the same 10 point-
based landmarks defined (left). MLDs for landmarks and Hausdorff distance for transformed cell masks compared to their originals were measured for each parameter

set (middle). Optimal parameters selected from these metrics (b–d) were used to re-register all lines generating ZBB1.2 where MLD was measured from 2 additional
landmarks in each of 12 co-aligned patterns (right). (b) Hausdorff distance for cell shape comparison plotted against MLD for 68 sets of parameters tested using ANTs
(gray and blue circles) and after registration using CMTK (orange). Blue circles labeled a–f indicate the Pareto frontier. (c) Mean absolute change in cell volume (as a
fraction of the original volume) produced by transformations resulting from parameter sets a–f and CMTK in (b). ∗P < 0.05, compared to CMTK. (d) Mean elongation

index for cells after registration using parameter sets a–f and CMTK in (b). Dashed line shows index for cells before registration—all transformations produced a
significant increase compared to the untransformed cells. ∗P < 0.05, compared to CMTK. (e) Horizontal section through the medulla oblongata in vglut2aZBB and of
a representative vglut2a:DsRed brain after registration using CMTK or ANTs. Distortion artifacts are indicated (arrow). Scale bar = 50 μm. (f, g) Horizontal section
in J1229aGt showing expression of GFP in the Mauthner cell and axon (arrowheads) for 3 individual larvae (pseudo-colored red, green, and blue). Registration was

performed with CMTK (f) or ANTs (g). Scale bar = 100 μm. (h, i) Transverse section through the optic tectum in 2 separate average brain images (colored green and
magenta) for y393Et. For each brain image, we independently scanned 3 individual brains and registered them using CMTK (h) or ANTs (i). Scale bar 100 μm.
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of values for each of the SyN parameters as well as the radius of
the region used for cross correlation.

To measure registration precision, we visually located 10
point-based landmarks in the vglut2aZBB pattern (Additional file
1a-c; file vglut-dsred-ref-01-landmarks.nii.gz) (available from [33])
and in each of the 6 vglut2a:DsRed confocal scans. We then used
the vglut:DsRed channel for registration and applied the result-
ing transformation matrix to the landmarks in each of the 6
brains. We measured the distance of each landmark from its lo-
cation in the vglut2aZBB reference brain (Additional file 1a and d).
Wedesignated the average of the 10 distances theMLD. To assess
the amount of distortion in cell shapes produced by the parame-
ter sets, we segmented 107 cells in an unregistered vglut2a:DsRed
confocal scan (Additional file 2), and applied each transforma-
tion matrix to this set of cell masks. Changes in cell shape were
measured using the partial Hausdorff distance for each cell af-
ter registration compared to its original shape (see the Methods
section).

Next, we plotted the MLD against the Hausdorff distance
and located points along the Pareto frontier (Fig. 1b) of these
2 measures. These points represent potentially optimal trans-
formations, where registration accuracy can only be improved
by increasing distortion, or vice versa. To distinguish between
these points, we examined 2 additional measures of distor-
tion: the change in cell volume (Fig. 1c) and maximal elonga-
tion (Fig. 1d). Three transformations showed statistically signifi-
cantly reduced distortion compared to CMTK for bothmeasures,
and we selected the one (Fig. 1b, point d) with the greatest preci-
sion for further testing. With this set of parameters (see Table 1,
live registration), mean registration error was within the diame-
ter of a single neuron for both ANTs and CMTK (MLD for ANTs =
6.7 ± 0.3 μm, MLD for CMTK = 7.6 ± 0.4 μm; n = 6 brains, paired
t test P = 0.056). However, cell morphology was better preserved
using ANTs (Hausdorff distance for ANTs = 2.30 ± 0.14, Haus-
dorff distance for CMTK = 2.37 ± 0.14; n = 107 cells, paired t test
P = 0.013), especially within ventral structures such as the hy-
pothalamus and the caudal medulla oblongata (Fig. 1e).

We next examined whether these registration parameters
also improved precision for the co-aligned transgenic lines. For
ZBB, we co-scanned transgene and enhancer trap expression
patterns with the vglut2a:dsRed transgene, allowing us to regis-
ter each expression pattern to vglut2aZBB. We first compared the
overlap and morphology of the Mauthner cells from brain scans
of 3 different individuals of transgenic line J1229aGt [23]. Overlap
of Mauthner cell bodies was similar for CMTK and ANTs (Fig. 1f
and g). However, in CMTK registered images, the Mauthner axon
was distorted in the caudal medulla, whereas axon morphology
was preserved with ANTs. Second, in our previous work, we as-
sessed the precision of CMTK registration using line y339Et by
independently scanning 2 sets of 3 larvae, producing an average
for each set, and visually comparing the result. With CMTK, we
had noted misalignment of approximately 1 cell diameter in the
neuropil of the optic tectum (Fig. 1h). This was substantially im-
proved with ANTs, where there was much closer alignment of
the 2 averages (Fig. 1i).

Improved precision of ZBB after registration using ANTs

We next recompiled ZBB using ANTs to register the entire set of
354 brain scans from109 different transgenic lines thatwere part
of ZBB, then, as before, averaged multiple larvae to create a rep-
resentation of each transgenic line, masked the average stacks
to remove expression outside the brain, and re-imported the re-
sulting images into our Brain Browser software. We refer to this

new recompilation of the atlas as ZBB1.2. Unprocessed and reg-
istered brain images are available online [35].

To determine whether ZBB1.2 was a quantitative improve-
ment over ZBB, we identified 2 conspicuously labeled cells or
landmarks in each of 12 transgenic lines from the atlas (Addi-
tional file 3). We marked these positions in each of the 3 brain
scans for each line, then, after registration, calculated the dis-
tance between corresponding points in each pair of brains. The
mean of these distances measures how precisely landmarks are
registered across the 3 brains. We performed this procedure first
for brains registered using CMTK, then for the same set of brains
registered using ANTs, allowing us to compare MLDs for the 2
methods (Fig. 2a and b). Overall, landmark distances decreased
from ZBB to ZBB1.2 (10.8 ± 1.02 μm to 8.1 ± 0.83 μm; n = 24 land-
marks, paired t test P = 0.008), indicating that ZBB1.2 has signifi-
cantly improved precision, and confirming that the new atlas is
accurate to approximately the diameter of a single neuron. The
improvementwas greatest deeper in the brain (linear regression,
n = 24, P = 0.003) (Fig. 2c), with the largest improvement for the
caudal hypothalamus in line y341, where increased alignment
precision was associated with noticeably reduced distortion be-
tween the 3 brain scans (Fig. 2d).

Additionally, we inspected regions of ZBB1.2 where we had
noticed poor registration precision or pronounced cell distor-
tion in the original ZBB. One such area was the dorsal thalamus,
where cell morphology was noticeably perturbed after elastic
registration with CMTK, with cell somas stretching across the
midline (Fig. 2e). In ZBB1.2, cells retained a rounded morphol-
ogy with distinct cell clusters on the left and right sides of the
brain (Fig. 2f). Similarly, distortions in cell shape that were ap-
parent in the caudal hypothalamus in ZBB were absent in ZBB1.2

(Fig. 2g and h). In the caudolateral medulla, we previously ob-
tained poor registration, with expression extending to regions
outside the neural tube (Fig. 2i). In ZBB1.2, patterns had improved
bilateral symmetry and were correctly confined to the neural
tube (Fig. 2j). Finally, we noticed that the posterior commissure
was poorly aligned between larvae, leading to a defasciculated
appearance in ZBB (Fig. 2k), whereas this tract had the expected
tightly bundled appearance in ZBB1.2 (Fig. 2l). Together, these ob-
servations confirm that ZBB1.2 is a more faithful representation
of the transgenic lines. Not only is cell morphology better pre-
served, but global registration precision is improved compared
to the original ZBB atlas.

Optimization of ANTs registration parameters
for fixed tissue

The Z-Brain atlas was derived by registering brain scans to a
single brain that was fixed, permeabilized, and immunostained
for tERK expression. We therefore anticipated that tERK would
be a useful channel for bridging the 2 atlases if we could first
successfully register a tERK-stained vglut2a:DsRed-expressing
brain to ZBB1.2. Therefore, we fixed and stained a transgenic
vglut2a:DsRed larva for tERK and registered the tERK pattern to
ZBB1.2 using the vglut2a pattern. We used the resulting image
as our ZBB tERK reference brain (tERKZBB; file terk-ref-02.nii.gz)
(available from [33]).

In addition to the tERK reference brain, Z-Brain contains
an average tERK representation from 197 tERK-stained larvae,
which we thought might serve as a bridge between atlases.
During studies on pERK-based activity mapping, we had pre-
viously generated a dataset of 167 tERK-stained brains and
therefore used these to create our own average tERK repre-
sentation by registering them to tERKZBB. However, during this
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Figure 2: Improved precision of transgene representations in ZBB1.2. (a) Mean landmark distances for 24 landmarks, after registration with CMTK and ANTs. Dotted
line indicates 1:1 ratio. (b) Boxplot of data in (a). ∗Paired t test, n = 12 lines, P = 0.019. (c) Difference in MLD between ANTs and CMTK plotted against distance from the
dorsal-most point in the brain. (d) Horizontal section through the caudal hypothalamus of 3 individual y341Et larvae as well as their pseudo-colored superimposition

following registration with CMTK (top row) or ANTs (bottom row). (e, f) Horizontal section through the thalamus showing the averaged representation of enhancer
trap line y304Et, where individual brains were registered with CMTK for ZBB (e), or with ANTs for ZBB1.2 (f). Arrow indicates neurons that are artificially elongated
across the midline. Scale bar = 100 μm. (g, h) Transverse section through the caudal hypothalamus showing the average enhancer trap line y269Et brain registered
with CMTK (g) or with ANTs (h). Arrow shows distortion of cells, causing the caudal hypothalamus to appear dorsally elongated. Scale bar = 50 μm. (i, j) Transverse
section through the medulla oblongata showing the average phox2b:GFP brain with CMTK (i) or ANTs (j). Scale bar = 50 μm. (k, l) Horizontal projection through the
posterior commissure (arrow) for the average y351Et brain obtained with CMTK (k) or ANTs (l). Scale bar = 100 μm.

process, we noticed a high degree of variability between tERK-
stained brains, most salient in poor labeling of ventral brain
structures and in deformation of the optic tectum neuropil.
Immunohistochemistry for tERK proved highly sensitive to
staining parameters, with the trypsin activity, permeabiliza-
tion duration, and antigen retrieval having the strongest effects.

Variability in fixed tissuewasmost apparent in the optic tectum,
where high trypsin activity tended to disrupt morphology and
reduce the volume of the tectal neuropil (Fig. 3b and c). These
local distortions were not resolved by deformable image reg-
istration: alignment to tERKZBB with the same parameters op-
timized for live vglut2a-based registration failed to correct the
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Figure 3: Optimization of ANTs registration parameters for fixed tissue. (a) Overview of parameter optimization for fixed brain scans using ANTs. A calibration set of
6 tERK confocal stacks with segmentations of the tectal neuropil was registered to tERKZBB, a tERK and vglut2a:DsRed confocal scan previously aligned to the vglut2aZBB
reference (left). MCCs were calculated between 18 50-μm side cube high-contrast sub-regions in the calibration set and in the tERKZBB reference to identify parameters

that maximized MCC (f, g) and improved the Jaccard index of tectal neuropil segmentation (h) while compensating for fixation artifacts (c, e, k) (middle). These
optimized ANTs parameters allow for the accurate registration of fixed tissue and the generation of a tERK average reference (tERKAV) useful for bridging live and fixed
tissue registrations (right). (b, c) Horizontal section through the optic tectum of tERK immunostained (red) vglut2a:DsRed (green) larvae, using diluted (b, sample A) or
fresh trypsin (c, sample B). The asterisk indicates a missing area of tectal neuropil due to permeabilization artifact. (d, e) Horizontal section through the same stacks

as in (b, c) registered to tERKZBB using the parameters previously optimized for live registration. Gray shows the ZBB1.2 vglut2a:DsRed pattern. Arrowheads highlight
regions where tERK in the optic tectum neuropil fails to closely abut the adjacent glutamatergic cellular layer. (f) MCC for tERK expression after registration of 6 brains
to tERKZBB, varying each of the parameters for the ANTs SyN transform, starting with the parameters that gave the best registration for live vglut2a:DsRed-based

registration (SyN[0.05,6,0.5]). Bottom right: MCCs after varying the radius of the cross correlation metric used during registration. (g) MCCs for tERK in the same brains
as in (f) after combining the 2 best parameter sets from (f) (SyN[0.1,6,0.5] and SyN[0.05,6,0]) to assess further improvement in registration precision. The yellow box
highlights the final optimal parameter set. (h) The Jaccard index for the overlap of the manually segmented tectal neuropil of the reference brain, with each of the 6
brains in the calibration set. P< 0.01. (i) 3D view of the overlap between segmented tectal neuropils from tERKZBB (red) and the Z-Brain tERK reference brain (green), after

registration with ANTs using parameters optimal for live registration, fixed registration, and CMTK. (j, k) Same brains as in (d, e), but after registration to tERKZBB using
the parameters optimized for fixed tissue registration. (l, m) Horizontal section through the optic tectum showing tERK expression (red) and vglut2a:DsRed expression
(green) in ZBB1.2 (l) and Z-Brain (m). Matching slices within the optic tectum were selected; because the rotation around the y-axis is slightly different, sections are
different within the medulla.
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Table 2: Brain images in ZBB and Z-Brain that were used as templates for registration and/or for measurement of registration precision

Used as Used as
ZBB Z-Brain registration quantification

channel metric

Tg(vGlut2a:DsRed)nns14 Mean of 346 brains ↔ Tg(vGlut2a:EGFP)zf139 Mean of 15 brains y y
Tg(vGlut2a:DsRed)nns14 Single reference brain ↔ Tg(vGlut2a:EGFP)zf139 Mean of 15 brains y n
Tg(elavl3:CaMPARI)jf9 Mean of 3 brains ↔ Tg(elavl3:GCaMP5G)a4598 Mean of 7 brains y n
Tg(vmat2:GFP)pku2 Mean of 3 brains ↔ Tg(vmat2:GFP)pku2 Mean of 55 brains y y
Tg(isl2b:GFP)zc7 Mean of 3 brains ↔ Tg(isl2b:Gal4)zc60 Mean of 8 brains y y
tERK immunostain Mean of 167 brains ↔ tERK immunostain Mean of 197 brains y y
tERK immunostain Single brain ↔ tERK immunostain Single reference brain y n
Tg(isl1:GFP)rw0 Mean of 3 brains ↔ Tg(isl1:GFP)rw0 Mean of 17 brains n y
TgBAC(gad1b:GFP)nns25 Mean of 4 brains ↔ TgBAC(gad1b:GFP)nns25 Mean of 10 brains n y
Tg(glyT2:GFP)cf3 Mean of 6 brains ↔ Tg(glyT2:GFP)cf3 Mean of 13 brains n y

reduced tectal neuropil volume (Fig. 3d and e, asterisk) and of-
ten created an artifact where the neuropil zone failed to abut the
underlying cellular layer labeled by vglut2a expression (Fig. 3d
and e, arrowheads).

We therefore varied the registration parameters that were
optimal for live vglut2a registration to find settings that best
rectified the variable tissue morphology following fixation and
permeabilization (process summarized in Fig. 3a). For optimiza-
tion of fixed tissue registration, we used a set of 6 tERK-stained
brains (including the Z-Brain tERK reference), iteratively varied
parameters for registration to tERKZBB, and assessed registration
fidelity. Formeasuring precision, wewere not able to identify un-
ambiguous landmarks within the optic tectum, so we instead
calculated the cross correlation between each of the aligned
tERK stains and tERKZBB within small volumes, including parts
of the tectum (Fig. 3f and g). To verify that the “fixed brain” pa-
rameters that yielded the greatest cross correlation did in fact
improve registrationwithin the tectum,wemanually segmented
the tectal neuropil in the same 6 brains, applied the transforma-
tion matrix to each mask, and calculated the Jaccard index for
overlap with the segmented neuropil in tERKZBB. Parameters for
fixed brain registration produced a significant increase in over-
lap compared to the live brain parameters (Fig. 3h and i), and
visual inspection confirmed that the morphology of the optic
tectum neuropil after registration was greatly improved (Fig. 3j
and k). We therefore used ANTs with the fixed brain parameters
(Table 1, fixed registration) to register our 167 tERK-stained
brains to tERKZBB and generated an average tERK representation
comparable to the 197 tERK average in Z-Brain (Fig. 3l and m).

Inter-atlas registration using multi-channel
diffeomorphic transformation

Z-Brain and ZBB incorporated 8 expression patterns that we
judged sufficiently similar to act either as templates for bridg-
ing the datasets and/or to provide metrics for assessing the pre-
cision of a bridging registration (Table 2; Additional file 4). For
example, vglut2aZBB is a confocal scan of DsRed in a single larva
from transgenic line TgBAC(slc17a6b:loxP-DsRed-loxP-GFP)nns14,
whereas Z-Brain includes Tg(slc17a6:EGFP)zf139. In both cases,
reporter expression is regulated by the same bacterial artificial
chromosome [15, 20]. Crossing these 2 lines allowed us to scan
DsRed and EGFP in the same larva and confirm that the pat-
terns were largely congruous, potentially allowing us to use vg-
lut2a expression to bridge the 2 atlases. Likewise, the expres-
sion patterns of tERK, elavl3, isl2b, and vmat2 in Z-Brain and

ZBB appeared sufficiently similar to provide templates for atlas
co-registration.

Taking advantage of the ability of ANTs to use multiple
reference channels concurrently, we compared the effect of
combinatorial use of complementary reference channels for
inter-atlas registration (process summarized in Fig. 4a). We used
7 expression patterns to evaluate registration precision: vglut2a,
isl2b, vmat2, tERK, isl1, gad1b, and glyT2. For each pattern, we
identified a set of 4–10 point-based landmarks that could be
identified in corresponding ZBB and Z-Brain images and that
were widely distributed to represent diverse brain regions (to-
tal of 41 landmarks) (Additional file 5). We marked these points
in each set of images, registered Z-Brain images to ZBB1.2 im-
ages, measured the distance between cognate landmarks, and
calculated the mean landmark distance for each of the 7 ex-
pression patterns. We used 2 summary measures of registration
precision. The first metric (M1) was the mean of MLDs for the 3
patterns that were not used to drive registration (isl1, gad1b, and
glyT2). Although these channelsmeasure precision independent
of the patterns for atlas registration, they are relatively sparse
and do not assess precision across the whole brain. Thus, to pro-
vide a global measure of precision, we also used a secondmetric
(M2) that was the mean of all 7 MLDs: those in M1 plus 4 of the
patterns used as references for registration—vglut2a, tERK, isl2b,
and vmat2.

Using CMTK, minimal M1 and M2 scores were obtained us-
ing the average vmat2 pattern as the reference (mean MLD for
41 landmarks = 14.9 ± 1.3 μm) (Fig. 4b). We therefore registered
all images in Z-Brain to ZBB using the vmat2 average in each
dataset as the reference channel. We observed severe tissue dis-
tortions in several brain regions, with noticeable flattening of the
torus longitudinalis, as well as gross tissue distortions, particu-
larly in ventral brain regions (ZBrain-CMTK) (Fig. 4c and d). Next
we used the ANTs SyN algorithm to register the atlases. Ideally,
patterns for registration should include information throughout
the brain. Because ANTs can use multiple concurrent reference
channels to derive an optimal transformation matrix, we spec-
ulated that the best possible transformation would be achieved
by a combination of channels with complementary information.
We therefore produced an inter-atlas transformation matrix for
every combination of the elavl3, isl2b, vglut2aAV (vglut2a average
brain), vmat2, tERKZBB (tERK single brain), and tERKAV (tERK av-
erage brain) patterns as references. Because Z-Brain used fixed
samples, we used the registration parameters optimized for the
greater variability present in fixed tissue. Multi-channel reg-
istration significantly reduced M1 and M2 values compared to
any single channel alone and to transformations obtained using
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Figure 4: Transformation between Z-Brain and ZBB coordinate systems using multi-channel registration. (a) Overview of bridging Z-Brain and ZBB using ANTs multi-
channel registration. Combinations of 5 patterns common between Z-Brain and ZBB (vglut2aAV, tERKZBB, vmat2, isl2b, and elavl3) were used guidemulti-channel bridging

registrations (left). MLDs for 41 landmarks in gad1b, glyT2, isl1, isl2b, tERK, vglut2a, and vmat2 expressionweremeasured for all reference channel combinations (middle).
The combination of vglut2aAV, tERKZBB, vmat2, and isl2b enabled the most accurate bridging of ZBB and Z-Brain, allowing the combination of the large collection of live
transgenic lines of ZBB with the fixed tissue techniques and expert neuroanatomic segmentations of Z-Brain (right). (b) MLDs for the expression patterns of gad1b,
glyT2, isl1, isl2b, tERKZBB , vglut2a, and vmat2 and M1 and M2 metrics after registration of Z-Brain to ZBB1.2 using either CMTK or ANTs SyN with fixed tissue registration

parameters and the indicated combination of reference channels (vglut2a, tERKZBB , vmat2, isl2b, and elavl3). Note, similar results were obtained using tERKAV instead
of the tERKZBB, but they are omitted for clarity. The combination of reference channels selected for co-registration of Z-Brain and ZBB is highlighted. (c) Transverse
section through the caudal optic tectum showing the vglut2a pattern in ZBB1.2, Z-Brain, Z-Brain after registration to ZBB with CMTK (Z-Brain-CMTK), or with ANTs

(Z-Brain-SyN). The torus longitudinalis (TL) is well separated from tectal neurons in live scans, but less so in fixed tissue (arrows). The TL appears flattened after CMTK
registration but retains normal morphology after registration with ANTs SyN. (d) Transverse sections as in (c), but slightly more caudal, with contrast increased to
highlight ventral distortion artifacts produced by registration (arrowheads). (e–h) Brain Browser views in the ZBB1.2 coordinate (e, f) or Z-Brain coordinate (g, h) space.
Scale bars = 25 μm, except 50 μm in (e). (e) Horizontal (top) and sagittal (bottom) sections, comparing the pet1:GFP expression pattern in the superior raphe in ZBB1.2

(red) and Z-Brain after transformation to the ZBB coordinate system (green). (f) Horizontal (top) and transverse (bottom) sections through the medulla oblongata,
showing the expression of y264Et from ZBB1.2 (red) and s1181Et from Z-Brain after transformation to ZBB1.2 (green), which both label the Mauthner cells (arrowhead).
(g) Horizontal (top) and transverse (bottom) sections through the pretectum, comparing the expression of DAT:GFP from ZBB1.2 after transformation to Z-Brain (red)
and anti-tyrosine hydroxylase staining in Z-Brain (green). (h) Horizontal (top) and transverse (bottom) sections through the medulla oblongata for glyT2:GFP from

ZBB1.2 after transformation to Z-Brain (red) and the same transgenic line in Z-Brain (green). (i–l) Brain Browser horizontal sections showing manually segmented
regions transformed from the Z-Brain coordinate system to ZBB1.2 (white outlines) compared to regions previously defined in ZBB obtained by thresholding expression
patterns in transgenic lines (magenta). Regions are the torus longitudinalis (i), habenula (j), anterior commissure (k), and trigeminal ganglion (l).
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CMTK. The registration obtained with vglut2a, tERKZBB, vmat2,
and isl2b gave the lowest global metric (M2) value and an M1

score within 10% of the lowest scoring combination (Fig. 4b).
With these parameters, the MLD was 9.1 ± 0.8 μm (N = 41
landmarks), and the overt tissue distortions noted after elastic
registration were far less salient (ZBrain-SyN) (Fig. 4c and d). We
therefore applied the transformation matrix obtained with this
set of channels to the database of gene expression patterns in Z-
Brain to align them to ZBB1.2 and used the inverse of the transfor-
mation generated by SyN to register ZBB1.2 to the Z-Brain coor-
dinate system. We imported all Z-Brain expression patterns not
previously represented in the database into ZBB1.2, producing a
total of 133 expression patterns.

The accuracy of the inter-atlas registration is evident when
comparing the location of cells that are present in both datasets,
such as those labeled pet1:GFP. The Z-Brain transformed pat-
tern closely matches the transgene expression pattern in ZBB1.2

within the superior raphe (Fig. 4e—note, however, that unex-
pectedly, the line in ZBB1.2 also labels a set of more rostral cells
not apparent in Z-Brain). Both atlases also include lines label-
ing the Mauthner cells. After registration, Mauthner cells in the
atlases substantially overlapped, although theywere several mi-
crons more medially positioned in ZBB1.2 (Fig. 4f). Expression in
the DAT:GFP line in ZBB1.2 overlapped well with the tyrosine hy-
droxylase stain fromZ-Brain in the pretectum (Fig. 4g), although,
again, the ZBB1.2 pattern was slightly more medial than in
Z-Brain. Caudally, the glyT2:GFP transgenic line labels glycinergic
neurons in longitudinal columns in the medulla oblongata [36].
These columns were closely aligned after ZBB1.2 was registered
to Z-Brain (Fig. 4h).

Although best practice is to align directly to either ZBB or
Z-Brain, because many researchers will have already registered
data sets to either ZBB or Z-Brain, or for cases where it may not
be possible to directly register a dataset, we have provided trans-
formation matrixes and detailed instructions to quickly re-align
datasets to either of the coordinate systems (Additional file 6)
[37].

Neuroanatomical visualization

Z-Brain includes 294 masks that represent anatomically de-
fined brain regions or discrete clusters of cells present in trans-
genic lines. We selected 113 of these masks that delineate neu-
roanatomical regions and transformed them into the ZBB1.2 co-
ordinate system. We had previously defined a small number of
our own anatomical masks by thresholding clusters of neuronal
cell bodies located in well-defined brain regions. However, the
Z-Brain masks are more comprehensive, have smoother bound-
aries, and include both the cell bodies and neuropil for a given
region (Fig. 4i–l). We therefore imported the Z-Brain masks into
ZBB1.2, replacing most of our existing masks. We also modi-
fied the Brain Browser software to automatically report the neu-
roanatomical identity of a selected pixel or to display the bound-
aries of the region encompassing a selected point. The updated
software and rebuilt database in ZBB1.2 can be downloaded from
our website [38].

Finally, as the Zebrafish Brain Browser’s strength is primarily
in 2 dimensions (i.e., the visualization of horizontal, transverse,
and sagittal slices through the brain), we decided to develop in-
teractive tools to better facilitate 3D exploration. The use of 3D
graphics to represent complex structure can also provide amore
intuitive sensory experience that avoids cognitive bias or misin-
terpretation inadvertently introduced by 2-dimensional reduc-
tions [39, 40]. By taking advantage of stereoscopy and vestibular-

enhanced parallax (head tracking), the more immersive and
holistic experience of virtual reality (VR) can also significantly
improve performance of basic tasks like searching and making
comparisons [41, 42]. We therefore implemented our Zebrafish
Brain Browser in both an open Web3D platform (X3D) and a
custom game engine (Unity). First, we converted masks repre-
senting anatomical regions to meshes and built a Web3D inter-
face using X3D to inspect the spatial relationship between dif-
ferent brain regions (Fig. 5a and b), available online [43]. Users
can navigate within the brain using any web browser, rotating
and zooming into brain regions to better interrogate larval neu-
roanatomy. Second, using the Unity platform, wewrote a VR app
to view the brain and neuroanatomical regions. By running the
app on a cell phone and inserting it into an inexpensive Google
cardboard viewer, users can “walk into” the brain and see from
the inside the inter-relationship between neuroanatomical do-
mains (Fig. 5c and d) [44].

Discussion

Digitized data-derived brain atlases provide an opportunity to
continuously integrate new information and iteratively improve
data accuracy within a common spatial framework. Thus, as
methods evolve and technology improves, new insights can be
easily added to existing data to provide an increasingly rich
view of brain structure and function. Because the entire larval
zebrafish brain can be rapidly imaged at cellular resolution, it
is possible to envisage an atlas that combines detailed informa-
tion on cell type (including gene expression and morphology),
connectivity, and activity under a variety of different physiolog-
ical conditions. At present, biological variability presents an ob-
stacle as brain regions contain multiple intermingled cell types
that are not positioned in precisely the same manner between
larvae. To compensate for this in the existing zebrafish brain at-
lases, multiple individuals of a given line are sampled and aver-
aged to generate a representative expression pattern. Current at-
lases are thus essentially heat maps of gene expression or activ-
ity. Despite this spatial ambiguity, aggregating information from
different sources into the same spatial framework still provides
valuable indicators of cell type, gene co-expression, and neural
activity under defined conditions.

Ideally different atlas projects might use the same refer-
ence brain; however, in practice the choice of a reference is of-
ten dictated by study-specific experimental requirements. For
example, despite the deformations introduced by fixation and
permeabilization, a fixed brain is essential for activity map-
ping using pERK immunohistochemistry. In contrast, we were
able to take advantage of the optical transparency of larvae to
rapidly scan and register several hundred individuals represent-
ing more than 100 different transgenic lines. For our purposes,
the TgBAC(slc17a6b:loxP-DsRed-loxP-GFP)nns14 line was ideal be-
cause, through Cre injection, we generated a vglut2a:GFP line
with an almost identical pattern, allowing us to co-register lines
with either GFP or RFP fluorescence. However, we have also used
pan-neuronal Cerulean or mCardinal as a reference channel
when green and red channels both contain useful information
on transgene expression. Our work now demonstrates that it is
feasible to contribute to community efforts at building an inte-
grated map of brain structure, expression, and activity, while al-
lowing reference image selection to be guided by technical con-
siderations.

One caveat to this conclusion is that deformable image reg-
istration can easily introduce artifacts into cell morphology if
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Figure 5: 3D visualization of brain browser data. (a) X3D zebrafish brain shown in HTML5 web browser and (b) Virginia Tech HyperCube (CAVE). (c) Virtual reality brain
rendered using the Unity Game Engine for stereoscopic viewing using the Google Cardboard viewer. (d) In the VR browser, brain regions are selected using a menu on
the floor of the virtual arena.

parameters are not carefully monitored and constrained. In-
deed, a special challenge for brain registration in zebrafish is
preserving the local morphology of neuronal cell bodies and ax-
ons while permitting sufficient deformation to correct for bio-
logical differences and changes in brain structure arising from
tissue fixation and permeabilization. Thus, while B-spline regis-
tration with CMTK produced acceptable inter-atlas alignment, it
also introduced noticeable distortions into local brain structure
that affected neuronal cell morphology. Such artifacts were par-
ticularly severe in ventral brain regions such as the caudal hy-
pothalamus, and may therefore be due to differences in ventral
signal intensity between the datasets. In ZBB, in order to com-
pensate for the increase in light diffraction with tissue depth,
we systematically increased laser intensity with confocal scan
progression (z-compensation). As a result, the Z-Brain and ZBB
datasets are comparable in dorsal brain regions, but there is a
noticeable discrepancy ventrally, whichmay account for the loss
of registration fidelity. Alternatively, although z-compensation
partially corrects for reduced fluorescent intensity, there is a no-
ticeable drop-off in image resolution in ventral regions; the re-
sulting loss of information may lead to lower-quality registra-
tion. Registration algorithms that allow parameters to vary by
depthmay ameliorate the effects of these physical imaging con-
straints.

Nevertheless, the symmetrical diffeomorphic transforma-
tion in ANTs provides a solution to these problems. For live tis-
sue, we found parameters that allowed the ANTs SyN transform
to achieve similar or better registration precision than previ-
ously achieved using CMTK, while significantly reducing distor-
tions in tissue structure and neuronal cell morphology. In our
hands, permeabilization of fixed tissue tended to produce vari-
able changes in neuropil structure, which was most salient in
the optic tectum. Specifically, neuropil volume was diminished

when fresh aliquots of trypsin were used for extended dura-
tions. These artifacts can be minimized by stringent oversight
of reagent viridity. However, by calibrating SyN parameters to
permit larger deformations, we were able to accommodate the
variability introduced in tissue processing.

Currently, limitations of the SyN registration algorithm in
ANTs are the largememory demands (73 GB for a single channel
registration) and long computational times (3–5 hours for a sin-
gle channel using 24 cores) required for registration of images
with a resolution sufficient for the brain-wide visualization of
neuronal morphology (e.g., 1000 × 600 × 350 pixels). For multi-
channel registrations, memory demands and computation time
were even greater: 106 GB for 6 channels taking over 16 hours
on 24 cores. However, our present ANTs SyN parameters likely
can be further optimized to reduce these demands. For instance,
our parameters currently include 10 iterations of transformation
matrix optimization at full image resolution. From our experi-
ence, these full-resolution registration cycles do not significantly
increase precision, but they greatly increase computation time.
Thus, computation time may be reduced by adjusting registra-
tion resolution aswell as other parameterswithout adversely af-
fecting registration quality. Although computational resources
did not present a bottleneck for registering a small number of
samples, this increase in the demands of a single registration
made it difficult to optimize registration parameters as exten-
sively as we had done previously with CMTK [1]. By reducing
computation time, we would be able to explore more compre-
hensively the parameter space available with SyN and evaluate
alternative diffeomorphic transforms available with ANTs that
may provide still better registration fidelity.

An obstacle to systematically calibrating registration param-
eters is finding a suitable metric to quantitatively evaluate pre-
cision. This is a recognized problem, and it is not clear that a
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general solution exists [34]. Here, we primarily assessed preci-
sion by measuring the distance between visually located land-
marks in the reference brain and registered images. However,
this method has 2 drawbacks: (i) it relies on the accuracy with
which these landmarks are located, and (ii) at least for our
sample set, a relatively limited set of landmarks could reliably
be identified.We obtained similar results whenwe assessed pre-
cision using cross correlation within localized image neighbor-
hoods that included high-contrast internal image boundaries
(data not shown). In registering live vglut2a:DsRed image stacks,
we noted the trade-off between accurate global brain alignment
and biologically plausible cell morphology. Thus we also used a
set of measures to assess changes in the morphology of manu-
ally segmented cells (Hausdorff distance, elongation index, and
cell volume). Finally, we also inspected the output of every trans-
formation to subjectively judge registration quality.

Potential implications

This study demonstrates that the ANTs diffeomorphic symmet-
ric normalization algorithm (SyN) advances upon elastic regis-
tration for precise registration of whole brain images in larval
zebrafish and ismarkedly better at preserving neuronal cellmor-
phology. By systematically testing SyN registration parameters
for registering images acquired using live scans, we improved
the ZBB atlas. Then, after calibrating registration parameters for
fixed tissue and usingmulti-channel optimization, we were able
to align the Z-Brain atlas into the ZBB coordinate space, and
vice-versa, achieving co-registration accuracy to approximately
the diameter of a single neuron. We believe that integrating the
information present in each of these atlases produces a richer
framework for future studies of structural and functional rela-
tionships within the nervous system. Large digital datasets such
as those present in brain atlases can be used for many types
of bioinformatic analysis. Z-Brain and ZBB already include soft-
ware that can be used to explore the larval zebrafish brain, and
we hope that integrating these datasets into a single coordinate
system, will help to stimulate the development of additional
computational tools andmethods for querying this information.

Availability of supporting data

All individual brain scans, both before and after registration to
a ZBB reference brain, are available in the GigaScience reposi-
tory, GigaDB [35]. The GigaDB repository also includes the set
of reference brains used for ZBB [33, 35] and the transformation
matrices used to convert between ZBB and Z-Brain coordinate
systems [37, 35].

Additional Material

Additional file 1: Point-based landmarks for quantification of
live-scan registration precision. (a) Landmarks used for mea-
suring registration precision. Position specifies the coordinates
on vglut2aZBB (transverse, sagittal, horizontal planes). View in-
dicates whether the image plane shown in (b) is transverse (T),
horizontal (H), or sagittal (S). MLDs represent the average preci-
sion for each landmark for the set of 6 calibration brains, after
registration with CMTK or ANTs. (b) Images of the landmarks in
vglut2aZBB (red) used for measuring precision superimposed on
elavl3 (gray). (c) Position of the landmarks superimposed on hori-
zontal (top) and sagittal (bottom) maximum projections of elavl3

through the brain. (d) Horizontal maximumprojections showing
the landmark point (red dot) and the position of the correspond-
ing landmarks in the 6 calibration brains after registration (green
dots) superimposed on vglut2aZBB. Scale bar = 20 μm.

Additional file 2: Cells segmented for assessing distortion
introduced by registration. (a) Position of manually segmented
cells for measurement of distortion introduced by registra-
tion. Views show the same cells (individually color coded) su-
perimposed on horizontal (top) and sagittal (bottom) maxi-
mum elavl3 brain projections. (b) Two examples of cells show-
ing (left to right): original confocal image, segmentation mask,
mask after alignment with CMTK, and mask after alignment
with ANTs.

Additional file 3: Point-based landmarks labeled by trans-
genic lines. (a) Transgenic line landmarks used for measuring
registration precision of the zebrafish brain browser atlas. Coor-
dinates give the transverse, horizontal, sagittal position. Letters
in square brackets designate right side [R], left side [L], or mid-
line [M]. Themean and standard error of the landmark distances
for the 3 brains per landmark are indicated for CMTK and ANTs.
(b) Position of the landmarks superimposed on horizontal (top)
and sagittal (bottom) maximum elavl3 brain projections.

Additional file 4: ZBB and Z-Brain expression patterns used
for atlas registration. Brain Browser 3D projections of corre-
sponding expression patterns in Z-Brain (left) and ZBB (right)
used for calibrating and verifying the precision of inter-atlas reg-
istration. The top 5 patterns were combinatorially used to drive
registration, while the bottom 3 were used for assessing preci-
sion. Middle images show Z-Brain patterns after registration to
ZBB.

Additional file 5: Point-based landmarks formeasuring preci-
sion of Z-Brain/ZBB co-registration. (a) Transgenic line and tERK-
stain landmarks used formeasuring the precision of registration
between Z-Brain and ZBB. Coordinates are in transverse, hor-
izontal, sagittal sections. Letters in square brackets designate
right side [R], left side [L], or midline [M]. Color blocks corre-
spond to points in (b). (b) Position of the landmarks superim-
posed on horizontal (top) and sagittal (bottom) maximum brain
projections.

Additional file 6: Instructions for using transformation ma-
trices to convert between ZBB and Z-Brain coordinate systems.

Abbreviations

ac: anterior commissure; ANTs: Advanced Normalization Tools;
BSA: bovine serum albumin; Ce: cerebellum; CC: cross correla-
tion; dpf: days post-fertilization; DT: thalamus; GT: griseum tec-
tale; Ha: habenula; Hc: hypothalamus caudal zone; Hi: hypotha-
lamus intermediate zone; IPN: interpeduncular nucleus; MCC:
mean cross correlation; MD: maximal distance; MLD: mean
landmark distance; MN: Mauthner neuron; MO: medulla oblon-
gata; MOc: anterior-most midline cell in ventral/caudal medulla;
MOm: ventral-most cluster of cells in medial/caudal medulla;
NGS: normal goat serum; ON: olfactory nerve; PBS: phosphate-
buffered saline; PBT: phosphate-buffered saline containing 0.1%
Triton X-100; pc: posterior commissure; Po: preoptic region; Pr:
pretectum; R4: rhombomere 4; R5: rhombomere 5; R6: rhom-
bomere 6; RT: room temperature; SR: superior raphe; SyN: diffeo-
morphic symmetric normalization algorithm; TeOn: optic tec-
tum neuropil; tERK: total ERK; TG: trigeminal ganglion; TL: torus
longitudinalis; TS: torus semicircularis; ViBE-Z: Virtual Brain Ex-
plorer for Zebrafish; VR: virtual reality; X3D: Extension 3D; ZBB:
Zebrafish Brain Browser.
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