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Abstract

Human longevity is a complex trait influenced by both genetic and environmental factors, whose interaction is mediated by
epigenetic mechanisms like DNA methylation. Here, we generated genome-wide whole-blood methylome data from 267
individuals, of which 71 were long-lived (90–104 years), by applying reduced representation bisulfite sequencing. We
followed a stringent two-stage analysis procedure using discovery and replication samples to detect differentially
methylated sites (DMSs) between young and long-lived study participants. Additionally, we performed a DNA methylation
quantitative trait loci analysis to identify DMSs that underlie the longevity phenotype. We combined the DMSs results with
gene expression data as an indicator of functional relevance. This approach yielded 21 new candidate genes, the majority of
which are involved in neurophysiological processes or cancer. Notably, two candidates (PVRL2, ERCC1) are located on
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chromosome 19q, in close proximity to the well-known longevity- and Alzheimer’s disease-associated loci APOE and
TOMM40. We propose this region as a longevity hub, operating on both a genetic (APOE, TOMM40) and an epigenetic (PVRL2,
ERCC1) level. We hypothesize that the heritable methylation and associated gene expression changes reported here are
overall advantageous for the LLI and may prevent/postpone age-related diseases and facilitate survival into very old age.

Introduction
Human longevity is a rare phenomenon with approximately one
centenarian in 5000 people (1). Many long-lived individuals (LLI)
do not only reach an extreme age, but also exhibit a relatively
good health status, which is achieved by postponing the onset
of major age-related diseases and the beginning of functional
decline (2). Although LLI epitomize the longevity phenotype,
they obviously also show signs of physiological aging. Longevity
has a clear genetic contribution of up to 40% in elderly who
survive beyond 85 years (3), but environmental and lifestyle
parameters are more relevant determinants for becoming long-
lived (4). The interaction between the different factors can be
mediated by epigenetic mechanisms such as DNA methylation,
regulatory RNAs and/or histone modifications (5, 6). Up to now,
only few genome-wide DNA methylation profiling studies in LLI
have been performed, typically using array or immunoprecipita-
tion sequencing technologies on blood-derived cells (reviewed
in 7). The results show that nonagenarians and centenarians
have a more youthful DNA methylation profile than expected
from their chronological age (8, 9). Generally, both aging and
longevity are associated with changes in DNA methylation; how-
ever, some changes can be attributed specifically to aging, others
to longevity. Aging is characterized by a decrease in global DNA
methylation (5, 10), which in turn is associated with higher frailty
and mortality (11, 12). Interestingly, offspring of centenarians
were shown to exhibit a less pronounced loss of DNA methy-
lation (5). Thus, a better preservation of the methylation status
may be one avenue of how LLI counteract or suppress age-
related morbidities (13). Increased methylation of certain sites in
genes influencing DNA/RNA synthesis, metabolism, and cellular
signaling appears to be another longevity-promoting mecha-
nism, since these sites are different from those that are age-
dependently hypermethylated (genes involved in transcriptional
regulation and development of anatomical structures) (5).

When transient biomarkers like methylation changes are
investigated in pure cross-sectional studies (i.e. long-lived versus
young), it is difficult to disentangle if the observed differences
simply mark the longevity phenotype or actually drive it (6,
14, 15). This limitation can be partly overcome by applying a
design in which the offspring of LLI are compared to offspring
of parents that did not attain an exceptional old age (5). Another
option, which is pursued here, is to link age-related methylation
changes to genetic variation by methylation quantitative trait
loci (mQTL) analysis. As the investigated variants are constitu-
tional, they cannot be a consequence of longevity, but rather
represent one of its regulators. When assessing causal effects in
complex traits like longevity, it needs to be considered that allelic
predisposition alone is not sufficient. In addition to specific
genotypes, the manifestation of a phenotype also requires a non-
genetic trigger (e.g. diet, lifestyle) with a molecular effect (e.g.
change in methylation, expression).

In the present study, we generated whole-blood genome-
wide methylation data from 267 individuals, of which 71 were
long-lived (90–104 years). We decided against a cell type-specific
analysis as Yuan et al. (16) had shown that most age-dependent

DNA methylation changes observed in blood are robust and
independent of the granulocyte/lymphocyte ratio, which is
known to change with aging (16). We applied reduced represen-
tation bisulfite sequencing (RRBS), a technology that combines
the accuracy and resolution of bisulfite sequencing with cost
effectiveness and high sample throughput (17, 18). Compared
to Infinium microarrays, RRBS provides higher genome-wide
coverage, single-site and single-allele resolution, and insights
into DNA methylation heterogeneity (19–21). Differentially
methylated sites (DMSs) were identified in a stringent two-
stage analysis using a discovery and a replication cohort. We
subsequently correlated the obtained DMS information with
previously published gene expression and single-nucleotide
polymorphism (SNP) data from the same individuals (14).
Through combination of several ‘omic’ techniques (epigenomics,
transcriptomics, genomics) we narrowed down the DMSs to a list
of 21 new longevity candidate genes, with the majority of them
being linked with either neurophysiology or cancer.

Results
Description of DNA methylation data obtained by RRBS

Sequencing statistics were very similar for both study cohorts,
i.e. the discovery (125 individuals) and the replication sample
(142 individuals), with a median total number of sequenced
reads of around 25 million, which were filtered to around 20 mil-
lion reads and provided coverage for 3.6 to 3.7 million CpG sites
in each sample (Supplementary Table 1). After filtering, 2 142 543
CpG sites remained in the discovery cohort and 2 007 932 CpG
sites in the replication cohort that were covered by at least five
reads in at least 50% of the samples. The median coverage per
site was 10 reads and the median methylation ratio was 0.88 and
0.89 for the two sets of samples, respectively (Supplementary Fig.
1). About 1 944 778 sites were available in both cohorts covering
19 403 protein-coding genes, 16 669 promoters and 23 124 CGIs.

Differential methylation analysis

We first performed site-specific differential methylation analy-
sis in the discovery sample and, applying an adjusted P-value
< 0.05, we found 6381 CpG sites to be significantly differentially
methylated between LLI (n = 53, age range: 91–104 years) and
younger controls (n = 72, age range: 20–53 years) (either hyper-
methylated or hypomethylated; Fig. 1, Supplementary Table 2).
Of these, 6265 DMSs were also available in the replication cohort.
In that group, we did not perform an extreme group comparison
(LLI versus younger controls), but recruited the individuals over
a broad age range and used the age of the participants as a
continuous covariate. In the replication cohort, 1851 of the 6265
DMSs showed a significant differential methylation and, strik-
ingly, for 1797 DMSs (97.1% of the 1851 DMSs) we found the same
direction of effect in both cohorts (Fig. 1, Supplementary Table 3).
This overlap is significantly larger than the expected number of
995 replicated CpG sites (permutation test P-value < 10-4). About
70% (1256 CpG sites) were hypomethylated, i.e. showed lower
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Figure 1. Flowchart summarizing the study design and statistical approach. DMS,

differential methylated site; GO, gene ontology; LLI, long-lived individuals; mQTL,

methylation quantitative trait locus.

methylation in LLI compared with younger subjects. However,
the observed effect sizes were small. The median difference in
mean DNA methylation levels between LLI and younger controls
in the DMSs measured in the discovery sample was −0.14 and
0.116 for hypo- and hypermethylated sites, respectively (Supple-
mentary Fig. 2). Hypomethylated sites were enriched for sites in
promoter flanking regions (adjusted P-value = 1.57 × 10−98) and
CTCF binding sites (adjusted P-value = 4.03 × 10−40), but depleted
for sites in CpG islands (CGIs) (adjusted P-value = 7.43 × 10−126)
(Supplementary Fig. 3). In contrast, hypermethylated sites were
enriched for CGIs (adjusted P-value = 7.81 × 10−109), transcrip-
tion factor binding sites (adjusted P-value = 4.43 × 10−61), exons
(adjusted P-value = 1.09 × 10−22) and coding sequences (adjusted
P-value = 2.52 × 10−22). To check for potential confounding by, e.g.
differences in cell type composition, we performed an additional
analysis in the discovery sample for all 6381 DMSs, adjusting
for the first principal component estimated on the complete
data set. After adjusting, all DMSs remained significant (adjusted
P-values < 0.05) and showed the same direction of effect.

Consecutive hypo- and hypermethylated DMSs were sepa-
rately merged into 87 differentially methylated regions (DMRs)
(Supplementary Table 4), of which more than 75% (65) were
hypomethylated. The regions were short with a median length
of 56 bp containing four CpG sites and 56 of the DMRs covered a
transcript or a promoter.

Gene ontology and locus overlap analysis

A pathway analysis with the 1797 overlapping DMSs (listed
in Supplementary Table 3) based on KEGG (22) and GO (23)
revealed no significant GO terms or KEGG pathways for
the hypomethylated DMSs. While also no significant KEGG
pathways were found for the hypermethylated DMSs, 21 GO
terms reached statistical significance (Supplementary Table 5);
of these, 14 GO terms were over-represented and 7 GO terms
were under-represented for the hypermethylated DMSs. The two
most overrepresented groups were ‘homophilic cell adhesion via

plasma membrane adhesion molecules’ and ‘cell-cell adhesion
via plasma-membrane adhesion molecules’, while ‘protein
binding’ was the most underrepresented one (Supplementary
Table 5). Our observation that only for hypermethylated DMSs
significant GO terms were detected is in concordance with
Kananen et al. (24) and previous reports suggesting that
hypomethylated DMSs form a less homogeneous group than
hypermethylated DMSs (24, 25).

Enrichment analysis for genomic region sets (LOLA; http://
databio.org/lola/; (26)) on the hypo- and hypermethylated DMSs
yielded significant results for the hypermethylated DMSs only.
Interestingly, regions that had previously been identified as
binding regions of the chromatin-associated protein sirtuin 6
(SIRT6; (27)) were enriched in the subset of hypermethylated
DMSs (adjusted P-value = 1.24 × 10-8, Supplementary Table 6).
Increased methylation at SIRT6 binding sites could prevent
protein binding and eventually lead to silencing of SIRT6-
dependent gene expression (e.g. decreased expression of tumor
suppressor or DNA repair genes).

Correlation analysis between CpG methylation sites
and gene expression in the discovery sample

We performed correlation analysis for the 1797 DMSs. We gen-
erated 890 pairs of genes and CpG sites (CpG sites within the
respective gene body or promoter) and identified 149 significant
correlations (adjusted P-value < 0.05) that consisted of 149 DMSs
in 102 genes (Fig. 1, Supplementary Table 7). Of these 149 cor-
related CpG-gene pairs, 78 exhibited a negative correlation (i.e.
lower methylation associated with higher gene expression and
vice versa) and 71 showed a positive correlation. The majority
of correlated DMSs were observed in intronic regions. Sites with
a negative correlation were more often located in exonic regions
(27 versus 10%), while sites with a positive correlation were more
frequent in promoters (38 versus 22%). Generally, differential
methylation of genes was only to a limited extent reflected
in changes of gene expression (16.7% of the 890 pairs tested).
The correlation analysis between DMSs and gene expression
yielded only little effects of age, i.e. aging-induced differential
methylation seems to occur predominantly without concordant
gene expression changes. This observation is in agreement with
previous findings (16, 28, 29). For comparison, we repeated the
correlation analysis for all 14 672 genes in the transcriptome data
set which had at least one CpG site in their body or promoter
region resulting in 1 216 157 pairs of CpG sites and genes. Only
553 pairs were significant after adjustment for multiple testing
(0.045 versus 16.74% for the DMSs-based correlation analysis)
covering 230 genes (1.57 versus 17.62%), but a negative correla-
tion was observed for 73% of the significant pairs. Results were
very similar when CpG sites in the gene body or promoter were
considered separately (gene body: 0.045% out of 1 215 054 pairs
were significant and 73% with negative correlation; promoter:
0.045% out of 1 155 976 pairs were significant and 70% with
negative correlation).

Correlation between CpG sites and gene expression was
stronger in the global analysis with median absolute correlation
of 0.44 compared to 0.31 in the DMS-based analysis. However,
35 of the 149 significant DMS correlations were still significant
after adjustment for the global analysis.

Methylation quantitative trait loci analysis

Furthermore, using genotyping data from the discovery sample
(14), we tested if DNA methylation levels at the 1797 DMSs were
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associated with nearby common genetic variants. We tested
39 274 combinations of CpG sites and SNPs, of which 776 pairs
containing 221 sites and 670 SNPs were significant (adjusted
P-value < 0.05) (Fig. 1, Supplementary Table 8).

We also tested if known longevity-associated SNPs in the
APOE and FOXO3 genes (30, 31) might act as mQTLs. However,
neither the two tested SNPs in FOXO3 nor the APOE status (tested
as dichotomous variant; ε4 versus ε2 or ε3) showed significant
association with nearby CpG sites.

Identification of new longevity candidates through a
combined ‘omics’ approach

To compile a list of candidate genes, we combined the results
of the methylation, RNA-seq and SNP genotyping analyses. We
found 24 DMSs to be significantly correlated with gene expres-
sion and to have at least one significant mQTL within 50 kb
(Table 1). Hypomethylation with age was observed for all but
one (LOC100128398) of these CpG sites. The effects on gene
expression were diverse. Thirteen CpG sites were positively cor-
related with the expression of the annotated gene (i.e. the lower
methylation was correlated with lower gene expression), while
11 sites showed a negative correlation (lower methylation cor-
related with higher gene expression). The 24 DMSs mapped
to 21 genes (Table 1). A literature and database search (28, 32–
41; https://gemex.eurac.edu/bioinf/age/; (42)) has shown signifi-
cant age-related gene expression changes for 13 of these genes
(marked with an asterisk in Table 1). In our replication cohort,
the 24 DMSs showed a linear change in methylation with age
that often tapered off in the elderly (Supplementary Fig. 4),
confirming previous reports ((12), and references therein). As
an example, the age-related methylation and concomitant gene
expression changes for the CpG site chr6.150040098, annotated
to the large tumor suppressor kinase 1 (LATS1), are shown in
more detail (Fig. 2). Compared with younger controls, LLI showed
lower levels of both methylation at the CpG site and CpG site-
associated gene expression, consistent with the positive corre-
lation between methylation and gene expression (Table 1, Fig. 2).
However, when considering the methylation changes in more
detail across a broad age range (in the replication sample) it
becomes evident that the methylation levels decreased nearly
linearly only between the ages 26 to ∼ 70 years, but appear to
stabilize thereafter (Fig. 2).

In silico functional assessment of the longevity
candidates

The functions of the 21 candidate genes and their potential
involvement in age-related diseases were investigated by
manual literature research in PubMed (Supplementary Table
9). Look-up of our mQTL-SNPs in the GWAS catalog showed
entries for the two SNPs rs174535 and rs4803760 (Supplementary
Table 10). An interaction analysis using the continuously
updated InterMine database (43), which integrates data from
a huge number of sources, revealed that various proteins
may physically interact with the protein products of our
candidate genes (Supplementary Table 11). Thirteen of these
proteins showed interactions with three or more candidates
from our query list (Supplementary Tables 11 and 12). Detailed
information on the 13 proteins including relevant references
is provided in Supplementary Table 12. Strikingly, almost all
of them were previously reported in the context of neurode-
generation and neurophysiology, respectively, and all of them
have also been described to play a role in human malignancies

(Supplementary Table 12). The 13 proteins showed interactions
with 16 of our 21 candidates (Supplementary Tables 11 and 12).
Additionally, for a graphical depiction, an interaction network
(Fig. 3) was generated using the STRING database (44) and
the 21 candidate genes and their 13 top interaction partners
(according to the InterMine database; (43)) as input variables.
The protein–protein interaction P-value for the STRING network
was P = 0.006, confirming more interactions than expected by
chance. According to the EMBL-EBI Expression Atlas (www.
ebi.ac.uk/gxa), apart from NTRK1 and EGFR (both not expressed
in blood), all interaction partners and our gene candidates are
expressed in blood and brain.

Investigation of allelic longevity associations

Since eight of the 24 mQTL-SNPs were present in our published
German case-control data sets (45, 46), we looked up if they
were associated with longevity. None of them showed an allelic
association (Supplementary Table 13).

One of the 21 genes mapping to the 24 DMSs was poliovirus
receptor-related 2 (PVRL2) with three significant mQTLs (Table 1,
Supplementary Fig. 5). Variation in PVRL2 has previously been
reported to be associated with longevity in Han Chinese (47).
When we tested all 10 SNPs in the PVRL2 region that were
available in our data sets (45, 46), the minor allele of rs6859
(A) was found to show an association with longevity (nomi-
nal P = 0.000792; OR = 0.87, 95% CI = 0.80–0.94; Table 2). This SNP,
however, did not represent an mQTL. Since PVRL2 lies in close
proximity to the APOE locus on chromosome 19q13.32, we ana-
lyzed whether the PVRL2 signal was independent of the APOE
association. Conditioning for the TOMM40-SNP rs2075650 caused
loss of the signal (Table 2). We observed the same finding in a
Danish longevity sample (Table 2). SNP rs6859 was not among
the variants investigated in the Han Chinese and also showed
no high LD (R2 < 0.8) with any of the SNPs tested in that popula-
tion (based on LDlink; https://ldlink.nci.nih.gov/; (48); accessed
August 21, 2018).

Discussion
Here, we used a stringent two-stage analysis with a discovery
and a replication cohort to monitor age-dependent methyla-
tion changes. DMSs observed in both study cohorts and with
the same direction of effect were further combined with gene
expression and SNP data from the discovery sample to identify
DMSs that likely drive the longevity phenotype in humans. This
approach led to the detection of 21 new candidates, the majority
of which are involved in neurophysiological processes or cancer.

LLI represent a unique study population as they avoid, sur-
vive, and/or postpone age-related diseases and disability (49).
An increasing number of reports indicate that LLI, and cente-
narians in particular, represent a paragon of successful healthy
aging ((49) and references therein). Since LLI are characterized
by an extraordinarily advanced age, they also show signs of the
aging process. Thus, we expected the LLI in our study to exhibit
molecular methylation profiles associated with both longevity
and aging. This turned out to be the case.

First, we confirmed specific methylation changes that had
been reported in previous studies, thus validating our approach.
Various genes annotated to the DMSs identified in our study
were earlier described as methylation-associated longevity
genes such as KCNA3, DHX40, and TP53TG3 (all hypermethylated,
Supplementary Table 3) (5). We also replicated aging-associated
DMSs in e.g. LAG3 and ZEB2 (both hypomethylated) (50),
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Figure 2. Depiction of age-related methylation at the CpG site chr6.150040098 annotated to large tumor suppressor kinase 1 (LATS1) and associated gene expression

changes in the discovery and replication sample, respectively. (A) methylation difference between young and old (i.e. long-lived, ≥91 years) individuals in the discovery

sample (extreme group comparison); (B) methylation changes over the age range 26–102 years in the replication sample; (C) positive correlation between methylation

and gene expression; (D) gene expression difference between young and old (i.e. long-lived, ≥91 years) individuals in the discovery sample (extreme group comparison);

(E) allele-specific methylation at rs10872646 with additive coding (0, homozygous for the major allele; 1, heterozygous; 2, homozygous for the minor allele).

FHL2 (hypermethylated) (50) or OTUD7A (hypermethylated)
(51, 52) (Supplementary Table 3). One prominent marker of
chronological age, ELOVL2 (53), was not covered in our RRBS
data set.

In general, we found that with advanced age far more regions
were hypo- than hypermethylated, which is in concordance with
the literature (5, 10). Especially CTCF binding sites were affected
by aging-dependent hypomethylation. CTCF is a conserved reg-
ulatory protein influencing, e.g. transcriptional activation and
repression, chromatin organization, insulation, and imprinting
(54). CTCF binding sites generally map to methylation-free sites
genome-wide (55). In addition, Yuan et al. (16) showed that in dif-
ferentiated cells versus human embryonic stem cells, CTCF bind-
ing sites were enriched in age-hypomethylated DMRs. Together
with our results, this observation strengthens the hypothesis of

a CTCF-dependent chromatin redistribution during aging that
could contribute to altered gene expression (16).

The large extent of global hypomethylation during aging may,
among other factors, be due to age-related changes in the one-
carbon metabolism (crucial for methylation reactions) and to an
age-related decrease in the activity of DNA methyltransferase 1
that plays an important role in maintaining genomic methyla-
tion (56). Hypomethylation likely contributes to a deregulation
of gene expression and to the functional decline in aging (57).

Our strategy of combining various ‘omic’ data sets yielded
21 new candidates involved in human aging/longevity (Table 1).
We defined a candidate gene as such if, in our analyses, we
(i) observed DMSs in the gene consistently in both of our two
study cohorts, (ii) if the differential methylation was reflected
in a change in gene expression as an indicator of functional

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa033#supplementary-data
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Table 2. Association results for SNPs in the PVRL2 gene in the German chip data sets (A) and replication of the finding for rs6859 in the Danish
longevity sample (B)

Without conditioning Conditionede

SNP MAFa LLI MAFa Controls PCCA
b ORc 95% C.I.d PCCA

b ORc 95% C.I.d

A Germans
1. Illumina Immunochip data set (46)
rs6859 0.400 0.432 0.000792 0.8669 0.798–0.942 0.205 0.944 0.864–1.032

2. Affymetrix® Genome-Wide Human SNP Array 6.0 data set (45)
rs4081918 0.094 0.079 0.116 1.208 0.955–1.528 0.089 1.231 0.969–1.564
rs11879589 0.093 0.079 0.137 1.197 0.945–1.516 0.106 1.220 0.959–1.552
rs11672399 0.070 0.058 0.167 1.211 0.923–1.589 0.088 1.275 0.964–1.686
rs519113 0.237 0.218 0.188 1.109 0.951–1.293 0.124 1.131 0.967–1.324
rs7255063 0.388 0.394 0.662 0.970 0.848–1.110 0.465 0.948 0.820–1.095
rs8104483 0.267 0.271 0.755 0.977 0.842–1.133 0.469 0.945 0.811–1.101
rs17561351 0.055 0.053 0.762 1.047 0.779–1.407 0.485 1.114 0.822–1.510
rs2927466 0.238 0.233 0.802 1.020 0.874–1.191 0.701 1.031 0.881–1.206
rs12610605 0.169 0.166 0.820 1.021 0.855–1.218 0.833 0.979 0.807–1.188

B Danes
rs6859 0.389 0.436 0.013 0.8193 0.700–0.959 0.239 0.903 0.762–1.070

Listed are allele frequencies, allelic P-values, odds ratios and the 95% confidence intervals.
aMinor allele frequency, MAF; the definition of the minor allele is based on controls.
bAllelic P-values, PCCA; calculated with chi-squared (χ2)-test with one degree of freedom.
cOdds ratio for longevity, OR; based on the minor allele in controls.
d95% confidence interval, 95% C.I.; C.I. for the odds ratio.
eConditioned for rs2075650 (Immunochip) and rs4420638 for the Affymetrix data set (45, 46), respectively; conditioned for rs2075650 in the Danish.

Figure 3. The protein–protein interaction network with the 21 candidate genes and their top 13 interaction partners as input variables analyzed using the STRING

database. The top 13 interaction partners were selected based on the InterMine database. The colored edges represent the types of evidence used in the interaction

predictions by the STRING software: experimental evidence (dark pink), text mining evidence (light green), database evidence (light blue), protein homology evidence

(purple), and co-expression evidence (black). The 21 candidate genes are indicated by bold circles.



Human Molecular Genetics, 2020, Vol. 29, No. 7 1161

Figure 4. The 21 candidate genes clustered according to their functions and/or associations with diseases or other phenotypes.

relevance, and (iii) if there was at least one mQTL-SNP within
50 kb of the CpG site. It is especially the combination of all
three parameters in conjunction with non-genetic factors that
provides an influence on longevity, which otherwise would
not have been detectable when considering the effect of the
SNPs alone (as seen in the negative allelic associations of
the eight tested SNPs). Unfortunately, the currently available
methods (e.g. (58)) to determine the direction of causality (e.g.
SNP—> methylation—> expression changes) did not allow a
robust and valid analysis of our data because of the limited
sample size.

All the candidate genes, except LOC100128398, were
hypomethylated with advanced age. However, the effects on
gene expression were rather diverse: hypomethylation was
associated with higher gene expression levels in the LLI for 10
of the 21 loci, and with lower gene expression for the remaining
10 genes. LOC100128398, the only hypermethylated locus with
aging, showed a negative correlation between methylation
and gene expression and therefore, the LLI exhibited lower
expression levels. Interestingly, in previous aging studies, hyper-
methylation was generally, though not exclusively, linked to
lower gene expression. Hypomethylation, in contrast, had more
diverse effects on gene expression, in line with our results (29).

Most of the candidates meeting our criteria have previously
been reported in humans or model organisms in the context
of longevity/lifespan (CNN3, PVRL2), neurophysiology (ADCY4,
CNN3, MCF2L, PVRL2, SMAD3, ZNF385D), metabolism (ADCY4,
FADS2, SMAD3), cancer (e.g. ARHGAP22, BACH2, CUEDC1, ERCC1,
ETS2, LATS1, LCP2, SMAD3, SUN2, TMBIM6, TMEM220, UNC5B),
immune system/immunity (BACH2, LCP2, PVRL2) or lifestyle fac-
tors (smoking, ZNF385D). The remaining genes have either very
diverse functions or are not well characterized yet (Table 1, Fig. 4,
for more information incl. references, please refer to Supplemen-
tary Table 9).

Our in-depth analysis taking into account potential protein–
protein interactions indicated that all gene products of our can-
didates may further interact with proteins involved in neuronal
health (interaction partners like, e.g. APP, NTRK1, and NEDD4)

or cancer (e.g. SRC, JUN, and YAP1; Fig. 3, Supplementary Tables
11 and 12). Interestingly, all our candidates are expressed in both
blood and brain (EMBL-EBI Expression Atlas; www.ebi.ac.uk/gxa).
This supports the potential involvement of our candidate genes
in age-related conditions. It is tempting to speculate that our
findings reflect the phenotype of the LLI, who, in this study, did
not show overt signs of cognitive decline or cancer at the time of
recruitment.

Notably, PVRL2 mapped to three mQTLs in our study and
lies in very close proximity to APOE and TOMM40 on chromo-
some 19q (Fig. 5), both of which are negatively associated with
longevity (46) and positively with Alzheimer’s disease (AD) (59,
60). SNP alleles in PVRL2 have also been previously reported in
the context of longevity (47) and AD (59, 60); however, both the
results from our Immunochip and from the Danish longevity
sample (Table 2) indicate that the reported associations may
mainly be driven by APOE and TOMM40, respectively. It needs
to be clarified in future studies, if PVRL2 represents a gene that
influences longevity via allelic variation and/or methylation.
What remains apparent is the accumulation of aging and/or
longevity loci on chromosome 19q. In addition to APOE, TOMM40,
and PVRL2, also the candidate gene ERCC1 is located nearby.
We observed correlations on both the methylation and the gene
expression levels (Supplementary Fig. 6, Supplementary Table
14) between some of these genes, which supports their func-
tional connection. Overall, the region on chromosome 19 might
represent a longevity hub (similar to what has been proposed
recently for chromosome 6; (61)) that is influenced by both
genetic and epigenetic factors.

Furthermore, we investigated in our study if genetic variants
that have already been associated with human longevity are
also correlated with methylation changes. For this purpose, we
selected the APOE status (defined by the two SNPs rs429358 and
rs7412 (30)) and the two FOXO3 SNPs rs4946935 and rs12206094
(31); however, we could not detect any association with nearby
CpG sites. Therefore, in whole blood, the selected genetic vari-
ants do not function as mQTLs, at least not within our self-
set boundary of a 50 kb distance to any CpG site. This result

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa033#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa033#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa033#supplementary-data
www.ebi.ac.uk/gxa
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa033#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa033#supplementary-data
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Figure 5. Genomic locations of PVRL2, TOMM40, APOE and ERCC1 with some adjacent genes on chromosome 19q.

was not entirely surprising since it had been shown before
that variation in APOE influences DNA methylation in some
brain tissues (frontal cortex, temporal cortex, pons), but not in
peripheral blood (62).

Our approach of linking differentially methylated sites with
SNP data and gene expression yielded 21 new candidate genes
for human aging/longevity. mQTLs represent heritable regions of
DNA methylation, with a potential vulnerability to environmen-
tal factors. These regions are characterized by a higher stability
over time and have already been proposed to be involved in the
regulation of longevity (63). Indeed, a recent longitudinal study
on Swedish twins showed that age-related methylation changes
are fairly persistent and genetically controlled (64). However,
further longitudinal studies are now needed to elucidate when
during an individual’s lifespan the methylation changes occur
and what the functional implications are.

The DMSs observed in the LLI mapped to a large extent to
genes implicated in cancer and neurodegeneration. We hypoth-
esize that the methylation and associated gene expression
changes observed in this study are overall advantageous for the
LLI, considering their good physical and cognitive health status
at the time of recruitment. The pattern observed for LATS1 (Fig. 2;
see also Results) is a good example. LATS1 is a tumor suppressor
gene (Supplementary Table 9) and low expression levels have
previously been associated with faster cancer progression (65).
Our methylation data indicated a linear loss of DNA methylation
with aging at the respective CpG site in LATS1 (especially in the
age range from 26 to ∼ 70 years); however, with a clear plateau in
the elderly. Since the correlation between LATS1 methylation and
gene expression was positive (higher methylation associated
with higher gene expression), the LLI might benefit from a
better preservation of gene expression levels. Accordingly,
the methylation changes may help prevent or postpone
diseases like cancer and facilitate overall survival into very
old age.

Materials and Methods
Study cohorts

This study comprised two independent cohorts from Germany,
one for a discovery and one for a replication stage, with a total
of 267 whole blood samples that were collected with the support
of the biobank PopGen (30). In the discovery sample (n = 125
individuals), we screened for DMSs using ‘extreme’ groups,
i.e. LLIs who exceeded 90 years of age (n = 53, age range: 91–
104 years) and younger control individuals (n = 72, age range: 20–
53 years). For this set of samples, RNA-seq-based transcriptome
and SNP genotyping data were available (14). For the replication,
we recruited 142 individuals who represented a broad age
range (26–102 years). This approach allowed us to trace the
changes in methylation levels across different age groups. LLI
were only included in the study if they did not show any overt
signs of cognitive decline at the time of recruitment. All 267
participants signed a written informed consent. Approval for

the study was received from the Ethics Committee of Kiel
University. The demographics of the two study cohorts are
shown in Figure 1. All German samples and information on
their corresponding phenotypes were obtained from the PopGen
Biobank (Schleswig-Holstein, Germany). They can be accessed
through a Material Data Access Form at http://www.uksh.de/
p2n/ Information+for+Researchers.html.

The Danish cases (n = 678, age range: 90.0–102.5 years) used
for the replication of the rs6859-longevity-association consisted
of participants drawn from the following five nation-wide sur-
veys collected at the University of Southern Denmark: the Study
of Danish Old Sibs (DOS), the 1905 Birth Cohort Study, the 1911–
12 Birth Cohort Study, the Longitudinal Study of Danish Cen-
tenarians, and the Longitudinal Study of Ageing Danish Twins
(LSADT) (66–68). From DOS and LSADT, one individual from each
sib-ship or twin pair was randomly selected among participants
that had reached an age of at least 91 years for DOS, and 90 years
for LSADT. From the 1905 Birth Cohort Study, participants with
a minimum age of 96 years were considered. The Danish con-
trols (n = 738, age range: 55.9–79.9 years) consisted of individuals
recruited by the Danish Twin Registry (68). Surviving participants
were revisited from 2008 to 2011, when the blood samples for
DNA extraction were collected. To ensure a control sample of
unrelated individuals, only one twin from each twin pair was
included. Collection and use of biological material and survey
information were approved by the Regional Scientific Ethical
Committees for Southern Denmark, and the study was approved
by the Danish Data Protection Agency.

Reduced representation bisulfite sequencing

We generated genome-wide single CpG resolution methylation
data for all 267 study participants using an optimized RRBS
protocol (69, 70). Genomic DNA was extracted from EDTA whole
blood using the AutoPure LS instrument and accessories (Qia-
gen GmbH, Hilden, Germany) according to the manufacturer’s
instructions. For RRBS, 100 ng of extracted DNA were digested for
12 h at 37◦C with 20 units of MspI (R0106L; New England Biolabs,
Frankfurt am Main, Germany) in 30 μL of 1 × NEB buffer 2. Fill-
in and A-tailing were performed by adding Klenow fragment
(M0212L; New England Biolabs, Frankfurt am Main, Germany)
and dNTP mix (10 mM dATP, 1 mM dCTP, 1 mM dGTP). After
ligation to methylated Illumina TruSeq LT v2 adaptors using
Quick Ligase (M2200L; New England Biolabs, Frankfurt am Main,
Germany), the libraries were size-selected by performing a 0.75×
clean-up with AMPure XP beads (A63881; Beckman Coulter, Brea,
USA). On average six libraries were pooled in equal amounts
based on qPCR data and bisulfite converted using the EZ DNA
Methylation Direct Kit (D5020; Zymo Research, Irvine, CA, USA)
with the following changes to the manufacturer’s protocol: con-
version reagent was used at 0.9 × concentration, incubation
was performed for 20 cycles of 1 min at 95◦C, 10 min at 60◦C
and desulphonation time was extended to 30 min. Bisulfite-
converted libraries were enriched for 17 cycles using PfuTurbo
Cx Hotstart DNA Polymerase (600 412; Agilent Technologies, Inc.,

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa033#supplementary-data
http://www.uksh.de/p2n/
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Santa Clara, CA, USA). After a 2 × AMPure XP clean-up, quality
control was performed by a Qubit dsDNA HS (Q32854; Thermo
Fisher Scientific Inc., Waltham, MA, USA) and Experion DNA 1 k
assay (700–7107; Bio-Rad Laboratories, Inc., Hercules, CA, USA).
All RRBS libraries were sequenced on the Illumina HiSeq 2000
platform using the 50-bp single-read setup.

RRBS data processing and analysis

Base calls provided by the Illumina Realtime Analysis software
were converted into BAM files using Illumina2bam (https://
github.com/wtsi-npg/illumina2bam) and subsequently demul-
tiplexed using BamIndexDecoder from the same package.
Initial quality control was performed with the FastQC soft-
ware (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). All bioinformatic analyses were done relative to the
hg19/GRCh37 assembly of the human genome. RRBS reads
were aligned with BSMAP/RRBSMAP (71). Preprocessing of the
sequenced reads (i.e. quality trimming, adapter removal) was
done with Trimmomatic (72), and DNA methylation calling
was conducted using a custom script, following a previously
described method (73, 74).

Sample identity was verified by comparing predicted sex
based on the DNA methylation data to annotated sex for each
individual in the two cohorts. Sex was predicted using the pro-
portion of gonosomal reads that map to the Y chromosome. CpG
sites were removed when they had a common SNP (MAF > 0.05
in the European samples of the 1000 Genomes Project) (75) or
tandem repeats (based on UCSC repeats from Tandem Repeats
Finder) (76), or were located on the X or Y chromosome. Fur-
thermore, CpG sites with a total coverage >105 or <5 for more
than 50% of the samples were excluded. Methylation ratios at
the remaining sites were set to missing if coverage was smaller
than five reads.

CpG sites were annotated with regard to the location of
CGIs, genes and regulatory information. CGI definitions were
downloaded from UCSC (ftp://hgdownload.cse.ucsc.edu/golde
nPath/hg19/database/cpgIslandExt.txt.gz). As in the Bioconduc-
tor package methylSig (77), CGI shores were defined as regions
outside CGIs but within 2000 bp of any CGI. CGI shelves were
defined as regions within 2000 bp from a CGI shore. Information
about genes including transcript, introns, exons, 3’-UTR and 5’-
UTR was extracted from Bioconductor packages Homo.sapiens
and TxDb.Hsapiens.UCSC.hg19.knownGene. Promoters were
defined as regions 1000 bp upstream of a transcription starting
site according to the definition in methylSig. Regulatory
information including enhancers and transcription factor
binding sites was downloaded from Ensembl build 78 (ftp://
ftp.ensembl.org/pub/release-78/regulation/homo_sapiens/Regu
latoryFeatures_MultiCell.gff.gz). Chromosomal locations were
mapped from genome build hg38 to hg19 using the liftOver
function in the Bioconductor package rtracklayer (78).

For both study cohorts, site-based differential methylation
analysis was performed using the beta regression model imple-
mented in BiSeq (79) with sex as covariate. We selected this
statistical approach since the beta distribution is an appropriate
distribution for modeling methylation values that are restricted
between 0 and 1. In the discovery sample, methylation values
were compared between LLI and control individuals, whereas
age was used as a continuous covariate in the replication sample.
P-values were adjusted for multiple testing using the Benjamini–
Hochberg procedure (80). To check for potential confounding, a
sensitivity analysis was performed using beta regression adjust-
ing for both sex and the first principal component.

We tested whether the observed number of replicated CpG
sites (adjusted P-value < 0.05 in the validation cohort and same
direction of effect) was different from the null hypothesis using a
permutation test with 10 000 repetitions. To preserve correlation
between neighboring CpG sites, we used a circular permutation
scheme as described (81). CpG sites were placed on a ‘circular
genome’ according to their genomic location and the P-values
and corresponding effect sizes of the differential methylation
analysis in the validation cohort were permuted by rotation with
respect to the locations of the sites.

Differentially methylated regions (DMRs) were defined sep-
arately for hypo- and hypermethylated DMSs in a two-stage
process. First, regions with at least three CpS sites were iden-
tified of which at least 50% were required to be DMSs. Second,
overlapping regions were combined using the reduce function
in the Bioconductor package GenomicRanges (82).

Generation of SNP genotype and transcriptome data in
the discovery sample

For the discovery sample, we had already published genotyping
data for about 700 000 SNPs (HumanOmniExpress BeadChip;
Illumina, Inc., San Diego, CA, USA) as well as RNAseq-based
transcriptome data (14). We removed SNPs with MAF < 5%, a
call rate < 95%, and Hardy–Weinberg P-value < 0.0001. Finally,
we had methylation and genotype (587 716 SNPs) data for 121
individuals, and methylation and transcriptome data for 125
individuals, respectively.

Methylation quantitative trait loci analysis in the
discovery sample

We analyzed associations between common genetic variants
and methylation levels in the discovery cohort. If fewer than five
individuals were homozygous for the minor allele, we combined
the homozygous minor allele and heterozygous genotype into
one group. We tested mQTL associations between CpG sites
that were differently methylated in both study cohorts and
SNPs with a maximal distance of 50 kb to the CpG sites using
beta regression with an additive coding of the genotypes. P-
values were adjusted for multiple testing using the Benjamini-
Hochberg procedure.

Correlation analysis between CpG methylation sites
and gene expression in the discovery sample

Only those CpG sites that were differentially methylated in
both study cohorts were considered for correlation analysis with
gene expression data from the discovery sample. We further
removed genes on alternate representations of chromosomes
and with more than 50% zero counts. For gene names with
several genomic locations, we used the location with the largest
total count. We correlated cis-CpG sites and gene expression
pairs, where cis refers to the CpG sites that were located within
the gene body or promoter. Spearman’s rank correlation was
used to assess the correlation between methylation levels and
gene expression. P-values were corrected for multiple testing
using the Benjamini–Hochberg method.

APOE and FOXO3 genotyping and mQTL
association testing

Known longevity-associated SNPs in the APOE locus (rs429358,
rs7412; together defining the 3 APOE alleles (30)) and the FOXO3

https://github.com/wtsi-npg/illumina2bam
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cpgIslandExt.txt.gz
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cpgIslandExt.txt.gz
ftp://ftp.ensembl.org/pub/release-78/regulation/homo_sapiens/RegulatoryFeatures_MultiCell.gff.gz
ftp://ftp.ensembl.org/pub/release-78/regulation/homo_sapiens/RegulatoryFeatures_MultiCell.gff.gz
ftp://ftp.ensembl.org/pub/release-78/regulation/homo_sapiens/RegulatoryFeatures_MultiCell.gff.gz
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gene (rs12206094, rs4946935 (31)) were genotyped in both study
cohorts using TaqMan technology (Thermo Fisher Scientific Ger-
many BV & Co. KG, Braunschweig, Germany). For our analysis, we
used a binary coding with ε4 as one allele and any other allele as
the second allele. We tested mQTL associations with CpG sites
within 50 kb around each SNP using the same approach as for
the general mQTL analysis (see previous subsection).

In silico data exploration

By combining our methylation results with the genotyping and
transcriptome data, we defined a list of 21 potential candi-
date longevity genes (Table 1). Hereof, a candidate gene must
(i) exhibit age-associated DMSs (consistent in our two study
cohorts), (ii) show methylation-associated gene expression, and
(iii) contain at least one mQTL-SNP within 50 kb of the CpG
site. Interaction analysis of the candidate genes was then per-
formed with InterMine (www.humanmine.org; (43); accessed
August 20, 2018), and an interaction network was generated
with the STRING software (44) using the 21 candidate genes
and their top 13 potential interaction partners suggested by
InterMine (43) as input variables. mQTL-SNPs were looked up
in the NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas/; accessed
July 10, 2018). Expression patterns were evaluated using the
EMBL-EBI Expression Atlas (www.ebi.ac.uk/gxa; accessed August
20, 2018).

For eight of the 24 mQTL-SNPs, genotypes were available
in our published German case-control data sets (45, 46). These
SNPs were investigated for a longevity-association using logistic
regression with sex as covariate.

Since variants in the PVRL2 gene have previously been asso-
ciated with longevity (47), all SNPs in the PVRL2 region were
extracted from the Ensembl database (83). The 10 SNPs present
in our data sets (45, 46) were subjected to association testing as
described above.

For the replication of the rs6859-longevity-association in
the Danish, for the cases, data on rs6859 and rs2075650 was
extracted from quality controlled Illumina HumanOmniExpress
Array (Illumina San Diego, CA, USA) genotype data. Quality
control included filtering of SNPs on genotype call rate < 95%,
HWE P < 10−4, and MAF < 1%, and individuals on sample call
rate < 95%, relatedness and gender mismatch. For controls,
data on rs6859 and rs2075650 was extracted from quality
controlled genotype data created using the Illumina Infinium
PsychArray (Illumina San Diego, CA, USA). Quality control
included filtering SNPs on genotype call rate < 98%, HWE
P < 10−6, and MAF = 0, and individuals on sample call rate < 99%,
relatedness and gender mismatch. After merging of data
from cases and controls, fulfillment of the Hardy-Weinberg
equilibrium (P > 0.05) was confirmed for both SNPs. Association
analysis was performed in Plink, where logistic regression was
used to assess the association between case/control status and
the rs6859 genotype. Sex was included as a covariate, and the
condition-option in Plink was included to perform the analysis
conditioned on rs2075650.

Supplementary Material
Supplementary Material is available at HMG Online.
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