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Abstract: Breast cancer is regarded as a heterogeneous and complicated disease that remains the prime
focus in the domain of public health concern. Next-generation sequencing technologies provided a new
perspective dimension to non-coding RNAs, which were initially considered to be transcriptional noise
or a product generated from erroneous transcription. Even though understanding of biological and
molecular functions of noncoding RNA remains enigmatic, researchers have established the pivotal
role of these RNAs in governing a plethora of biological phenomena that includes cancer-associated
cellular processes such as proliferation, invasion, migration, apoptosis, and stemness. In addition
to this, the transmission of microRNAs and long non-coding RNAs was identified as a source of
communication to breast cancer cells either locally or systemically. The present review provides
in-depth information with an aim at discovering the fundamental potential of non-coding RNAs,
by providing knowledge of biogenesis and functional roles of micro RNA and long non-coding
RNAs in breast cancer and breast cancer stem cells, as either oncogenic drivers or tumor suppressors.
Furthermore, non-coding RNAs and their potential role as diagnostic and therapeutic moieties have
also been summarized.

Keywords: breast cancer stem cells; biogenesis; long non-coding RNA; microRNA; targets

1. Introduction

Breast cancer (BC) is the most common form of cancer among women and accounts for 11.6% of
cancer incidences and 6.6% of cancer-associated deaths worldwide [1]. The high incidence and death
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rates in BC are linked to various factors, among which the most common being its heterogeneous
nature. The inter/intratumoral heterogeneity, usually affecting one anatomic site of the breast with
phenotypic and molecular diversity, plays a key role in its histology and staging [2,3]. Previously,
histological stratification of BC was based primarily on the expression status of hormonal receptors,
such as the estrogen receptor (ER), progesterone receptor (PR), and ERBB2 receptor (HER2) [4].
However, with advances in molecular analysis and gene expression profiling, further subtypes of BC,
including luminal ER positive (luminal A and luminal B), HER2 enriched and triple negative (basal
like) have been identified [5]. This molecular sub-classification has served as a guiding principle for
the utility of targeted therapies such as synthetic lethality using poly ADP ribose polymerase (PARP)
inhibitors HER2-targeted (e.g., Trastuzumab) and hormonal (e.g., Tamoxifen) therapies, leading to
better outcomes and management of BC [5]. Several organizations including the American Society of
Clinical Oncology (ASCO) and National Comprehensive Cancer Network (NCCN) have also issued
extensive recommendations and guidelines for implementation of molecular analysis as a tool for risk
stratification, treatment planning and management [6–8].

Currently, the individualized treatment strategy is based on various factors including tumor
size, morphology, grade, metastases, ER, PR and HER2 expression [9]. While detailed information
about these factors is critical for therapeutic management, identification and understanding of these
diagnostic/predictive markers will aid in implementing personalized treatment strategies. Therefore,
breakthrough data on transcriptional regulators of gene expression, known as “non-coding RNA” has
become a focus of research worldwide.

The transcriptome of most organisms is far more complex than originally imagined, as the vast
majority of genomic sequence is extensively transcribed into a diverse range of protein coding and
non-coding RNAs (ncRNAs) [10]. Surprisingly, out of 75% of the transcribed human genome, only about
2% represents the protein coding region [11]. Until recently, the majority of the transcriptome which
lacks coding potential was considered to be “Junk” or products of faulty aberrant splice events [11].
Considerable improvements in high-throughput technologies, such as RNA sequencing, have allowed
the identification of several previously unannotated non-protein coding transcription events in genomic
regions. The efforts for re-evaluating non-coding part of the human genome and re-classifying them
from “junk” to “non-junk” have been accomplished mainly through the Encyclopedia of DNA Elements
project (ENCODE) project and by using ab initio transcriptome assembly which provides unbiased
modality for lncRNA discovery which can pinpoint cancer- associated ncRNAs [12,13]. These projects
provided critical insights into the “junk” or “dark matter” of DNA being transcribed via complex
regulatory networks for the regulation of coding genes. Thus, the pinnacle of interest was shifted from
coding genes to transcripts as the fundamental units of the genome.

The classification of the non-coding part of the genome, known as ncRNAs, is based on their
length. Keeping the cutoff at 200 nucleotides’ length, the ncRNAs <200 nucleotides are designated as
short noncoding RNAs (sncRNAs). These include microRNA (miRNA), small interfering Ribonucleic
Acid (siRNA), piwi-interacting RNA (piRNA), small nucleolar RNAs (snoRNAs), small nuclear
RNA (snRNA), and tRNA-derived fragments (tRFs) [14]. The ncRNAs >200 nucleotides, known as
lncRNAs [15] include intronic, antisense, long intervening/intergenic noncoding RNAs (lincRNA),
competing endogenous RNA (ceRNA), etc. [16]. Both miRNAs and lncRNAs can control fundamental
cellular and biological processes via diverse mechanisms and have been associated with playing
key regulating roles in transcriptome by establishing networks and interactions. Since miRNAs
are considered to be negative regulators of gene expression, lncRNAs are also considered to be an
important regulator in different ways of gene expression including cross-talk with miRNA, sponging
the microRNA, and regulating their expression [17–19]. The expression and function of miRNAs and
lncRNAs are tightly regulated and conserved in development and physiological homeostasis. The role
of miRNAs and lncRNAs is critical and leads to the pathogenesis of various human diseases such as
cancer by dysregulation of human transcriptome [20].
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The miRNAs are small, 18–23 nucleotide long transcripts involved in gene regulation via
post-translational modifications [21]. The mechanism of action of miRNA involves interacting by
binding to the open reading frame or to the 3’ untranslated regions (3′ UTRs) of target genes, which
leads to repression of gene expression of the translating mRNA or mRNA degradation through
formation of functional complexes via activation of Argonaute (Ago) proteins which target the 3′

UTRs [22]. The biogenesis of miRNAs is shown in detail in Figure 1. Numerous studies documented
the role of miRNA in cancer progression. Oncogenic miRNAs are associated with regulation of
tumor suppressor genes and targeting of oncogenes thus promoting invasion, metastasis, and drug
resistance [23].
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Figure 1. Process of biogenesis of miRNAs in the nucleus, its transfer into cytoplasm and functions.

In addition to miRNAs, lncRNAs [24,25] were been reported for their functionally important
roles in cancers [16,26]. The biogenesis of lncRNA is a complex process with capping, splicing, and
polyadenylation [27,28]. The main mechanisms include cleavage by ribonuclease P (RNaseP) to
generate 3′ mature ends [29], the formation of snoRNA and snoRNP complex caps at the ends, and
finally special 5′- and 3′ end processing to convert it into a circular stable structure [30–32] (Figure 2).
Recently, unique sub-nuclear structures, known as “paraspeckles”, with protein-rich nuclear organelles
around a specific lncRNA scaffold, were identified during biogenesis [33]. They have been said to
stimulate gene regulation through sequestration of component proteins and RNAs, with subsequent
depletion in other compartments [34].
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The ENCODE project identified more than 28,000 unique lncRNAs, most of which are still not
properly annotated or identified [35]. Functional characterization of several of them is still a challenge
except in the case of some classically defined important lncRNAs which are well explored, such as X
inactive specific transcript (XIST; in X chromosome inactivation), oncogenic lncRNA HOX Transcript
Antisense Intergenic RNA (HOTAIR); in positional identity and telomerase RNA component (TERC; in
telomere elongation), ANRIL a lncRNA in molecular scaffold of chromatin-modifying complexes, decoy
RNAs such as GAS5 (growth arrest specific 5) and TERRA (telomeric repeat-containing RNA) [36,37].
A plethora of regulatory functions were unveiled in several lncRNAs which affects their cellular
functions associated with development and pathophysiology of diseases including several types of
cancer, neurological and cardiovascular conditions, and immunological and metabolic disorders [38–40].

Published data underpinned the roles played by miRNA and lncRNA in invasion and metastasis
in BC and Breast cancer stem cells (BCSCs). However, a detailed study on the interaction of ncRNA
with cancer stem cells (CSCs) and their effects on metastasis and recurrence has not yet been carried
out. Our present review aims to outline research studies that highlight the impact of miRNAs and
lncRNAs on tumor occurrence and progression in BC and BCSCs, while also underscoring the potential
role governed by ncRNAs as diagnostic and therapeutic moiety that may lay as future foundation in
development of newer strategies to prevent and overcome issues related to invasion and metastasis in
BC and BCSCs.

2. BCSCs and Their Regulation

CSC is a small population that exhibits characteristics of both cancer cells and stem cells including
self-renewal, differentiation, asymmetric/symmetric division, as well as alterations in their gene
expression. CSCs have the ability to seed tumors when transplanted into an animal host as well as give
rise to non-CSC bulk tumors in order to promote disease progression [41,42]. Therefore, BCSCs represent
a heterogeneous population of cancer cells that possess the ability to form transplantable tumors, tumor
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maintenance, progression, therapeutic resistance, and relapse [43]. Characterization of BCSC has shown
that they express a panel of markers depending on their source of derivation. For example, when isolated
from transgenic mouse models, BCSC tend to express CD133+, CD24+ Thy1+, CD29lo CD24+ CD61+,
Sca1+, CD24+ CD29+/CD49f+ whereas when isolated from cell lines, the main markers for identification
include MUC1+, Procr+/ESA+, CD49f+/DLL1hi/DNERhi, GD2+, CD44+/CD24−/lo/ANTXR1+, ABCG2+,
Lgr5hi, CD44+CD24-/loSSEA-3+ or ESAhiPROCRhiSSEA-3+, Nectin-4+ and CD70+ [44]. However, the
most widely used markers for identification are CD44/CD24 and ALDH1 [45]. It has been reported
that tumors expressing even a small number of cells with CD24−/CD44+ and ALDH1+ markers exhibit
an increased tumor-initiating capacity in NOD/SCID mice [46] indicating the significance of these two
distinct subtypes in BCSC characterization especially with respect to their location and proliferation
capability [45]. In BC, mesenchymal-epithelial transition (MET) CSCs bears higher ALDH expression
as well as higher proliferation rate is contrary to epithelial-mesenchymal transition (EMT) CSCs which
are enriched with CD44high/CD24- expression but with poor proliferation rate. However, aggressive
clinical behavior in tumor types is attributed to the high proportion of ALDH-expressing CSCs [45,47].

3. BCSCs and Tumor Microenvironment

The normal breast tissue is highly heterogeneous and has the unique capacity to
self-renew/regenerate, proliferate and differentiate into mature luminal and myoepithelial cells with the
help of mammary stem cells (MaSCs) that reside within the microenvironment [48,49]. The regulation
of these MaSCs is dependent upon the components of the microenvironment including blood vessels,
immune cells, signaling molecules, fibroblasts, and the extracellular matrix (ECM) [48,50,51]. Similarly,
in BC, the tumor microenvironment (TME), consisting of cancer-associated fibroblasts (CAFs), MSCs,
immune cells, immune-suppressive cells, endothelial cells, cytokines, growth factors, etc. are known to
play a critical role in the regulation and modulation of BCSCs thus facilitating therapeutic resistance,
metastasis, and progression [52].

The role of various components of the TME in BCSCs activity is documented in several
studies [53–55]. For example, CAFs within the microenvironment release several growth factors,
hormones like platelet-derived growth factor-BB, cytokines, and chemokines, such as CCL2, CCL7,
IL-6 and IL-8, that modulate CAFs and promote stemness and expansion of BCSC [55–59]. CAFs are
considered to be a central core component in the maintenance of CSC properties thereby promoting
stemness in BC cells [60–63]. Similar to CAFs, another important component of the tumor stroma that
plays a role in the expansion of BCSCs is MSCs [53]. Studies reported that MSCs regulate increased
production of CXCL7 and IL-6 via positive feedback mechanism that promotes BCSC self-renewal,
expansion as well as metastatic potential [64].

In addition to CAFs and MSCs, a variety of immune cells including T cells, macrophages, and T
regulatory cells (Tregs) also play a critical role in the modulation of TME to promote the expansion of
BCSCs [65]. In the past, several studies have reported that tumor-associated macrophages (TAMs) are
commonly involved in the expansion of BCSCs via the up-regulation of HAS2 (hyaluronan synthase)
and paracrine EGFR/STAT3/SOX-2 signaling pathway [66,67]. In addition to this, TAMs promote
the secretion of cytokines including IL-6, IL-8, GM-CSF, TNF-α and TGF-β that allows regulation,
maintenance, and proliferation of BCSCs [52,68].

4. Regulatory Pathways Associated with BCSC

The regulation of BCSCs is largely dependent on key signaling pathways including JAK/STAT,
Notch, Wnt, and Hedgehog [69–72]. The dysregulation of these pathways facilitate differentiation and
self-renewal of BCSCs leading to increased proliferation, invasion, and metastasis in cancers [69,73].

Accumulating evidence suggests that dysregulation of the JAK/STAT3 pathway is the common
mechanism involved in the maintenance/regulation of BCSCs [74,75]. In BC, the modulation of
TME via secretion of cytokines, growth/transcription factors including IL6/STAT3, NO/NOTCH,
Twist2 and hormones such as leptin facilitate activation/phosphorylation of JAK/STAT3 pathways
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leading to enhanced self-renewal and differentiation capacity in BCSCs [76–78]. In addition to
this, studies have reported that the activation of JAK/STAT3-Regulated Fatty Acid β-Oxidation I
(STAT3-CPTIB-FAO) and EGFR/STAT3/SOX-2 paracrine signaling also play an important role in
conferring drug resistance -associated characteristics to BCSCs thus leading to treatment failures [66,79].
Another signaling pathway that is known to be involved in the maintenance and self-renewal of
BCSCs is the Notch signaling pathway [69,70]. This pathway is activated via binding of Notch
receptors to Notch ligands thus leading to translocation of the Notch intracellular domain (NCID)
to the nucleus. The subsequent hyperactivation of downstream effector molecules regulates the
asymmetric division and self-renewal of BCSCs [69,70]. Increased levels of Notch1 are associated
with increased ALDH1 levels in BCSCs indicating that Notch signaling dysregulation is important
for BCSC proliferation and maintenance [80]. Reports also suggest that the expansion of BCSCs is
influenced by several factors such as histone-lysine N-methyltransferase (Enhancer of Zeste Homolog
2; EZH2) and lipid mediator sphingosine-1-phosphate (S1P). Increased levels of EZH2 and SIP enhance
NOTCH1 activation and signaling leads to increased tumorigenic ability in mice and breast cancer
patient- derived mammospheres [81,82].

The Wnt/Frizzled/-catenin signaling is a critical pathway that activates Wnt-targeted transcription
factors via nuclear translocation of cytosolic b-catenin. This, in turn, facilitates activation of
Wnt-targeted genes through binding to the T cell factor/lymphoid enhancing factor family (TCF/LEF)
leading to activation of genes associated with cellular differentiation, asymmetric division and cell
migration [74,83]. In BCSCs, activation of Wnt signaling due to transcription factor Sry-related
HMG box 9 (Sox9) supported stemness and increased mammosphere-formation in BC cell lines thus
suggesting that increased Wnt signaling is associated with enhanced BCSC proliferation, self-renewal,
and maintenance [84].

The Hedgehog pathway is also an important signaling pathway that is activated via smoothened
that facilitates cytoplasmic translocation of Gli-com to the nucleus [69]. Like Wnt signaling pathway
aberrant activation of Hedgehog pathway due to overexpression of smoothened or due to various
growth factors (fibroblast growth factor 5 (FGF5) and collagen), EMT, MET, CAF have been observed
to be involved in maintenance, proliferation and, stemness of BCSCs [60,61,65,85–87] Therefore, the
Hedgehog pathway is considered to be an important regulatory pathway for maintenance of stemness
in breast cancer cells [69].

5. Role of MicroRNAs and LncRNA in BCSCs

MicroRNAs, including oncomiRs and Tsmirs, have been critically implicated in the regulation
of BC development and progression via regulatory networks. Modulation of signaling pathways
such as PI3 kinases, Wnt/βcatenin, STAT, HIF 1α, etc. by miRNAs directly or indirectly influences
hallmarks of cancers and facilitates tumor suppression/progression [88]. Studies have shown that
functional interaction of miRNA with cell proliferation and cell cycle progression factors such as cyclin
protein families, protein kinases, etc. serves as an important target for tumor suppression/proliferation
in BC [88]. For example, miRNAs, such as miR-497, miR-16, and miR-30c-2-3p, were reported to
target and inhibit cell cycle regulator of G1-S transition, cyclin E1 leading to decreased cyclin E1
expression and suppression of proliferation by blocking BC cells from entering the S-phase of the
cell cycle [89–92]. On the other hand, certain miRNAs, such as miR-483-3p, dysregulate the cell cycle
transition by facilitating the formation of cyclin E1 and cyclin-dependent kinase CDK2 complex. This
leads to increased expression of cyclins, up-regulation of protein kinases and down-regulation of
kinase inhibitors, thereby increasing BC cell viability and proliferation [92]. Similarly, overexpression
of miR-1207-5p, has been associated with negative regulation of STAT2 expression and inactivation of
cell cycle-dependent kinase inhibitors CDKN1A and CDKN1B thus promoting cell cycle progression
in cancer cells [93].

The WNT/β catenin pathway is a well-documented target of miRNAs. Various studies have
shown that modulation of this pathway can affect the migration/invasive potential of BC cells [88].
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For example, overexpression of miR-148a has been reported to decrease migration of BC cells via
targeting of WNT-1 ligand of the WNT/β catenin pathway. This leads to reduced levels of WNT-1
mRNA/protein, catenin, MMP-7, and TCF-4 levels, thus affecting the migration of cancer cells [94,95]).
miR-340, has also been identified as a regulator of the WNT/β catenin pathway and acts to influence
migration/invasion of BC cells via molecular targeting of associated genes such as c-MYC, CTNNB1and
ROCK1 [95]. Furthermore, other signaling molecules, suppressed by miRNAs, include SMAD7, MTA1,
WT1, SETBP1, EphA4, LASP1, and STAT3. Suppression of these molecules via down-regulation of
miRNAs including miR-497, miR-421, miR-193a etc. leads to reduced migration/invasion potential of
BC cells [96–98].

In addition to the regulation of the Wnt/β catenin pathway, certain miRs have also been identified
to regulate the PI3K/Akt signaling pathway [99,100]. For example, miR-204-5p is important in BC
as its overexpression leads to a reduction in cell proliferation, migration, and metastasis via direct
inhibition of PIK3CB. Furthermore, it is also involved in modulation of key immune cells such as
myeloid-derived suppressor cells (MDSCs), macrophages, and natural killer (NK) cells to supports
cancer cell proliferation via remodeling of tumor microenvironment [101].

Like in BC cells, miRNAs are associated with directing their oncogenic/suppressor potential in
BCSCs (Figure 3, Table 1) [102]. For example., miR-200 family comprising of miR-200a, miR-200b and
miR-200c [103] is well-known for their extensive role in conferring stem cell-like properties in BC
cells including mammospheres formation, EMT regulation, metastasis, invasion, apoptosis, survival,
and cancer cell growth [103,104]. There are various mechanisms by which miR-200b and miR-200c
modulate target genes in order to facilitate stem cell-like properties. For instance stem cell transcription
factor KLF4, suppressor of zeste 12 (SUZ12), poly-comb complex protein BMI1 and Prolyl isomerase
Pin1 are frequently targeted by miR-200c leading to transcription repression and influencing BCSC
formation [105–107]. On the other hand, the up-regulation of miR-200 decreases the expression of
ZEB1/ZEB2 leading to reduced expression of E-cadherin and affecting the metastatic potential of
BCSCs [108,109]. Similarly, studies documented that increased expression of miR-200c via direct
binding of tumor suppressor tumor protein p53 (p53) leads to decreased stem cell properties in BC [110].
Furthermore, knockdown of miR-200 was reported to promote mammosphere-formation via direct
targeting of the ten-eleven translocation (TET) family and leading to enhanced metastasis in a mouse
xenograft model [111]. In addition to this, EGF-driven invasion was also reported to be regulated and
controlled by the miR-200 family [104].
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Table 1. Role of miRNAs acting as tumor suppressor/oncomir in BC with their targeted pathways.

miRNA Type Expression Level Targets Pathways Reference

miR-31 TsmiR ↑/↓ ITGA5, RDX, RHOA Metastasis [112,113]

miR-145 TsmiR ↓ MUC1, ERA, RTKN Proliferation, Apoptosis, Invasion [114–116]

miR-155 TsmiR ↑ FOXO3A, RHOA, SOCS1 STAT3, Proliferation, TGFβ Signaling [117–119]

miR-21 OncomiR ↑
BCL2, PTEN, MMP3, TPM1, MASPIN,

PDCD4, RHOB
EMT, Apoptosis, Invasion, Migration,

Inflammatory Signals [120–124]

miR-125b TsmiR ↑/↓ BAK1, ERA, HER2, CRAF, RTKN, MUC1 Migration, Proliferation, Apoptosis [125–127]

miR-10b OncomiR ↑/↓ HDAC4, TIAM, HOXD10, EMT EMT, Metastasis, Invasion [128–130]

miR-205 TsmiR ↓ HER3, VEGFA, EMT Proliferation, Invasion [131–133]

miR-210 OncomiR ↑ MNT, RAD52 Hypoxia [134,135]

miR-196A OncomiR ↑ ANXA1 Proliferation, Apoptosis, [136]

miR-944 OncomiR ↑ BNIP3 Cell Proliferation, Migration, Invasion [137]

miR-222 OncomiR ↑ PTEN PTEN, Akt/FOXP1 [138]

miR-3646 OncomiR ↑ GSK-3β β Catenin [139]

miR-34A OncomiR ↑ BCL2, CCND1 Apoptosis [140]

miR-141 OncomiR ↑ EIF4E Apoptosis [141]

miR-520h OncomiR ↑ DAPK2 PI3K/Akt [142]

miR-34 TsmiR ↓ BCL2, NOTCH Apoptosis, NOTCH [143]

miR-146 TsmiR ↓ NFkB Inflammatory Signals [144]

miR-7 TsmiR ↓ EGFR EGFR [145]

miR-22 TsmiR ↓ HER3, CDK6, ERα, CDC25C, SP1 Estrogen Signaling [146]

miR-221 TsmiR ↑ P27, P57 Wnt/β-catenin [147]

miR-191 OncomiR ↑ SATB1, CDK6, BDNF Estrogen Signaling [148]

miR-196A OncomiR ↑ ANXA1 Apoptosis [136]

miR-335 TsmiR ↑ SOX4, TNC, PTPRN2, MERTK Metastasis [149]
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Table 1. Cont.

miRNA Type Expression Level Targets Pathways Reference

miR-20 OncomiR ↑ E2F Proliferation [150]

miR-9 TsmiR ↑ LIFR, E-CADHERIN EMT, Hippo-YAP [151,152]

miR-126 TsmiR ↓ VEGFA and PIK3R2 VEGF/PI3K/AKT [153]

miR-98 TsmiR ↑ ALK4 and MMP11 Angiogenesis, Invasion [154]

miR-148a/152 TsmiR ↓ DNMT1, IGF-IR and IRS1 IGF-IR/PKM2 [155]

miR-519c TsmiR ↓ HIF-1α Hypoxia [156]

miR-10b OncomiR ↑ HOXD10 Hox pathway [157]

miR-140-5p TsmiR ↓ VEGFA Metastasis, Angiogenesis [158]

miR-494 TsmiR ↑ PTEN Akt, NF-kB, mTOR [159]

miR-206 TsmiR ↓ VEGF, MAPK3, and SOX9 Invasion, Angiogenesis [160]

miR-19a OncomiR ↑ PTEN Oncogenic PTEN Cell proliferation, Th1
immune response [161]

miR-17-92 TsmiR ↓ HIF-1α Hypoxia, Angiogenesis. [162]

miR-467 OncomiR ↑ TSP-1 Angiogenesis [163,164]

miR-18 OncomiR ↑ SMAD7 EMT, Metastasis [165]

miR-143 OncomiR ↑ FOSL2 EMT, Metastasis [165]

miR-196B OncomiR ↑ HOXD10 Hox pathway [157]

miR-200 OncomiR ↑ ZEB1, ZEB2 EMT [165]

miR-205 TsmiR ↓ YAP1 miR-205/YAP1 , Angiogenesis, Metastasis [166]

miR-892b TsmiR ↑ TRAF2, TAK1, and TAB3 NF-kB [167]

miR-210
RAD52 OncomiR ↑ RAD52 Invasion, Proliferation, Migration [168]
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Table 1. Cont.

miRNA Type Expression Level Targets Pathways Reference

mirR-155 OncomiR ↑ SOC6 STAT3 signaling [169]

miR-451 OncomiR ↑ Bcl-2 Apoptosis [170]

miR-100 OncomiR ↑ mTOR Cell proliferation, Survival [171]

miR-139-5p OncomiR ↑ Notch1 Cell growth, Apoptosis [172]

miR-214 OncomiR ↑ UCP2 Autophagy [173]

miR-16 OncomiR ↑ CCNJ, FUBP1 PI3K/Akt [174]

miR-199a-3p TsmiR ↑ TFAM Mitochondrial Biogenesis [175]

miR-302b TsmiR ↑ E2F1 E2f1-ATM axis [176]

miR-218 TsmiR ↑ BRCA1 DNA repair, Cell proliferation, Invasion [177]

miR-638 TsmiR ↑ BRCA1 DNA repair, Cell proliferation, Invasion [178]

miR-29A OncomiR ↑ PTEN Apoptosis [179]

miR-129-3p OncomiR ↑ CP110 Apoptosis \, Cell Cycle, Cell Proliferation [180]

miR-19 OncomiR ↓ Tissue factor Angiogenesis, Metastasis [181]
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Figure 3. MicroRNA and LncRNA involved in breast cancer stemness therapy resistance and
tumorigenesis. There are eight hallmarks implicated in cancer including sustaining proliferative
signaling, enabling replicative immortality, evading growth suppressors, activating invasion and
metastasis avoiding immune destruction, resisting cell death, deregulating cellular energetics and
genomic instability and mutations. Expression of several microRNAs and lncRNA is associated with
inducing oncogenic or tumor-suppressive properties via using the hallmarks of cancers.

Another miRNA family that plays an important role in BCSCs is the miR-34 family. Studies
have shown that miR-34 family members, usually activated by p53 [182], are well-known to influence
CSC such as properties in BC [165,183,184]. Their mechanism of action is via meditation of cell cycle
arrest/apoptosis [182] as well as targeting of various signaling pathways such as BCL-2, CCND1
MYC, E2F3 CDK6, SIRT1, and Notch1/4 leading to negative regulation of cell proliferation, invasion,
migration, and subsequent inhibition of BCSCs propagation [183,185–187]. Similarly, a study on
BC patient tissues has shown that miR-34 is negatively correlated with tumor stages and metastasis
indicating its role in breast cancer progression [188]. Furthermore, overexpression of miR-34a and
miR-34c has been documented to reduce mammospheres formation, inhibit the development of
CD44+CD24-/ALDH+ cells as well as eradicate BCSCs [183,184,188].

Guarnieri et al., has reported on a novel mechanism of the miR-106b-25 cluster as a regulator of
breast tumor initiation and BCSC phenotypes [189]. The results of the study show that overexpression
of miR-106b-25 cluster targets repression of NEDD4L thus leading to increased NOTCH1 signaling and
enhanced stem cell phenotypes in tumor imitating cells both vitro and in vivo. These results were further
validated in metastatic breast cancer patient samples [189]. Similarly, the overexpression of the miR-125
family has also been associated with the modulation of stem cell-like properties in BC via targeting of
receptor tyrosine-protein kinase 2/3 and Eukaryotic Translation Initiation Factor 4E Binding Protein
1 (ErbB2/3and EIF4EBP1) [190]. Overexpression of miR-125 enhances BC progression by increasing
the expression of oncogenes. Therefore, miR-125 families are considered to be potential therapeutic
targets [103]. Overexpression of miR-181family members via different molecular mechanisms have
been associated with facilitating BCSCs in mammospheres formation, self-renewal, colony formation,
tumor development as well as with poor prognosis in TNBC patients [117,189–192]. Additionally,
inhibition of miR-181a/b via targeting of the Pleckstrin homology-like domain, family A, member1
(PHLDA1) has demonstrated a reduction in mammospheres formation in BC cells [193]. Furthermore,
miR-27 is reported to be an important regulator of BCSCs and functions via targeting various immune
mechanisms. The main mechanisms influenced by miR-27 are regulation of macrophages, activation
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of NF-kappaB /MAPK pathways and reduced dendritic cell-mediated differentiation of Th1 and
Th17 cells [194,195]. This was shown in BC patients wherein a decrease in the miR-23a/27a/24-2
cluster in TAMs enhanced tumor growth and vice versa [196]. In addition to this, RUNX1 mediated
transcriptional up-regulation of miR-27a is associated with differentiation of BCSC into endothelial cells
and targeting of signaling pathways ZBTB10, MYT-1. This was reported to play a significant role in
modulation of proliferation, self-renewal ability, angiogenesis, metastasis and enhanced tumorigenicity
in BC cells [197].

There are a vast number of miRNAs that have been reported to be involved in the regulation of
BCSCs via targeting various pathways. In addition to the ones discussed above, some of the important
ones also include miR888, miR-30 family, miR-16, Let-7 family, miR-140-5p, miR-205, miR-495, etc.
Overexpression or inhibition of such miRNAs can regulate the expansion of BCSCs, conversion from
non-stem to stem cell phenotype, self-renewal, promotion of colony formation and affecting the number
and size of mammospheres [165].

The human genome comprises 17,910 lncRNA that are often overexpressed or down-regulated
in BC at various levels [198,199]. Some of the lncRNAs found to be associated with initiation,
progression, and metastasis in BC include HOTAIR, Small nucleolar RNA host gene 12 (SNHG12),
Long intergenic non-coding RNA for kinase activation (LINK-A), Rhabdomyosarcoma 2-associated
transcript (RMST), RMRP (RNA component of mitochondrial RNA processing endoribonuclease),
nuclear paraspeckle assembly transcript 1 (NEAT1), steroid receptor RNA activator (SnaR), MALAT1
(metastasis-associated lung adenocarcinoma transcript 1), CCAT2 (Colon Cancer Associated Transcript
2), CRNDE (colorectal neoplasia differentially expressed), MIAT (myocardial infarction associated
transcript), MEG3 (Maternally Expressed 3), CAT104, LINC01234, STXBP5-AS1, RMRP, GATA3-AS1,
RP11-279F6, AC017048 and LINC-ROR. [199–202].

In CSCs, several lncRNA such as ROR, HOTAIR, H19, UCA1, and ARSR were reported to
play a significant role in stemness, proliferation, invasion, and migration via targeting of signaling
pathways/sponging of various microRNA through competing for endogenous RNA (ceRNA) [199,203].
For e.g., lncRNA CRNDE was reported to be up-regulated via sponging and subsequent repression of
miR-136 expression in BC cell line, MDA-MB231 as well as in BC tissues [204]. The study observed
that CRNDE overexpression was associated with activation of Wnt/β-catenin, c-myc and cyclinD1
signaling pathways thus facilitating stemness, cell proliferation, migration, and invasion. Similarly,
overexpression of CRNDE in mouse models showed an increase in tumor weight and volume indicating
its role in promoting tumorigenesis [204].

lncRNA HOTAIR is a well-studied lncRNA and is reported to manifest carcinogenic potential
such as migration, metastasis, invasion, EMT transition, and stemness in cancerous cells mainly via
regulation of gene silencing [201]. Mir-7 by targeting the SETDB domain inhibited cellular processes,
decreased the population of BCSCs and also partially reversed EMT through suppression of the STAT3
pathway in MCF-7, MDA-MB-231 cell lines and in BCSC xenograft model [205]. Furthermore, a study
on CSCs of MCF-7 and MDA-MB-231 reported that HOTAIR influences migration, self-renewal, and
colony formation in BCSCs via transcriptional inhibition of miR-34a and subsequent up-regulation of
SOX 2. The authors validated the association of HOTAIR on functional regulation of miR-34a in BCSCs
by introducing miR-34a mimics plus HOTAIR in CSCs. The results showed reduced proliferation
potential of HOTAIR, thus evidencing the link between miR-34a and HOTAIR in BCSCs self-renewal
and proliferative ability. On the other hand, modulation of full length HOTAIR expression was
found to be associated with negative regulation of miR-34a indicating that full length HOTAIR is
essentially required to affect miR-34a regulation, self-renewal, and colony formation capacity in BCSCs.
In addition, up-regulated HOTAIR was also found to be involved in p53 induction thus affecting
proliferation and colony formation in CSCs [206].

Another lncRNA known as lncRNAH19 is reported to be essentially involved in the induction of
BC cell stemness, migration and mammosphere-formation. It functions mainly by acting as a ceRNA
for miR-let 7 with subsequent overexpression of LIN28, HIF 1α, and PDK1. Since these markers are
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involved in inducing stem-like phenotypes, their role in BCSCs is deemed critically important. Studies
on BC tissues and samples have also reported on high levels of lncRNAH19 and investigation on
knockdown of H19 in nude mice has evidenced suppression of tumor growth indicating the significance
of lncRNAH19 in BC tumorigenesis [207,208]. Similarly, LINC00511, a ceRNA for mir185-3p, has also
been associated with influencing stemness in BCSCs. It functions by targeting E2F1 protein which in
turn binds to Nanog promotor, thus forming a LINC00511/miR-185-3p/E2F1/Nanog axis leading to
maintenance of BCSCs, enhanced mammosphere-formation and promotion of cell proliferation and
invasion [209].

The TME plays an influential role in the induction of stem cell-like properties in BC cells through
lncRNA. In TNBC, MSC and CAF trigger up-regulation of LINC01133 thereby inducing signaling
of pluripotency factor Kruppel-Like Factor 4 (KLF4) and promoting CSC like phenotypic properties
in BC cells [210]. LINC00284, another important lncRNA in TNBC has recently been identified as
non-coding RNA in the aldehyde dehydrogenase 1A pathway (NRAD1) and has been documented to
be functionally associated with CSCs in TNBC. This functional association and significance are based
on two observations; firstly, it has been found to have genomic interactions (in the intronic regions)
and secondly it is directly regulated by CSC marker ALDH1A3. This strong association indicates that
NRAD1 is an important mediator of breast cancer cell proliferation and survival [211].

LncRNA RoR (regulator of reprogramming) is considered to be an important regulator of
pluripotent stem cells via targeting of transcription factors SOX2, OCT4, NANOG and sponging of
miR-145 [212–214]. As a ceRNA of mir-145, ROR functions via loss of mature miR-141 expression
leading to the protection of pluripotency factors [213]. In BC cells and in patient samples, lncRNA
ROR was not only linked to the self-renewal of stem cells, EMT transition, and drug resistance but
also to poor prognosis indicating its significance in tumorigenesis process [215–220]. Mainly, lnc-ROR
functions via targeting of ZEB1/2 and TGF-β signaling leading to modulation of EMT markers such
as vimentin and neural (N)-cadherin and induction of EMT process [218,219,221,222]. Furthermore,
studies on silencing/knockdown of lnc-ROR have confirmed this pathway showing that its inhibition
is shown by suppression of invasiveness, migration, reduction in tumor size and reversion of drug
resistance in BC cells [218,221,222]. However, its role in BCSCs and metastasis is unclear.

In addition to these, various lncRNAs such as LUCAT1, lncRNA-Hh, FGF13-AS1, lncRNA ES1
NEAT1 have been reported to be commonly involved in up-regulation of signaling pathways and
modulation of stem cell factors (Wnt/β-catenin, Hedgehog, myc, SOX2, OCT4, KLF4, and NANOG).
Their role in the promotion of stemness in BC cells and subsequent tumor progression, invasion and
metastasis is critical for tumor maintenance and therapeutics [223–227].

The detailed role of lncRNAs in BC is described in Table 2.
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Table 2. Role of lncRNAs acting as either tumor suppressor/oncogene in BC with their targeted pathways.

lncRNA Type Expression
Level Targets Pathways Reference

PMID

MEG 3 Tumor
suppressor ↓ p53 p53 [228]

HOTAIR Oncogene ↑ BRCA1, PTEN PI3K/AKT-BAD
pathway, HOXD10 [229]

ACNR Tumor
suppressor ↓ TGF-β Metastasis,

Invasion [230]

PTENP1 Tumor
suppressor ↓ PTEN Apoptosis [228]

NKILA Oncogene ↓ NF-kB EMT [231]

EPIC 1 Oncogene ↑ Myc Cell Cycle [232]

PLNCRNA-1 Oncogene ↓ TGF-β
Apoptosis,
Metastasis,
Invasion

[228]

H19 Oncogene ↑ C-myc AKT, BIK [233,234]

MALAT-1 Oncogene ↑/↓ AKT, p53 APOPTOSIS [235]

LINK-A Oncogene ↑ HIF-1α Hypoxia Pathway [228]

CCAT2 Oncogene ↑ ERK MAPK [236]

PVT-1 Oncogene ↑ KLF-5, β-Catenin WNT/β-Catenin [228]

UCA1 Oncogene ↑
mTOR,

β-Catenin
mTOR, WNT/
β-Catenin [237,238]

GAS5 Tumor
suppressor ↓ PTEN Apoptosis [239]

BCAR4 Oncogene ↑ SNIP1, PNUTS
Hedgehog /GLI 2

Signaling
Transduction

[228]

NEAT Oncogene ↑ ZEB1, RAS RAS, MAPK, RSF1 [227]

6. Exosomal miRNAs: A Future Tool for Prognosis, Drug Discovery and As Therapeutic Targets

The significant presence of miRNAs was detected in biological fluids. miRNAs isolated from
these sources are highly stable and non-degradable in extreme physiological conditions. It was
reported that cells in culture transport intracellular miRNAs into the extracellular environment
by exosomes [240]. Several studies revealed that these exosomal miRNA are implicated in cancer
research, as tumor cells secrete different microRNAs capable of initiating cross-talk with the adjacent
tumor microenvironment and educate them for adapting tumor favoring conditions for cancer
progression [129,241–245]. Many exosomal miRNA were intensively studied for their ability to
promote tumor progression by indicating drug resistance (miR-9,mir 221/222,miR 1246),metabolic
reprogramming in CAF cells(miR105), intimating angiogenesis in endothelial cells(miR105, miR210),
tumorigenesis in epithelial cells (miR10b, miR10a, miR21), osteogenesis in MSCs(mir940) [246–249].
Moreover, these exosomal miRNA can be circulated and used as potential diagnostic and prognostic
markers in breast cancer [246,250]. For example, plasma and serum samples of breast cancer patients
show microRNAs such as miR-106a-3p, 106a-5p, 20b-5p, and 92a-2-5p (plasma miRNAs); miR-106a-5p,
19b-3p, and 92a-3p (serum miRNAs) can be used as potential biomarkers in BC patients [251]. Some
exosomal miRNA can be used as promising diagnostic markers, for example, high level of mir373 is
associated with aggressive cancers, and a lower level of miR130-3p is associated with the advanced stage
of cancer [252,253]. On the other hand, anticancer drugs derived from either natural or synthetic sources
are reported to be dependent on miRNAs as exosomal cargoes to exert its anticancer activity [246].
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For example, reduction in the growth of BC cells was associated with inhibition of secretion of
exosomes containing miR-130a and miR-125 by D-rhamnose β-hederin, an oleanane type triterpenoid
saponin [254]. Epigallocatechin gallate, one of the constituents present in green tea, induced its
anti-cancer activity by up-regulating miR-16 in 4T1BC cells. [255] Chemosusceptibility was found
to be elevated by β elemene by affecting the expression of miR-34a, miR-452, PTEN [256]. Shikonin
a well-known natural compound exhibited antiproliferative effect by attenuating tumor-derived
exosomal miR-128[257]. Docosahexanoic acid administration altered BC cells exosome secretion and
microRNA content thereby inhibiting angiogenesis process [258].

Substantial evidence shows that exosomes act as a carrier and they could be manipulated to
deliver tumor suppressor miRNA to exhibit their therapeutic potential [246]. Published studies have
showcased that mesenchymal derived extravesicular vesicles can be successfully modified as a carrier
for antitumor agents, to treat different forms of tumors [259]. The engineering of tumor-derived
exosomes by electroporation method can help in overexpressing miR-155, -142, and let-7i, to mature
dendritic cells and also to trigger the immunity process, to load siRNAs or miRNAs by sonication
and also to knockdown oncogene such as HER2[246]. Transfection of mesenchymal stem cells with
anti-miR-222/223 transformed mesenchymal cells to dormant cancer cells and prolonged survival
rate [260]. Gold-nanoparticle-facilitated RAB27A silencing in BC cells results in decreased exosomes
secretion with no effect on cell viability. Exosomes were also reported to prevent tumor development
both in vivo and in vitro [261,262]. Although some progress has been made to identify the potential of
exosomal miRs in cancer research, it remains inconclusive as there is no standard technique reliable to
isolate exosomes. The biomarker and drug therapy discoveries demand more detailed research in the
field of exosomal micro RNA identification and classification.

In addition to the above techniques, using nanoparticles has also shown to increase stability
and improved the delivery capability of miRNA. BC cell migration and invasion were inhibited by
poly lysine-anti-miR10b complex [263]. Similarly, reduction in tumor growth capacity was observed
when antisense miR-21 and antisense miR-10b were complexed with PLGA-b-PEG nanoparticle [264].
Encapsulation of miR34a with doxorubicin into hyaluronic acid chitosan successfully inhibited the
migration of BC cells via the Notch-1 signaling pathway [265]. Designing various forms of nanoparticles
such as gold, nano complex, and poly sorbitol-mediated transporter to carry the various form of miRNA
not only improved delivery but also targeted and controlled cell proliferation of BC cells [165,266,267].
Cell cycle targeting miRNAs, miR-193a-3p and miR-214-5p encapsulated as nanoparticle showed high
therapeutic potential against TNBC in vivo [268].

In light of the clinical impact, several miRNA-based therapies are under development whereas
several of them are under pre-clinical and clinical stages. miRNA for treatment of pathologic fibrosis
and blood cancer, non-small cell lung cancer and hepatocellular carcinoma is in the clinical stage
however, not many lead molecules have been able to find their place either in pre-clinical or clinical
trials for BC therapy. Looking at the potential of ncRNA targeting, we can assume that in the near
future, the use of miRNA or lncRNA as mimics or inhibitor will be a suitable choice either alone or as
an adjustment with existing therapeutic agents for regulating different aspects of human cancer [165].

In addition to the above therapies, the use of hormone therapy also known as endocrine therapy
is considered to be a viable approach in point with detectable ER expression. The standard approach
for treatment includes the use of tamoxifen for 5–10 years in pre-menopausal and a combination of
tamoxifen with aromatase inhibition for post-menopausal women. Continuous use of tamoxifen is
associated with the development of resistance; a newer viable strategy to overcome this issue is still
underway [165].

The role of ncRNA in regulations of gene expression and BC implies it to be a potential target for
treatment. However, data on ncRNA is still at its infancy stage with limited knowledge of its biological
functions. Therefore, extensive research is required to understand its role as a prognostic, diagnostic or
therapeutic target.
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7. Conclusions

Our review article has provided reports on extensive investigations and studies on the biological
and functional role of miRNA and lncRNA in BC and CSCs providing an insight into their significance
in cancer proliferation, pathological manifestations, progression invasion, and metastasis as biomarkers
and as a potential therapeutic target. However, there are various considerations and challenges that
need to be addressed. Firstly, in vivo studies, investigating the role of miRNAs in transgenic and
knockout models are required to further ascertain their role in therapeutic targeting for the management
of BC. Secondly, targeting breast cancer stem cells is a challenge in itself as accurate identification of
reliable CSC markers as well as inherent heterogeneity of these cells hinders the targeting of signaling
pathways by ncRNAs. Furthermore, knowledge of the types of lncRNA and their pathways in BC is
still limited and extensive research to decipher its role as a biomarker/therapeutic targeting is needed.
Therefore, large scale studies focusing on translational aspects of ncRNAs are required in order to fully
understand and use its potential in BC treatment.
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Abbreviations

ALDH1A3 Aldehyde Dehydrogenase 1A3
ANRIL antisense to the CDKN2B locus
ASCO American Society of Clinical Oncology
BC Breast cancer
BCL-2 B-cell lymphoma 2
BCSC Breast Cancer Stem Cells
CAF cancer-associated fibroblast
CAFs cancer-associated fibroblasts
CCAT2 Colon Cancer Associated Transcript 2
CCL2 monocyte chemotactic protein-1
CCL7 monocyte chemotactic protein-7
CCND1 cyclin D1
CDK6 Cyclin-Dependent Kinase 6
Cernan Competing endogenous RNA
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
CRNDE colorectal neoplasia differentially expressed
CSC Cancer stem cells
CTNNB1 b-catenin
E2F1 E2F transcription factor 1
E2F3 E2F transcription factor 3
E-BCSC Epithelial
ECM extracellular matrix
EIF4EBP1 Eukaryotic Translation Initiation Factor 4E Binding Protein 1
EMT Epithelial-to-Mesenchymal Transition
ENCODE Encyclopedia of DNA Elements project
ER Estrogen receptor
ERBB2 Receptor tyrosine-protein kinase erbB-2
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ErbB2/3 Receptor tyrosine-protein kinase 2/3
EZH2 Enhancer of Zester Homolog 2
FGF13-AS1 fibroblast growth factor 13-antisense RNA 1
FGF5 fibroblast growth factor 5
FOXC1 Forehead box C1
GAS5 growth arrest specific 5
HAS2 hyaluronic synthase
HIF 1α Hypoxia-inducible factor-1
HOTAIR HOX Transcript Antisense Intergenic RNA
HOX Homeobox
KLF4 Rappel-Like Factor 4
lncRNA Long intervening/intergenic noncoding RNAs
LINK-A Long intergenic non-coding RNA for kinase activation
LncRNA long non-coding RNA
LUCAT1 Lung Cancer Associated Transcript 1
MALAT1 metastasis-associated lung adenocarcinoma transcript 1
MAPK Microtubule Associated Protein Kinase
Mass mammary stem cells
M-BCSC Mesenchymal
MEG3 Maternally Expressed Gene 3
MIAT myocardial infarction associated transcript
miRNA Micro RNA
mRNA Messenger RNAs
MSCs mesenchymal stem cells
MYC MYC Proto-Oncogene
MYT-1 Myelin Transcription Factor 1
NCCN National Comprehensive Cancer Network
NCID Notch intracellular domain
ncRNAs noncoding RNAs
NEAT1 nuclear Para speckle assembly transcript 1
NEDD4L Neural precursor cell expressed developmentally down-regulated gene 4-like
NRAD1 non-coding RNA in the aldehyde dehydrogenase 1A pathway
OCT4 octamer-binding transcription factor 4
p53 protein p53
PARP Poly ADP ribose polymerase
PDGF-BB platelet derived growth factor BB
PDK1 Phosphoinositide-dependent kinase 1
PHLDA1 Pleckstrin homology-like domain, family A member 1
pine Piwi-interacting RNA
PLAGL2 pleomorphic gene like-2
PR Progesterone receptor
RMRP RNA component of mitochondrial RNA processing endoribonuclease
RMST Rhabdomyosarcoma 2-associated transcript
ROR receptor tyrosine kinase-like orphan receptor
RUNX1 Chr. Runt-related transcription factor 1
S1P sphingosine-1-phosphate
siRNA small interfering Ribonucleic Acid
SIRT1 silent mating type information regulation 2 homolog
SnaR steroid receptor RNA activator
sncRNAs short noncoding RNAs
SNHG12 Small nucleolar RNA host gene 12
snoRNA Small nucleolar RNAs
snRNA Small nuclear RNA
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SOX 2 Sry-related high mobility group box 2
Sox9 Sry-related HMG box 9
STAT3-CPTIB-FAO JAK/STAT3-Regulated Fatty Acid β-Oxidation I
STXBP5-AS1 STXBP5 Antisense RNA 1
SUZ12 suppressor of zeste 12
TAM Tumor-Associated Macrophages
TCF/LEF T cell factor/lymphoid enhancing factor
TERC Telomerase RNA component
TERRA telomeric repeat-containing RNA
TET ten-eleven translocation
TGF-β Transforming growth factor beta
TME tumor microenvironment
TNBC Triple Negative Breast Cancer
Tregs T regulatory cells
tRFs tRNA-derived fragments
UCA1 urothelial carcinoma associated 1
XIST X inactive specific transcript
ZBTB10 Zinc finger and BTB domain containing 10
ZEB 2 Zinc finger E-box binding homeobox 2
ZEB1 zinc finger E-box-binding homeobox 1
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