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Abstract: Eosinophils are complex granulocytes with the capacity to react upon diverse stimuli due
to their numerous and variable surface receptors, which allows them to respond in very different
manners. Traditionally believed to be only part of parasitic and allergic/asthmatic immune responses,
as scientific studies arise, the paradigm about these cells is continuously changing, adding layers of
complexity to their roles in homeostasis and disease. Developing principally in the bone marrow
by the action of IL-5 and granulocyte macrophage colony-stimulating factor GM-CSF, eosinophils
migrate from the blood to very different organs, performing multiple functions in tissue homeostasis
as in the gastrointestinal tract, thymus, uterus, mammary glands, liver, and skeletal muscle. In organs
such as the lungs and gastrointestinal tract, eosinophils are able to act as immune regulatory cells and
also to perform direct actions against parasites, and bacteria, where novel mechanisms of immune
defense as extracellular DNA traps are key factors. Besides, eosinophils, are of importance in an
effective response against viral pathogens by their nuclease enzymatic activity and have been lately
described as involved in severe acute respiratory syndrome coronavirus SARS-CoV-2 immunity. The
pleiotropic role of eosinophils is sustained because eosinophils can be also detrimental to human
physiology, for example, in diseases like allergies, asthma, and eosinophilic esophagitis, where
exosomes can be significant pathophysiologic units. These eosinophilic pathologies, require specific
treatments by eosinophils control, such as new monoclonal antibodies like mepolizumab, reslizumab,
and benralizumab. In this review, we describe the roles of eosinophils as effectors and regulatory
cells and their involvement in pathological disorders and treatment.
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1. Introduction

The term eosinophil was coined in 1879 by Paul Ehrlich to describe cells in the blood
that could be easily identified when stained by the dye eosin. Although eosinophils are
largely evolutionarily conserved, suggesting important physiological functions, their pre-
cise role is not well understood. Eosinophils have been traditionally recognized as cytotoxic
effector cells though recent studies have challenged this simplistic view of eosinophils
and their function and have led to a better understanding of the role of these cells as
immunomodulators and actors in the metabolic homeostasis.

Similarly, recent developments have allowed a more nuanced view of how eosinophils
contribute to the pathogenesis of different diseases, including allergic rhinitis, asthma
eosinophilic chronic rhinosinusitis, esophagitis, atopic dermatitis, myopathies, and hypere-
osinophilic syndrome.

All this makes eosinophils an attractive target for therapeutic interventions in an
expanding number of clinical areas. Given the availability of new eosinophil-targeted
depletion therapies, there is renewed interest in understanding eosinophil function. Hence,
profound knowledge of these cells is required. In this review, we explore multiple classical
and novel biological aspects of eosinophils.
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2. Unraveling the Complex Biology of Eosinophils: From Development to Traffic

Eosinophils were probably observed for the first time by Wharton-Jones in 1846 [1],
although as previously said, it was not until later in 1879 when eosin dye was established
for the identification of these cells [2]. Eosinophils can be easily differentiated from other
cells, such as neutrophils and basophils, based on their morphology and brightly brick-red
appearance when stained with hematoxylin and eosin [3].

Commonly, eosinophils are a kind of white blood cells, measuring 10–20 µm in
diameter, with a bilobed nucleus [4] (Figures 1 and 2). In homeostatic situations, they
circulate in the bloodstream ranging from 0 to 500 eosinophils per microliter [5]. These
cells have a very active metabolism, and they are characterized by numerous intracellular
secretory granules contained in the cytoplasm, which store the majority of cationic granule
proteins and a variety of cytokines, chemokines, and growth factors, and from which they
are mobilized and released in response to cell activation [6].

Figure 1. Eosinophils development and migration. Eosinophils develop mainly in the bone marrow from stem cells turning
into eosinophil progenitors (EoP) expressing CD34 by the action of transcription factors (GATA-1, C/EBPα, C/EBPε, IRF8
and PU.1). By IL-5, IL-3 and granulocyte macrophage colony-stimulating factor (GM-CSF) interaction over their specific
receptors (IL-5R, IL-3R and GM-CSFR) eosinophils turn into final state through the effect of the transcription factors GATA-1,
GATA-2, C/EBPα, Helios, Aiolos and XBP1, and flow into the blood system, being maintained by IL-5 and GM-CSF. From
blood, eosinophils transmigrate the vessels, first by performing adhesion by interaction of P-Selectin Ligand (PSGL) with the
vascular P-Selectin, and secondly, interacting with the blood vessel molecules vascular cell adhesion molecule 1 (VCAM-1)
and intercellular adhesion molecule 1 (ICAM-1) using their integrins (α4 and β2 respectively), allowing the rolling and
extravasation of eosinophils attracted to the lung epithelium due to the combined action of eotaxin-1 (CCL11), eotaxin-2
(CCL24) and eotaxin-3 (CCL26) towards the eosinophilic CC-chemokine receptors-3 (CCR3) receptor. The migration is also
sustained by IL-5 secretion produced in type 2 innate lymphoid cells (ILC2s). Both ILC2s and eosinophils themselves are
activated by epithelial alarmins as IL-33, thymic stromal lymphopoietin (TSLP) and IL-25, inducing eosinophil degranulation
of eosinophil cationic protein (ECP), major basic proteins (MBP) and eosinophil-derived neurotoxin (EDN), which produce
epithelial remodeling.
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Figure 2. Eosinophil granules and mechanisms of action. Eosinophils have on their surface diverse receptors including
chemokine receptors (CCRs, CXCRs . . . ), lipid mediators’ receptors (CRTH2, LTB4R) or cytokine receptors (IL5Rα, IL-3R
and GM-CSFR). These receptors alongside adhesion molecules as integrins α4 and β2 allow eosinophils to migrate and
react against very variable stimulus. Eosinophil responses are performed thanks to their granule content. First, enzymatic
content as ECP, MBP and EDN are secreted from the specific granules by piecemeal degranulation (mediated by sombrero
vesicle transport) allowing viral clearance by their ribonuclease activity and the reaction against secondary parasitic
infections. Besides, eosinophils kill bacteria by release of their DNA content, from the nucleus or the mitochondria, forming
extracellular DNA traps with bound enzymes. Alongside the DNA traps, sometimes Charcot-Leyden Crystals are released.
Finally, eosinophils secrete exosomes from multivesicular bodies fusing to the cell membrane, which are involved in
epithelial damage.

The most peculiar characteristic of eosinophils is in the presence of specific granules,
also known as secondary granules, which consist of a dense crystalline core, a unique
feature of eosinophils, embedded in a matrix and surrounded by a membrane [7]. These
granules contain a large number of mediators that are capable of inducing inflammation
and/or tissue damage, predominantly cationic (basic) proteins. Major basic proteins are
located in the core: MBP-1, encoded by PRG2; and MBP2, a homolog of MBP-1 which has
been described as being less cationic and for being strictly eosinophilic specific (as MBP-1 is
also present in basophils and mast cells) [8], being both proteins involved in asthma patho-
genesis; while the matrix contains eosinophil cationic protein (ECP, encoded by RNASE3),
eosinophil peroxidase (EPX, encoded by EPX), and eosinophil-derived neurotoxin (EDN,
encoded by RNASE2) with roles in airway remodeling in asthma [9] (Figures 1 and 2).
Moreover, it is well documented that proteolytic processing of granule cationic proteins
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during eosinophil cell maturation, from bone marrow progenitors, is required both for spe-
cific granule formation [10]. Indeed, granule formation is a fundamental event in eosinophil
development as shown in a report where the combined loss of MBP and EPX causes dis-
ruption of eosinophilopoiesis; and another study showing that proteolytic processing of
granule proteins is required for eosinophil survival and granule formation [11].

Besides their specific granules, Charcot-Leyden crystal protein (a member of the
carbohydrate-binding family of galectin-10) is another type of eosinophil content, charac-
terized for forming extracellular hexagonal bipyramidal crystals, which exhibit lysophos-
pholipase activity and have been identified as a hallmark of eosinophil involvement in
allergic inflammation [12]. Finally, other types of secreted builds have been identified
in eosinophils, such as lipid bodies are particularly important due to their involvement
in the production of eicosanoids, including cysteinyl leukotrienes, prostaglandins, and
thromboxane [13]; or exosomes, extracellular vesicles that have been described as involved
in asthma pathogenesis [14] (Figure 2).

Prior to circulation and recruitment to the tissue eosinophils, like all other myeloid
blood cell lineages, are produced and developed in the bone marrow from multipotent
hematopoietic stem cells, which creates a population of eosinophil lineage–committed
progenitor cells, termed EoPs, which are capable of terminally differentiating into ma-
ture eosinophils (Eos) (Figure 1) [15]. In humans, EoPs are identified by surface expres-
sion of CD34, CD38, and interleukin (IL) 5 (IL-5) receptor alpha (IL-5Rα, or CD125) [16].
Eosinophils can also develop from CD34+ progenitor cells found outside the bone marrow,
blood, and notably in lung tissue [17,18]. Likewise, increased numbers of CD34+/IL-5Rα+

eosinophil precursors have also been identified in the bronchial mucosa of asthmatics
compared to non-asthmatic control individuals [19] (Figures 1 and 2).

Eosinophil lineage commitment is regulated by the ordered interaction of multiple
transcription factors, including GATA factors (GATA-1 and GATA-2), ETS-family mem-
ber PU.1, the CCAAT-enhancing binding protein (C/EBP) family members C/EBPα and
C/EBPε, the two nuclear factors friend of GATA-1 (FOG-1; Zfpm1) and interferon regu-
latory factor 8 (IRF8; Irf8 or Icsbp), X-box binding protein 1 (XBP1), and members of the
Ikaros zinc finger (IkZF) family, Helios (Ikzf2) and Aiolos (Ikzf3) [20,21]. GATA-1 is essen-
tial and plays a crucial role in eosinophil differentiation, as disruption of the GATA-1 gene
in mice results in a strain completely devoid of eosinophils. Recent studies highlighted
the importance of this transcription factor, key in defining a population of progenitors
named erythroid/megakaryocyte-primed multipotent progenitors (EMPP) which are able
to generate megakaryocytes, erythroid cells, basophils/mast cells, and eosinophils, are
CD131+ cells and deriving from CD38–135- progenitors [22–24].

In addition to regulation by transcription factors, cytokines support the development
of the eosinophil lineage, and indeed, the action of IL-5, IL-3, and granulocyte-macrophage
colony-stimulating factor (GM-CSF) is vital in eosinophils development—[25,26]. IL-5 is
the most specific cytokine for eosinophils and acts at multiple functional levels and time
points during their lifespan [27]. In addition to promoting proliferation, differentiation,
and maturation of IL-5Rα-expressing eosinophil precursors in the bone marrow, IL-5
contributes to the release of eosinophils into the bloodstream and the activation and
survival of mature eosinophils on the periphery [28]. Although the most common source
of IL-5 is Type 2 helper CD4+ T (Th2) cells, mast cells and group 2 innate lymphoid cells
(ILC2s) are able to release IL-5 [29]. IL-5 acts synergistically with eotaxins, a variety of
C-C motif chemokine ligands (CCLs), which are selective chemotactic factors that mediate
the migration and recruitment of these cells into the body tissues and their activation [30].
Eotaxin (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26), among others, bind to CC-
chemokine receptors-3 (CCR3) on eosinophil cell membranes and can induce chemotaxis
in allergic inflammation [31] (Figure 1). 5-oxo 6, 8, 11, 14-eicosatetraenoic acid (5-oxo-ETE)
is another eosinophil chemoattractant [32].

Although less specific than IL-5 for eosinophils, the cytokines IL-3 and (GM-CSF) are
also implicated in the activation and survival of tissue eosinophils through induction of
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Bcl-xL expression [33,34]. Moreover, epithelial cell-derived alarmins, IL-25 (also known as
IL-17E), IL-33, and (TSLP) promote eosinophilopoiesis by increasing IL-5 production by
ILC2 cells [35]. Interestingly, the action of these alarmins over eosinophilopoiesis is not
only indirect due to IL-5 secretion by ILC2s, as IL-33 has been described to precede and
promote the signaling by IL-5 in the process of eosinophil development [36]. Finally, it
is worth noting the role of molecules such as microRNAs in the regulation of eosinophil
thymic stromal lymphopoietin ontogeny [37].

Like all leukocytes, the eosinophil displays a wide range of surface molecules and re-
ceptors, which enables them to integrate with the innate and adaptive immune systems [38].
The heterodimeric receptor for interleukin 5 (IL-5) is thought to be the most important
cytokine receptor expressed by eosinophils because IL-5 has a central and predominant role
in all aspects of eosinophil development, activation, and survival [30,39]. Other cell surface
structures are relatively specific for eosinophils, such as CC-chemokine receptor 3 (CCR3),
which mediates eosinophil chemotaxis in response to eotaxins, and sialic acid-binding
immunoglobulin-like lectin 8 (Siglec-8), whose engagement induces apoptosis to activated
eosinophils [40,41] (Figure 1). Epidermal growth factor (EGF) module containing mucin-
like hormone-like receptor 1 (EMR1) is a surface receptor that is completely unique to the
eosinophil [42]. The vast array of receptors present in these granulocytes makes them very
versatile cells, with a capacity to react to stimulus, co-stimulate cells in antigen presentation,
and migrate to the tissues at physiological and pathological states [43]. Besides, this kind of
cell is also equipped with certain intracellular receptors that regulate function (e.g., some
toll-like receptors and the glucocorticoid receptor) likewise with a wide number of surface
receptors [43–45].

Eosinophils are released into the peripheral blood (they have an approximate half-life
of 8 to 18 h) in a phenotypically mature state before migrating to tissues where they can
persist for at least several weeks under homeostatic conditions [46]. In healthy individuals,
most eosinophils are found throughout the gastrointestinal (GI) tract, with the notable
exception of the esophagus, and in other locations such as the mammary gland, uterus,
thymus, bone marrow, and adipose tissue [47]. Extravasation out of circulation and into
tissue sites is dependent on the function of integrins and their counter-ligands on activated
endothelium and eosinophil-selective chemoattractants such as the eotaxins, mentioned
above [5]. In the same way, under inflammatory conditions such as allergic inflammation
and asthma, an array of chemotactic proteins participate in eosinophil recruitment to the
site of inflammation [48]. Notably, the eotaxin chemokines are markedly induced by IL-13,
providing a synergistic mechanism by which Th2 cells and ILC2s, coproducing IL-5 and
IL-13, regulate tissue eosinophilia [49].

3. The Eosinophil Immune Response Mechanisms against Diverse Pathogens

Eosinophils are highly versatile immune cells that are capable of acting against a wide
arrange of pathogens, from those as small ones as a virus [50], to bigger ones such as
parasites [51] by performing mechanisms of action including cytokine synthesis, classical
degranulation, and release of exosomes and eosinophil extracellular traps (EETs) tools,
being classical and recently discovered methods utilized by these resourceful innate cells.

3.1. Revisiting Eosinophil’s Role against Parasites

Traditionally, eosinophils were believed to be only involved in parasitic infections and
allergic diseases [1]. Indeed, several studies have proved that eosinophils and their granule
content, combined with their ability to secrete cytokines are major effectors in host defense
against parasitic infections, being able to control both in vitro as in vivo, diverse parasites
including Trichinella or Nippostrongylus, mainly acting during the secondary infection by
antibody-dependent cellular cytotoxicity (ADCC) and release of granule enzymes [52].
Undoubtedly, one of the major features of eosinophils is their granules and their enzymatic
content [7]. The release of the eosinophil granules occurs through exocytosis, cytolysis, or
via piecemeal degranulation. The first mechanism described was compound exocytosis,
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a widely described anti-parasitic mechanism displayed by eosinophils in vitro, which
consists of the release of their full granule content by the fusion of the granule membrane
with the cell membrane [53]. Conversely, piecemeal degranulation allows granule secretion
selectively by a cytoplasmic membrane-vesicular tubular network, that transport the
granules until they fuse to the cell membrane [54], in a process where CD63 is involved [55],
with an important role in the secretion of MBP-1 against Schistosoma mansoni infection,
proving that eosinophil are able to perform defense mechanisms against parasitic and
infections, both by “classical” pathways and by more recently described processes [56]
(Figure 2). It is of note that this type of degranulation is implicated in the sorting and
secretion of specific cytokines in response to stimuli, as it occurs for IL-4 containing
granules, which also bear IL-4R, and which are mobilized in response to eotaxin-1 [57]. The
presence of specific receptors on the granule surfaces gives them the capacity to release
specific molecules, as observed for the secretion of ECP upon granule stimulation with
leukotriene (LT)C4, -D4, and -E4 of the granule receptors cysteinyl(cys)-LT1R, cysLT2R, and
purinergic P2Y12R [58]. The importance of correct ECP secretion against pathogens lies
in several studies of RNASE3 (ECP) single nucleotide polymorphisms (SNPs), as studies
have described an association between SNPs of RNASE3 that abolish its cytotoxic activity,
with the appearance of severe or cerebral malaria (caused by Plasmodium falciparum) in
populations of Ghana and Senegal respectively [59,60].

Nevertheless, regarding eosinophil’s role in defense against parasites, novel studies
have determined that the initial dogma that associated eosinophil with parasitic clearance is
more complicated than expected at the beginning. The development of this knowledge was
linked to the use of eosinophil ablated mouse models, showing that eosinophils depletion
does not alter the immune responses against primary infection with several parasites [52].
Surprisingly, eosinophils can even promote parasitic survival, as Trichinella spiralis larvae
die in the skeletal muscle of mice without eosinophils, correlating with higher IFN-γ and
lower IL-4. Eosinophil’s promotion of larvae survival is mediated by IL-10 secretion, which
activates IL-10+ dendritic cells and CD4+ IL-10+ T lymphocytes that inhibit inducible nitric
oxide (NO) synthase, protecting parasites [61,62]. These results emphasize a very complex
interplay between eosinophils and parasites, which depend on the moment and place
of infection.

3.2. Eosinophil Responses against Bacteria, the Involvement of Extracellular Traps

Finally, the last method of eosinophil degranulation is cytolysis, which consists of
cellular death involving the necroptotic pathway [63], releasing their intact granules, which
can be reactive to leukotrienes [58], due to the presence of specific receptors coupled
to G proteins (CPGRs), or recognizing specific cytokines (IFN-γ) [64]. The eosinophils’
cytolysis process includes the release of genetic material alongside the granules [65]; this
DNA forms nets, also known as eosinophil extracellular traps (EETs). Interestingly, not
all the EETs are released through cell lysis, as authors have shown that eosinophils are
able to expel their mitochondrial DNA without dying, when facing bacteria or fungi, since
MBP and ECP are bound to these nets, highlighting that eosinophils do not only act in
parasitic infections and that they are able to act against other pathogens like bacteria
and fungi [66–68] (Figure 2). Indeed, it has been extensively described that the common
mechanisms performed against parasites such as enzyme and cytokine release are also
functional against a wide array of different pathogens. This kind of eosinophilic responses
have been mainly described in the gut and in the lungs, showing that in vitro, eosinophils
can react against diverse kind of bacteria including Escherichia coli, Clostridium perfringens
and Streptococcus pneumoniae [69,70] and demonstrating their antibacterial role in vivo
against Pseudomonas aeruginosa or Staphylococcus aureus releasing their granule content
as ECP [71,72].

Although EETs are effective against pathogens, the eosinophil DNA traps have also
been associated with diseases where eosinophils are involved such as allergic asthma. In
this pathology, DNA traps were detected by bronchial biopsy [73] from severe eosinophilic
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asthma patients, in which EETs were highly secreted compared to non-severe asthma;
moreover, their levels correlated with activation of eosinophils and airway epithelial
cells [74]. Another example is active eosinophilic esophagitis samples where these nets
presented the association with Charcot-Leyden crystals [75]. Indeed, Charcot-Leyden
crystals have been related to eosinophil extracellular trap cell death (ETosis). In a study by
Ueki et al., the authors described that during ETosis, cytoplasmic galectin-10 is released
alongside granules and extracellular traps, contributing to the formation of Charcot-Leyden
crystals extracellularly [12] (Figure 2). Recently, it has even been described that galectin-10
is mainly stored free in the cytoplasm of the eosinophils, not being stored in granules nor
secreted by regular degranulation [76]. Nevertheless, controversy persists whether the
eosinophil remains alive or dies after releasing the DNA trap, and it seems that the most
important factor for either to happen is the nature and timing of the stimulus [66,77].

3.3. Eosinophilic Responses against Virus and Current Knowledge about Eosinophils Involvement
in COVID-19

In the last years, eosinophils have also been described as good effectors against viral
pathogens, a process that is mainly related to the presence of nucleases such as ECP or
EDN as their granule content [78] (Figure 2). This antiviral activity of eosinophils has been
detected against the respiratory syncytial virus (RSV) in a mechanism involving toll-like
receptor (TLR)7/MyD88 signaling and ribonucleases release [79]. Nonetheless, eosinophil
nucleases are not the only weapon against viruses, as these cells promote immunity against
influenza A virus by inducing CD8+ T cell proliferation and activation [80], and face human
parainfluenza virus by secreting nitric oxide through TLR7 activation [81]. Furthermore,
eosinophils recruited by Aspergillus fumigatus protect against lethal pneumovirus infection,
although these responses might depend on airway location, as exposure to Alternaria
alternata at the nasal mucosa recruited inflammatory eosinophils with no antiviral effect
against influenza infection [50,82]. More exhaustive reviews on eosinophils role against
the virus can be found elsewhere [83,84] (Table 1).

Due to the current COVID-19 pandemic state, it is of interest to describe how eosino-
phils affect and are affected by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Symptomatic COVID-19 patients were characterized by blood eosinophilia which
was associated with lower C-reactive protein (CRP) and better disease outcome, indicating
a protective role for eosinophils in the first stages of COVID-19 [85]. Pre-existing or
developed eosinophilia (up to the seventh day of infection) was associated with decreased
mortality and better prognosis [86–88]. The protective role of eosinophils depends on
race/ethnicity, as white and Hispanic patients with a high eosinophil percentage have
higher odds of survival [89].

Conversely, having eosinopenia, or developing it in the first compasses of the disease
is an indicator of poor prognosis, and the worst disease course, and eosinophil and neu-
trophil counts can be used to diagnose COVID-19 [90]. This association of eosinopenia with
fever and pneumonia was confirmed in a young and middle-aged cohort [91] and in an
elderly cohort, predicting intensive care unit (ICU) risk and serum cytokine increase [92].
Eosinophil/lymphocyte counts are reduced in patients with longer hospitalizations and
worse outcomes [93,94], while recovery of cell levels is associated with symptoms of ame-
lioration [95]. On the other hand, if eosinopenia is sustained and worsened by progressive
eosinophil reduction, it causes higher mortality, tissue damage, and a higher presence of
coagulation disorder markers [96]. Nevertheless, in severe COVID-19 eosinophil counts,
eotaxin-2 and IL-5 blood levels are higher compared to moderate disease [97]. There are
certain signs of type 2 activation, in ICU admitted COVID-19 patients, including eosinophil
degranulation [98] (Table 1). Eosinophils involved in the acute phase of COVID-19 are lung
resident CD62L+ able to respond to interferon (IFN)-γ, causing eosinophilic expansion
preceding lung hyperinflammation, which might be related to the most severe cases [99].
These results highlight that higher eosinophil levels at the beginning of infection are good
for prognosis, while a slow reduction of eosinophils after clearance is required, as these
might otherwise cause tissue damage in the late phase [100].
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Eosinophils and other blood cell subsets could be COVID-19 biomarkers, as higher
serum cytokine levels and decreased lymphocyte counts are associated with worse COVID-
19 [101]. Eosinopenia or the ratio between eosinophil and polymorphonuclear neutrophils
can be used to diagnose COVID-19 on the day of SARS-CoV-2 infection suspicion when
polymerase chain reaction (PCR) kits are limited [102–105]. Nevertheless, differences in
eosinophil counts are very small and heterogeneous [106], and current techniques such
as RT-PCR or viral antigens/SARS-CoV-2 antibodies detection are still the Gold Standard
techniques in COVID-19 diagnosis [107].

With respect to eosinophilic disorders and COVID-19, the presence of T2 asthma was
not a risk factor for worse COVID-19 as compared to other comorbidities as COPD [86,108].
This absence of association may be due to a reduction in epithelial angiotensin-converting
enzyme 2 (ACE2, (the receptor used by SARS-CoV-2 for infection) in atopic dermatitis and
allergic asthmatic children and adults [109]. Indeed, asthmatics with higher epithelial ACE2
expression were characterized by lower blood eosinophil counts and higher expression of
IFN-related genes [110] (Table 1).

Nowadays, biological treatments in asthma including omalizumab, mepolizumab,
benralizumab, dupilumab, and reslizumab target against T2 specific molecules. Asthmatics
treated with biological drugs did not present a higher risk of SARS-CoV-2 infection or
worse COVID-19 [111–113], only being one study showing poor disease course but the
authors were unclear if it is due to biological treatment, comorbidities, severe asthma, or a
combination [114]. Even benralizumab (causes eosinopenia targeting IL-5R) case reports
have shown no disease worsening [115–117].

Table 1. Eosinophils and COVID-19.

Main Findings Number of Subjects References

Blood eosinophilia is associated with good
COVID-19 prognosis

314 [85]
951 [86]
9644 [87]

10 [88]
95 [95]

4252 [89]

Higher eosinophil counts in severe COVID-19
135 [97]
15 [98]
37 [99]

T2 diseases are not associated to COVID-19 189 [108]

Blood eosinopenia is a marker of worst COVID-19
disease course

324 [90]
95 [101]
37 [91]
96 [93]

121 [105]
40 [94]

190 [96]
294 [118]
94 [92]

429 [102]
174 [103]
37 [104]

ACE2 receptor is reduced in asthma 365 [109]
66 [110]

Biological asthma treatment does not affect COVID-19
676 [111]
545 [112]
1504 [113]
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Table 1. Cont.

Main Findings Number of Subjects References

Biological asthma treatment does not affect COVID-19
2 cases [115]
2 cases [116]
1 case [117]

Biological asthma treatment might have worst
COVID-19 outcome 634 [114]

ACE2 = Angiotensin-converting enzyme 2. COVID-19 = Coronavirus disease 2019.

First vaccines created against the SARS-CoV pandemic (2002) were characterized
by eosinophil accumulation and T2 activation in the lung, caused by SARS-CoV-1 virus
nucleocapsid protein of coadjuvant alum [119,120]. This could be prevented by the ad-
dition of delta inulin adjuvants or TLR agonists, skewing immune responses toward T1,
inducing immunization without recruiting eosinophils [121,122]. Although past vaccines
induced eosinophil disease, current SARS-CoV-2 vaccines have not caused lung eosinophil
infiltration and accumulation to date [123].

3.4. Exosomes from Eosinophils Contribute to Asthma Hallmarks

The role of eosinophils in the orchestration of immune responses was identified in
past years. During immune responses, the transmission of signals and molecules between
cells is the key to the correct management of the host defenses. Regarding these events,
the release of exosomes, a mechanism of eosinophil communication, has been described
in recent years. Exosomes are extracellular vesicles (EVs) formed by budding of the cell
membrane encapsulating proteins and nucleic acid, such as microRNAs (miRNAs). Ex-
osomes are characterized by the presence of surface receptors, which allow them to fuse
to receptor cells and modify their functions [124]. In 2015, we described for the first time
that eosinophils can secrete functional exosomes in response to IFN-γ. These exosomes
contain eosinophilic proteins such as ECP, eosinophil peroxidase (EPO), and MBP, and
the secretion of exosomes is higher in eosinophils from asthmatics compared to healthy
individuals [14]. These results were later confirmed, revealing that eosinophils secrete EVs
expressing CD63 and CD9 in response to other stimuli such as CCL11 (eotaxin-1) and tumor
necrosis factor alpha (TNF-α) [125]. Functionally, exosomes from asthmatic eosinophils
autocrinally activate eosinophils, augmenting eosinophils adhesion and migration capaci-
ties through upregulation of intercellular adhesion molecule 1 (ICAM1) and integrin α2,
and increasing their release of reactive oxygen species (ROS) and NO [126]. Moreover,
eosinophil-derived exosomes, participate in asthmatic airway remodeling (Figure 2), as it
was shown that when derived from asthmatics’ eosinophils, exosomes cause small airway
epithelial cell injury through apoptosis, increasing remodeling and inflammation-related
gene expression (POSTN, CCL26, and TNF), while also elevating bronchial smooth muscle
cell proliferation mediated by pERK, and augmenting expression of CCR3 and VEGF in
these cells [127]. In addition to exosome function in asthma pathophysiology, the miRNA
content in eosinophils can be used as a biomarker for asthma diagnosis, expanding their
role in this disease [128,129]. Although these events have only been described in asthma,
it is possible that eosinophils secrete exosomes also during immune responses against
diverse pathogens, but until now, no data has been published regarding this matter, which
opens a new promising field for scientific research and discovery.

4. Role of Eosinophils as Effector Cells in Homeostasis

The role of eosinophils in health can be studied, either by mouse knockout models or
in patients receiving an eosinophil-depleting biologic drug [130]. Eosinophils are found
in several tissues and organs and are maintained by type 2 innate lymphoid cells (ILC2s)
through IL-5 in response to circadian rhythms and intake [131]. The gastrointestinal tract
and the esophagus have a high eosinophil presence, regulating mucosal IgA secretion in
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mice by plasma cells through IL-1β production [132] (Figure 3). Eosinophils are required to
control Th17 cell numbers by IL-1R antagonist expression and in Treg differentiation [133]
by transforming growth factor (TGF)-β1 and retinoic acid levels [134,135]. Nonetheless,
when eosinophils are accumulated in the esophagus, they can cause eosinophilic esophagi-
tis, where eosinophils are recruited in response to IL-13, CCL26/eotaxin-3, and TGF-β,
causing inflammation [136].

Figure 3. Homeostatic and pathophysiological functions of eosinophils. Eosinophils’ versatility makes these cells be able to
both regulate homeostasis of diverse organs including, control of mammary duct branching, induction of protection against
Chlamydia trachomatis in the uterus, clearance of apoptotic thymocytes in the thymus and tissue repair and regeneration of
both skeletal muscle and liver by IL-4. In other organs, eosinophils have been described to perform detrimental roles, such
as inducing eosinophilic pancreatitis, being involved in antibody dependent cellular toxicity and self-antigen presentation
and immune modulation in the context of autoimmune diseases, while also causing inflammation and epithelial damage
in chronic rhinosinusitis. In some organs, eosinophils perform both homeostatic as prejudicial roles, as in the lungs
where eosinophils perform pathogen antigen presentation and immune modulation but being also related to asthma
pathophysiology. In the adipose tissue, eosinophils participate in beige fat development and glucose tolerance, while
inducing also inflammation. In the gastrointestinal tract they regulate mucosal IgA and Th17 cell numbers, inducing
eosinophilic esophagitis when over cumulated, and finally, in tumors they both activate tumor rejection by T cells, and
induces tissue damage.

Eosinophils have been involved in mammary duct branching, both in puberty and in
pregnancy, releasing signaling molecules such as CCL6, amphiregulin, and TGF-β [137,138].
Interestingly, these cells are recruited into the uterus during the estrus cycle and are impor-
tant in preventing Chlamydia trachomatis infections by increasing endometrial stromal cell
proliferation through IL-4 [139]. Metabolism of mouse models are regulated by eosinophils,
being these cells required in glucose tolerance, beige fat development, and inflammation in
adipose tissue through M2 macrophage polarization by IL-4 secretion [140–143]. Metabolic
cold-induced processes also involve eosinophil recruitment to adipose tissue by CCL11 for
thermoregulation [144].

Eosinophils’ role in immune regulation starts at the thymus, where they control the
clearance of apoptotic thymocytes [145] (Figure 3). In the lungs, eosinophils act as antigen-
presenting cells, expressing major histocompatibility complex (MHC) class II and the
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costimulatory proteins CD40, CD80, and CD86, activating Th2 responses [146]. In addition,
eosinophils induce class switching of B cells into IgA and affect T cell recruitment to the
lungs [144,147]. Indeed, eosinophils are highly versatile, producing T2 cytokines such as IL-
4, IL-13 [49], T1 cytokines including IFN-γ and IL-8 [148,149], and such immunoregulatory
cytokines as IL-10, TGF-β, and GM-CSF [150,151].

Finally, eosinophils participate in skeletal muscle repair, releasing IL4 and IL-13,
which are required for activation of fibrocyte–adipocyte progenitors (FAPs) in myogenic
differentiation [152]. IL-4 secretion induces liver regeneration, activating the proliferation
of hepatocytes expressing IL-4Rα [153]. Eosinophils also regulate inflammation and repair
in colon injury, upregulating s100a8 and s100a9 gene expression [154], and regulating
angiogenesis by osteopontin [155]. Nevertheless, overactivated repair by eosinophils may
cause an increase in tissue remodeling as in eosinophilic esophagitis and asthma [156].

All these reports demonstrate that eosinophils are very versatile cells, with roles both
as innate immune cells, perpetrating defense against diverse pathogens, and as regulators
of the correct physiology of several organs, being able to very different processes such as
tissue repair and metabolism. It is worth noting that the majority of the homeostatic roles
of eosinophils have been demonstrated in mice models, and translation into humans is
pending validation.

5. Heterogeneity and Phenotypes of Eosinophils

Eosinophils are found in several organs, where they exert several actions in normal
tissue processes and are also recruited to other areas during morphogenesis and repair.
Recent studies have demonstrated the existence of eosinophil subsets and plasticity in
different tissue contexts [157], supporting the hypothesis that points to the importance of
the microenvironment in modulating the activity of eosinophils is defended.

Emerging data have revealed functional and phenotypic heterogeneity, classifying
them in two main subtypes of eosinophils based on their maturation stage, organ location,
and the morphogenetic activity of tissues [15,158]. The identification of heterogeneous
phenotypes in homeostasis at baseline and within the context of eosinophilic diseases is an
important current focus in eosinophil biology.

The local environment is capable of inducing changes in eosinophil phenotype de-
pending on specific functions of the tissue. Moreover, differences in surface markers and
function between eosinophils in a steady-state and under inflammatory conditions have
been described [43]. Following the classification of Abdala-Valencia et al. [157], eosinophils
are divided into four groups: immature eosinophils as precursors (EoP); tissue-resident
eosinophils in quiescent tissues (steady-state eosinophils); eosinophils situated in an inter-
stitial location in innate defense, acute inflammatory and transient morphogenetic contexts
(Type 1); and finally, eosinophils found in epithelial contexts associated with an atypical
type 2 immune response (Type 2). So, this division could be used to form two major groups:
homeostatic eosinophils (hEos) and inflammatory eosinophils (iEos). Indeed, it has been
observed that there are differences in the recruitment process of eosinophils to different
tissues in relation to the degree of dependence on IL-5 [159]; this recruitment may be
independent, partly dependent, or totally dependent on local IL-5 production in the lungs,
gastrointestinal tract, or adipose tissue, respectively.

Homeostatic eosinophils usually express CCR3, Siglec-F, and CD125 [160]. In some
locations, eosinophils may express CD11b, F4/80, CD69, and CD44 [132,134,140,161].
Moreover, most eosinophils of tissues express CD11c [132].

Specifically, eosinophils from the lung are of a special tissue phenotype because
they share features with peripheral blood eosinophils [162]. In humans, lung-resident
eosinophils express Siglec−8+CD62LhiIL-3Rlow in humans [163]. In contrast, recruited
inflammatory eosinophils express Siglec−8+CD62LlowIL-3Rhi, suggesting that homeostatic
and inflammatory eosinophils probably exert different functions and effects. Moreover,
unlike classical actions performed by eosinophils in an inflammatory lung disease such
as asthma, lung-resident homeostatic eosinophils express several genes related to the
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maintenance of immune homeostasis in the lung [164], suggesting an ability of these
homeostatic lung-resident eosinophils to regulate the type 2 immune response in this organ.

This heterogeneity in phenotypes and functions depending on maturation, location,
and microenvironment highlights the difficulty in understanding the mechanistic pro-
cess and pathologies in which eosinophils are implicated and the related complexity of
therapeutic approaches.

6. Eosinophil Immune Dysfunction (EID)

In previous sections we have demonstrated the multifaceted functions that eosinophils
develop in multiple scenarios, performing an important role in host protection against
fungi, bacteria, and viruses, through multiple mechanisms and properties [84]. Moreover,
their capabilities as effector cells and as antigen-presenting cells allow them to participate
in multiple situations and promote several facets of homeostasis mechanisms. Likewise,
tissue eosinophils exert functions in steady-state development [157,159], in the regeneration
of different tissues [153,165], and in metabolic and immune homeostasis [134,140,166].

However, although multiple functions in homeostasis, protection against several
pathogens, and regulation are performed by eosinophils, this cell population is associated
with a myriad of inflammatory diseases [6] characterized by a relevant implication of
eosinophils in its idiosyncrasy, recently named eosinophil immune dysfunctions (EID),
which comprise diseases of several systems and organs with different symptoms and origin.

Before analyzing the role of eosinophils in diseases with different etiology, it is impor-
tant to clarify the concept of eosinophilia. Usually, the degree of eosinophilia is defined
based on the absolute eosinophil count in peripheral blood. Thus, eosinophilia is defined as
greater than 500 eosinophils/mm3 and further categorized as mild (500–1500 cells/mm3),
moderate (1500–5000 cells/mm3), or severe (>5000 cells/mm3) [167]. In relation to tissue
eosinophilia, thresholds to consider a pathologic increase are not well defined. These
thresholds differ from those of diseases involving the esophagus or stomach, and further
studies are needed to determine which threshold defines disease in each area of the gas-
trointestinal tract [168]. In the case of esophageal eosinophilia, an eosinophil counts greater
than or equal to 15 eosinophils per high-power field is the minimum for eosinophilic
esophagitis diagnosis in addition to other features [169]. However, eosinophilia is defined
as having 30 eosinophils per high-power field (eos/hpf) in at least 5 high-power fields in
the stomach [170]. In addition, the clinical context must be taken into account.

6.1. Eosinophilic Gastrointestinal Diseases (EGID) and Pancreatic Disorders

Eosinophilic gastrointestinal diseases (EGID) refer to any pathology involving accu-
mulation of an abnormal number of eosinophils in a specific region of the gastrointestinal
tract, encompassing several entities such as eosinophilic esophagitis (EoE), eosinophilic
gastritis, and eosinophilic colitis.

Since it was first described, the prevalence of EoE has increased in both adults and chil-
dren [171]. EoE is a chronic immune-mediated esophageal disease characterized clinically
by symptoms of esophageal dysfunction and histologically by eosinophil-predominant
inflammation restricted to the esophagus, with biopsies of this mucosa showing 15 or more
eos/hpf [169]. This disease has a complex etiology due to both genetic and environmental
factors and has a strong heritability, high sibling recurrence risk, and early-life environ-
mental exposure [172]. Although eosinophils are thought to be one of the key effector
cells implicated in this and other EGIDs, eosinophils are not the selectively targeted cell
by treatments, as a restrictive diet and the use of proton pump inhibitors are the most
common therapeutic approach; however, reduction of eosinophil number is accompanied
by an improvement in symptoms and endoscopic findings, reduction of histological disease
severity and type 2 inflammation. More studies need to be performed to clarify the exact
role of eosinophil in EGID, although new knowledge about microRNAs (miRNAs) linked
to the evolution of this disease has been published elsewhere [173].
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In the case of pancreatic disease, chronic pancreatitis (CP) is an inflammatory dis-
order caused by alcohol consumption, blockage of the pancreatic duct, and trypsinogen
mutation [174]. In the initiation and progression of this disease, granulocyte infiltration
is essential to pancreatic inflammation [175]. Neutrophils are the main cell type impli-
cated in this disorder; however, several cases have been reported defining the presence
of eosinophils in patients with pancreatitis, naming this entity as Eosinophilic Pancreati-
tis [176,177] (Figure 3), being a rarely occurring disorder.

6.2. Eosinophilia in Myeloid Neoplasms and Solid Tumors

Eosinophils’ role in human tumor biology is an active field of research [178]. The
presence of eosinophils has different implications depending on the type of tumor process.
Multiple studies have demonstrated that eosinophils have contradictory effects. Their
number and location determined by histology correlate with beneficial effects like in
breast or colon cancer and melanoma; detrimental effects such as in the case of Hodgkin
lymphoma; or unknown significance like in pancreatic cancer [130]. So, in some cases,
eosinophil degranulation infiltrating the tumor is crucial to tumor rejection and activation
of CD8 T cells and consequent tumor killing [179,180]; alternatively, eosinophils may
participate directly in tumor killing after activation by IL-33 [181]. Contrary to these results,
in acute lymphoblastic leukemia, eosinophils are associated with organ and tissue damage
and bad prognosis [182,183]. All these data on the presence of eosinophils in human cancer
raise the possibility that the eosinophils are an important effector cell in malignancies
(Figure 3).

6.3. Eosinophilia in Autoimmune Diseases

Due to their versatility, eosinophils could perform an important role as effector cells
in many autoimmune diseases [184]. Their cytotoxic granules could contribute to tissue
damage, and their capacity for antibody-dependent cellular cytotoxicity (ADCC) against
mammalian targets enables them to kill host cells bound by antibodies [185] (Figure 3).
Activated eosinophils are frequently found in areas of fibrogenesis, evidencing a potential
profibrotic role that may add to tissue dysfunction in autoimmune diseases [186]. Moreover,
eosinophils can modulate the immune response through activation of other elements of the
immune response; so, eosinophils may contribute to the initiation of autoimmune responses
by presenting antigens to T cells, activating them [187]. The variety and heterogeneity of
their granules containing numerous cytokines may affect T cell differentiation. Otherwise,
eosinophils could contribute to liver and muscle regeneration [152,153]. So, the effect of
eosinophils likely depends on context and disease.

There are multiple autoimmune diseases in which a potential role of eosinophils has been
demonstrated such as bullous pemphigoid, eosinophilic granulomatosis with polyangiitis
(Churg-Strauss syndrome), Crohn’s disease, and primary biliary cirrhosis [188–191].

6.4. Eosinophilia in Lung Diseases: Atopic Diseases, Asthma and Interstitial Lung Disease

Atopic diseases comprise several pathologies with an allergic etiology, such as atopic
dermatitis, chronic rhinosinusitis, and asthma.

Atopic dermatitis is the most common form of eosinophilic skin disease. In the early
stages, it is characterized by atopic eczema and a T2 immune response that leads to itchiness
and skin damage. However, in severe stages of this disease, the impact of treatment on
eosinophilia has not shown a clinical impact [192], suggesting that the role of other immune
cells such as lymphocytes and mast cells is more crucial to the progression of this disease.

Chronic rhinosinusitis presents two phenotypes based on the absence (CRSsNP)
or presence (CRSwNP) of nasal polyps [193]. Most patients in the former group are
pathophysiologically characterized by accumulation and prolonged survival of eosinophils
in sino-nasal mucosa [194], releasing pro-inflammatory mediators that could be partially
responsible for the clinical consequences of chronic inflammation (Figure 3) [195].
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Chronic rhinosinusitis is one of the most important and frequent comorbidities of
severe asthma and is associated with worse outcomes and an increased risk of exacerbations
in this type of patient [196,197]. The main histopathologic features of asthma, which
include chronic eosinophilic inflammation, epithelial damage of the airway, and basement
membrane thickening are shared and observed in sinonasal biopsies from patients with
refractory CRSwNP [198].

Allergic asthma is characterized by inflammation of the airway causing airway ob-
struction, muscle hypertrophy, mucus secretion, and bronchial hyperresponsiveness, where
eosinophils play a significant role in damaging the epithelium and orchestrating an immune
response [199]. This link between eosinophils and asthma pathogenesis was first described
in 1988 [200]. In eosinophilic asthma, called asthma T2, the number of eosinophils in
the airways augment when the airway epithelium is exposed to an allergen or antigen,
triggering the activation of several immunological cascades that drive eosinophils to the
airways due to Th2 cytokines and chemoattractants [201] (Figures 1, 3 and 4).

Figure 4. Role of eosinophils in the pathophysiology of asthma and biological drugs for its control. Eosinophils are crucial
to the development and maintenance of the asthmatic symptoms, being attracted to the airways by two non-exclusive
mechanisms. The first one involves activation of the innate immunity, where type 2 innate lymphoid cells (ILC2s) are
activated by alarmins (IL-33, IL25 and TSLP) released after damage of airway epithelium and releasing Il-5, the main
chemoattractant and inductor of eosinophils activity. Alternatively, or simultaneously, allergens traverse the epithelium and
are recognized by dendritic cells and presented to T naïve helper cells (Th0), which are polarized to Th2 cells, secreting Il-4
and Il-13, stimulators of the release of allergen-specific IgE by B cells. IgE recognising the allergen is then able to induce
the production of histamine, leukotrienes and prostaglandins by mast cells, being these molecules involved in smooth
muscle hypertrophy and contraction. Besides, Th2 cells are also capable of releasing IL-5, which activates eosinophils in
an allergen-mediated mechanism. Eosinophils stimulated by IL-5 releasing IL-13 and lipid mediators which activate the
epithelium and induce mucus secretion. Also, eosinophils discharge exosomes, toxic proteins (ECP, MBP and EPO) and
other mediators as ROS and NO capable of inducing epithelial damage. Exosomes, IL-13 and other lipid mediators released
by eosinophils are also inductors of smooth muscle hypertrophy and contraction, highlighting the multiple-pathway
pathophysiological role developed by these cells. Hence, biological drugs are indeed treatment options for controlling
eosinophils adverse effects in asthma, such as mepolizumab and reslizumab which recognise IL-5 and block its binding over
eosinophils, and benralizumab, a monoclonal antibody that binds to IL-5R and induces antibody-dependent cell-mediated
cytotoxicity (ADCC) of natural killer (NK) cells over eosinophils.
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In recent years, several studies have demonstrated that eosinophils themselves and
the action through their exosomes (EVs that act as independent functional units and with
a relevant role in intercellular communication) take part in the asthmatic process. By de-
granulation of eosinophils, toxic proteins such as EDN, ECP, EPO, MBP, cytokine-mediated
activation (IL-5), and lipid mediators, such as cysteinyl leukotrienes (cysLTs) are released,
contributing to the development and maintenance of the eosinophilic inflammation in the
airways [202]. Cañas et al. [126], after defining the existence of exosomes produced by
eosinophils [14], demonstrated that exosomes generated by eosinophils from asthmatic
patients are able to promote eosinophil functions such as ROS or NO production, increasing
their adhesion capacity and redirecting eosinophil migration, thereby contributing to an
inflammatory response [126]. Moreover, the capacity of these asthmatic eosinophilic exo-
somes to contribute to the remodeling of structural components of the lungs and airways
during the asthma process was established [127] (Figures 2 and 3). So, eosinophils not only
promote their own capacity for survival by autocrine secretion of IL-5, GM-CSF, and IL-3,
explaining their survival at inflammatory sites [203,204]. This capacity also allows them to
remain in the target tissue and exert their effects over a prolonged period of time.

In asthma disease, eosinophil count in the airways has been determined as a biomarker
for this disease, and an increased eosinophil count in sputum is associated with poor
asthma control, and more frequent exacerbations [205]. In this line, in a study of patients
with intermittent or persistent eosinophilia in which sputum eosinophilia was measured
longitudinally in a clinical setting, it was observed that a reduction (3.4-fold or 4.3%) of
sputum eosinophilia predicted an improvement in asthma control whereas an increase
(1.8-fold or 3.5%) of this eosinophilia was associated with a deterioration of control [206].

Blood eosinophil count is also a surrogate biomarker for type 2 airway inflammation.
Several reports have shown that this parameter is capable of predicting severe asthma
exacerbations, as well as responsiveness to inhaled corticosteroids (ICS) or novel biologic
treatments for severe asthma, focused on IL-5 or eosinophils [207–209] (Figure 4). A
prospective study performed by Zeiger et al. [210] showed that a blood eosinophil count of
0.4 × 109/L or greater was associated with a 1.55-fold increased risk of having 2 or more
asthma exacerbations or asthma-related emergency department visits or hospitalizations
over a 1-year period in patients with severe uncontrolled asthma with 12 years of age
or older [210].

Interstitial lung disease (ILD) includes a large number of conditions that are character-
ized by inflammation or fibrosis of the pulmonary parenchyma [211]. ILD can occur due to
a number of specific causes or may be classified as idiopathic interstitial pneumonia (IIP), a
group of ILDs that lack a clear predisposing factor or underlying pathophysiology [212].
These diseases are characterized by an increased number of eosinophils in peripheral blood,
in lung tissue, in sputum, in bronchoalveolar lavage fluid (BALF), or in all of them [213].
Therefore, cell populations recovered with bronchoalveolar lavage (BAL) may be important
in predicting disease progression and response to therapy [214]. All these data bring to light
the clear relevance of eosinophils in multiple diseases of varying origin with a wide range
of symptoms in a highly complex scenario of relationships between different elements
implicated in the pathogenesis. Added to all this is the heterogeneity of eosinophils.

7. Treatments Focused on Eosinophils

As with other pathologies, the goal of the treatment of eosinophilic diseases is to
reduce the total eosinophil count and symptoms, achieving a clinical improvement and
preventing the progression of the disease (Table 2).

Traditionally, systemic glucocorticoid treatment has been considered the first-line
of therapeutic approach, though with the following exceptions: (1) eosinophilia due to
a secondary cause such as helminth infection, drug hypersensitivity, or neoplasm; (2)
patients with gene mutations in PDGFRA or PDGFRB in whom imatinib is the appropriate
treatment; and (3) overlap syndromes that may respond to topical glucocorticoid treatment
such as EGID [215]. As occurs in other leukocytes, corticoids cause apoptosis of eosinophils



Int. J. Mol. Sci. 2021, 22, 7075 16 of 28

and inhibit the release of cytokines implicated in eosinophil survival [216]. Theophylline
and antileukotrienes, both classical anti-asthmatic drugs, promote the death of eosinophils
due to their anti-inflammatory effects [217] just like conventional immunosuppressors such
as cyclophosphamide [218].

Table 2. Treatments to eosinophilic disorders.

Drug Disease Mechanism Ref.

Glucocorticoid Systemic inflammation
Apoptotic effects and inhibition of

cytokines implicated in
eosinophil survival

[216]

Theophylline Asthma Anti-inflammatory effects [217]
Antileukotrienes Asthma Anti-inflammatory effects [217]

Cyclophosphamide Lymphoma Immunosuppressor [218]

Alemtezumab Severe T cell neoplasms or
inflammatory diseases Anti-CD52 [218]

Levosimendan/destrosimendan Commonly used to heart failure Eosinophil proapoptotic effect
in vitro [219]

Bertilimumab Pemphigus Anti-eotaxin-1. Affect to
eosinophil recruitment [220]

Mepolizumab and reslizumab Uncontrolled severe asthma Anti-IL-5 [221–224]

Benralizumab Uncontrolled severe asthma

Anti-IL-5R. Inhibits the growth,
maturation, activation and survival of

eosinophils through an
antibody-dependent

cytotoxicity mechanism

[225,226]

Omalizumab Persistent severe allergic asthma Anti-IgE [227]

Dupilumab Moderate-to-severe
atopic dermatitis Anti-IL-13 [228,229]

Tezepelumab Severe asthma Anti-TSLP [230]

Biological treatments have emerged as promising therapeutic options in eosinophilic
disorders. Some of them, such as alemtuzumab (anti-CD52), are based on the use of antibod-
ies against surface molecules of eosinophils, although in this case therapy is more focused
on severe T cell neoplasms or inflammatory diseases [218]. In this line, other promising
strategies based upon the potentiation of eosinophil apoptosis are under research, includ-
ing target molecules such as sialic acid-binding immunoglobulin-like lectin 8 (Siglec-8),
although its expression in both regulatory and inflammatory eosinophils could jeopardize
its development [164]. Other molecules under development are factors linked to the con-
trol of the cell cycle and regulatory elements of the intracellular ionic balance [216,217]
such as calcium sensitizers, usually employed in heart failure and which, in vitro, exert
proapoptotic effects on eosinophils, such as levosimendan or dextrosimendan [219]. Alter-
native approaches are based on substances that affect eosinophil recruitment through the
mechanism of chemotaxis, such as anti-eotaxin-1 antibodies (bertilimumab), which have
shown promising results [220].

In the field of respiratory diseases, biological treatments associated with type 2 in-
flammation in which eosinophils play a crucial role have emerged in recent years with a
focus on the treatment of severe asthma. Eosinophils are one of the biomarkers of type 2
severe asthma phenotype [231], and like so, in other respiratory diseases such as chronic
obstructive pulmonary disease (COPD), could act as a biomarker to identify patients
with a particularly favorable response to inhaled corticosteroid/long-acting β-agonist
therapy [232].

There are multiple commercially available novel drugs or drugs under development
drugs that target eosinophils either directly or indirectly (Figure 4).

Mepolizumab and reslizumab are antibodies that target IL-5. Despite differences in
age thresholds between them, both are licensed for use as add-on therapy in patients with
uncontrolled asthma regardless of the use of medium or high dose of inhaled steroids;
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besides, these drugs are available for patients receiving or not oral corticosteroids who have
peripheral blood eosinophilia (current eosinophils > 150/mm3 or eosinophils > 300/mm3

once in the previous year in the case of mepolizumab and eosinophils > 400/mm3 for
the use of reslizumab). Both monoclonal antibodies prevent the binding of IL-5 to its
receptor (IL-5R), preventing signaling in eosinophils. This blocking of IL-5 activity causes
significant depletion of circulating eosinophils, reducing production, activation, and sur-
vival rate [221–223]. In the case of mepolizumab, its depletion effect on bronchial tissue
eosinophilia is less marked, with a median reduction of 55% [224].

Benralizumab is a humanized, afucossylated monoclonal antibody that targets the
α-chain of the IL-5 receptor (IL-5R) that is expressed by eosinophils and basophils. This
drug is licensed as an add-on therapy in uncontrolled asthma with high doses of inhaled
corticosteroids and with blood eosinophilia (eosinophils > 300/mmc) [225]. This drug
inhibits the growth, maturation, activation, and survival of eosinophils, also causing ADCC,
promoting eosinophil apoptosis through the delivery of pro-apoptotic factors [226].

Besides these anti-IL5 and anti-IL-5R drugs, other pharmaceutical options linked to
biology and functions of eosinophils do also exist [228].

With different targets, omalizumab and dupilumab are two monoclonal antibodies
used in asthmatic disease. IgE is the target of omalizumab. It was the first biologic therapy
to be licensed for asthma, and the only biologic therapy to target IgE. Moreover, this
anti-IgE humanized monoclonal antibody acts by significantly reducing the number of
plasmacytoid dendritic cells (pDCs), which increase during asthma exacerbations [227].

Dupilumab is a humanized monoclonal antibody, that binds to the α subunit of
IL-4 receptors. Its use is indicated in patients with moderate-to-severe asthma with a
Th2-high phenotype (FeNO > 25 ppb or peripheral blood eosinophils >150/µL) receiving
ICS and long-acting beta-agonists (LABA), with or without the need for oral corticos-
teroids [228,229].

Randomized clinical trials (RCTs) of severe eosinophilic asthma have demonstrated
that the use of these type 2-targeting biologics (omalizumab, mepolizumab, reslizumab,
benralizumab, and dupilumab) achieves a significant reduction in asthma exacerbations
and oral corticosteroid use, improving lung function [233,234].

Recent research is focused on proinflammatory mediators such as prostaglandins and
alarmins, including thymic stromal lymphopoietin (TSLP). Tezepelumab is a humanized
monoclonal antibody, which targets the previously mentioned TSLP. This cytokine acti-
vates type 2 innate lymphoid cells (ILC2) which are able to trigger T2 immune response
inflammation with an important role of eosinophils [230].

There is thus a vast arsenal of therapy approaches acting against eosinophils through
direct or indirect pathways with different recommendations and evidence varying with
disease and context.

One of the queries that arise with therapies that target eosinophils is whether this
removal of eosinophils has deleterious consequences. However, studies on the safety of
eosinophil-depleting drugs have not shown an increase of infection or neoplasia rate in
these patients, is only associated with improvement on asthma without any secondary
effects related [235]. Moreover, in subjects without eosinophils due to immunodeficiency or
IgG eosinophil precursor destruction, there is no data confirming any abnormality. This is
also observed in mouse models without eosinophils, characterized by normal health status
in laboratory conditions [236]. All these data raise the question about the importance of
these cells in physiological functions, emphasizing the redundancy of the immune system
responses. Indeed, eosinophils have been described as important in several biological
processes, but many of these studies were performed in mouse laboratory-controlled
models and perhaps cannot be fully extrapolated to humans. The absence of a phenotype
related to eosinophil depletion in humans suggests that eosinophils might not be essential
in healthy maintenance, being its functions rather supportive. This is a future challenge for
research in the eosinophil field.
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8. Conclusions

Knowledge about eosinophils has experienced an outburst in the last few years.
Recent advances have shown that they not only play a role in regulation in the context
of parasitic infestations, but also play an important role at the homeostatic level, and in
the development of type 2 diseases such as asthma or autoimmune pathologies, such as
Crohn’s disease.

In recent years, this growth has been almost exponential with the arrival of the
latest biological treatments that, directly or indirectly, target the eosinophil, revealing new
features of this granulocyte, while putting into test the most traditional points of view for
this granulocyte but also open questions about this intriguing cell.
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ACE2 Angiotensin-converting enzyme 2
ADCC Antibody-dependent cellular cytotoxicity
CCR3 CC-chemokine receptor 3
COPD Chronic obstructive pulmonary disease
cysLTR Cysteinyl leukotriene receptor
CP Chronic pancreatitis
CRSsNP Chronic rhinosinusitis without nasal polyps
CRSwNP Chronic rhinosinusitis with nasal polyps
CRTH2 Prostaglandin D2 receptor 2
DC Dendritic cell
DNA Deoxyribonucleic acid
ECP Eosinophil cationic protein
EDN Eosinophil derived neurotoxin
EETs Eosinophil extracellular traps
EGF Epidermal growth factor
EGID Eosinophilic gastrointestinal disease
EID Eosinophil immune dysfunction
EoE Eosinophilic esophagitis
EoP Eosinophil progenitors
Eos Eosinophils
EPX Eosinophil peroxidase
EVs Extracellular vesicles
FeNO Fraction of exhaled nitric oxide
GI Gastrointestinal
GM-CSF Granulocyte-macrophage colony stimulating factor
hEos Homeostatic eosinophils
hpf High-power field
ICAM1 Intercellular adhesion molecule 1
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ICS Inhaled corticosteroids
ICU Intensive care unit
iEos Inflammatory eosinophils
IFN Interferon
IL-5 Interleukin-5
ILC2 Type 2 innate lymphoid cells
LABA Long-acting beta agonists
MBP Major basic protein
MHC Major histocompatibility complex
miRNA MicroRNA
NO Nitric oxide
pDCs Plasmacytoid dendritic cells
PDGFR Platelet-derived growth factor receptor
RCTs Randomized clinical trials
RNA Ribonucleic acid
ROS Reactive oxygen species
RSV Respiratory syncytial virus
RT-PCR Reverse transcription polymerase chain reaction
RTC Randomized clinical trial
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
Siglec-8 Sialic acid-binding immunoglobulin-like lectin 8
SNPs Single nucleotide polymorphisms
TGF Transforming growth factor
TNF-α Tumor necrosis factor α
TLR Toll-like receptor
TSLP Thymic stromal lymphopoietin
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