Journal of Molecular Medicine (2021) 99:517-530
https://doi.org/10.1007/s00109-021-02043-9

JMolMed

REVIEW ™

Check for
updates

Gastrointestinal epithelial innate immunity—regionalization
and organoids as new model

Ozge Kayisoglu' - Nicolas Schlegel” - Sina Bartfeld’

Received: 6 August 2020 /Revised: 18 December 2020 / Accepted: 19 January 2021 / Published online: 4 February 2021
© The Author(s) 2021

Abstract

The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the
commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer,
which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like
receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated
pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and
their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as
promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids
enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its

regional organization to discuss innate immune sensing and development.
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Introduction

The gastrointestinal (GI) tract is required for the digestion of
food and spans from the oral cavity via the oesophagus, stom-
ach, small intestine and large intestine to the anus. The GI
lumen is colonized by a vast variety of commensals, symbi-
onts and occasionally pathogens. The microbial colonization
follows a gradient with less than 10° microbes/ml in the stom-
ach to 10°~107 microbes/ml in the small intestine and 10"~
10'? microbes/ml in the colon (reviewed in [1-3]). From the
glandular stomach onwards, the GI tract is lined by a single
layer of columnar epithelial cells. This epithelial layer
comprises of different specialized cells, tightly interlocked
by junctional protein complexes, enforcing the physical barri-
er (Fig. 1).
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The interaction between the gut microbiota as well as
ingested pathogens and epithelial cells is mediated by pattern
recognition receptors (PRRs), including Toll-like receptors
(TLRs), nucleotide-binding oligomerization domain (NOD)—
like receptors (NLRs) and other cytosolic receptors (Fig. 2,
reviewed in [7, 11]). These PRRs play a key role in recogniz-
ing microbe-associated molecular patterns (MAMPs) and
damage-associated molecular patterns (DAMPs). Upon PRR
activation in epithelial cells, downstream signalling cascades
induce expression of different cytokines and chemokines via
inflammatory pathways, such as the NF-kB pathway, to direct
the professional immune cells (reviewed in [8, 12—16]). In
addition to the classical PRRs, further sensors of bacterial
activities, such as alpha-kinase 1 (ALPK1) have recently been
discovered [17-19]. Inflammasomes, cytoplasmic complexes
composed of NLR proteins, recognize additional molecular
patterns, such as bacterial metabolites (reviewed in [7, 9]).

Gastrointestinal innate immune responses, including PRR
sensing, must balance the need for providing protection from
potentially harmful pathogens with being able to tolerate expo-
sure to the diverse luminal microbiome. Hence, the expression
and function of PRR signalling are expected to have a major
impact not only on pathogen sensing but also on tissue homeo-
stasis (Box 1) and inflammatory diseases including acute gastro-
enteritis, gastritis and inflammatory bowel diseases (IBDs)
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Fig. 1 Overview of the gastrointestinal epithelium. The gastrointestinal
epithelial layer is organized into invaginations called glands in the
stomach, and crypts of Lieberkiithn in the intestine. In the small
intestine, villi protrude into the lumen to maximize contact for nutrient
uptake. Likely, also to counteract the frequent infections or the surface
cells, the body heavily invests in the turnover of cells, specifically at the
surface of the invaginations. In the stomach, as well as in the small and
large intestine, adult stem cells reside within the invaginations and
constantly proliferate. They produce further proliferating
undifferentiated progenitor cells (transit-amplifying cells in the
intestine, isthmus cells in the stomach). The cells below this region of
amplification have a relatively long lifetime: Small intestinal Paneth cells,

(reviewed in [12, 13, 20, 21]). Although each of these diseases
displays completely different pathogeneses, they share a critical
feature: the interface between the environment and the body is
significantly disturbed. However, there is an ongoing debate
whether changes of the intestinal epithelial layer, in particular
those affecting its innate immune function, are a cause or a con-
sequence of the above-mentioned diseases.

Most knowledge about PRR signalling has been gathered
from research on haematopoietic cells. It has been a challenge
to discriminate the functions of PRR signalling in epithelial cells
from those of the infiltrating immune cells. Major obstacles in-
clude difficulties in isolating pure epithelial cells and raising re-
liable antibodies against PRRs. With the advancement of
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residing at the base of the crypt, have a lifespan of about 3—6 weeks.
Similarly, gastric glandular cells, such as chief cells, residing below the
isthmus region have a lifespan of several months. In contrast, cells above
the amplification region move conveyor belt-like towards the surface,
finally reaching the gastric pit, the small intestinal villus or the colon crypt
opening, where they are shed into the lumen after a lifetime of only 3—
5 days [4-6]. Both organs have absorptive enterocytes and secretory cells,
such as mucus-producing goblet cells, hormone-producing
enteroendocrine cells and tuft cells. In addition, the small intestinal epi-
thelium also contains Paneth cells, which produce antibacterial peptides,
as well as specialized microfold (M) cells on the Peyer’s patches, enabling
crosstalk between the microbiota and the immune system.

organoids that derive from intestinal epithelial stem cells, a re-
ductionist experimental model is now available that enables in-
vestigations into the innate immune response of the primary
epithelial cells. Organoids are defined as stem cell-derived, 3-
dimensional cell cultures that have self-organizing capacity and
retain some of the function of the original organ (e.g. secretion,
filtration, absorption, contraction). Since organoids can be grown
either from tissue-resident adult stem cells (ASCs) or from plu-
ripotent stem cells (PSCs), the cells are non-transformed.
Together, the two types of organoids cover an extensive reper-
toire of organs that can be mimicked (reviewed in [4, 22, 23]).
Both technologies have their individual advantages (reviewed in
[4, 22, 23]). For example, cultures of ASC-derived organoids
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Fig. 2 Simplified overview of PRR signalling pathways in
gastrointestinal epithelial cells. Pattern recognition receptors (PRRs) in-
cluding TLRs, NLRs or newly discovered sensors such as ALPK1 rec-
ognize the microbe-associated molecular patterns (MAMPs). Upon PRR
activation in epithelial cells, downstream signalling cascades induce ex-
pression of different cytokines and chemokines via inflammatory path-
ways, such as the NF-kB pathway. TLR1, 2, 3, 4, 5 and 9 recognize
lipoproteins, double-stranded (ds-) RNA, lipopolysaccharides (LPS), fla-
gellin and dsDNA, respectively. ALPK1 recognizes the LPS metabolite
ADP-heptose and its stimulation leads to phosphorylation of TIFA pro-
teins, mediating the formation of TIFAsomes as a response to gram-
negative bacteria. Ligands bind to a receptor which leads to the recruit-
ment of adaptor proteins (e.g. Myd88, TRAF6 and RIP2). These adaptors

have a tremendous expansion potential and are relatively homo-
geneous, and PSC-derived organoids are more complex in the
sense that they combine cells of very different developmental
origins (e.g. epithelial and mesenchymal cells). PSC-derived
organoids allow the analysis of the developmental steps but
may not reach the full level of differentiation into epithelial layer
as found in vivo [24]. ASC-derived organoids generated from
fetal tissues may also allow the study of maturation of fetal epi-
thelia, since they age in culture [24, 25].

This review will highlight insights from studies using
organoids and discuss the potential of this technology for the
study of epithelial innate immunity. We focus on the regional
organization in the gastrointestinal tract.

Regional identity and innate immune
signalling in the Gl tract

When looking at gastrointestinal diseases it is important to note
that some of them are confined to a specific section of the gas-
trointestinal tract. IBD includes Crohn’s disease (CD) and

drive the phosphorylation of the IkB which leads to its ubiquitination and
degradation. NF-«B subunits p65 and p50 can then enter the nucleus to
facilitate the expression of target genes which are proinflammatory cyto-
kines such as /L-8 in humans and its analogue Cxc/2 in mice.
Inflammasomes, which are cytoplasmic complexes composed of NLR
proteins, recognize additional molecular patterns, microbial metabolites
or nucleic acids. They activate caspase-1, which cleaves and thereby
activates proinflammatory cytokines like pro-IL-1b and pro-IL-18, driv-
ing the downstream inflammatory pathways. In turn, proinflammatory
cytokines will recruit professional immune cells of the innate and adap-
tive immune system, which are equipped to resolve the infection
(reviewed in [7-10]).

ulcerative colitis (UC), which show a differential and disease-
specific pattern of inflammation: while UC begins in the rectum
and is found in the colon, CD can affect all parts of the GI tract
from the oral cavity to the anus. Furthermore, CD is characterized
by segmental, discontinuous inflammation within the GI tract,
while UC is usually described as a continuous inflammation of
the colon (reviewed in [26, 27]). In the oesophagus, stomach and
colon, cancer incidence is high, and infection and inflammation
can promote development and progression of these cancers
(reviewed in [28, 29]). In contrast, malignant transformation in
the small intestine is very rare (reviewed in [30]). The apparent
segment-specificity of these diseases in the GI tract remains enig-
matic, but it is tempting to speculate that their region-specific
origin is rooted in region-specific disturbances of the tightly bal-
anced system of epithelial barrier function, innate immunity and
mucosal regeneration. Therefore, it is interesting to highlight
differences in the segments within the GI tract.

The GI tract comprises several anatomically defined segments
with vastly distinct physical functions (reviewed in [31]). The
main function of the stomach is the digestion of food and the
elimination of incoming pathogens by gastric acid. Nutrients do
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not have to reach the epithelial layer of the stomach; thus, the
body heavily invests in a protective mucus barrier, shielding the
epithelial cells not only from its own acid but also from luminal
content (reviewed in [32, 33]). By contrast, the main function of
the small intestine is not only digestion but also the uptake of
nutrients. In keeping with this, the small intestine has a signifi-
cantly enlarged surface area due to the villi protruding into the
gut lumen, where cell surfaces come in close contact with the
nutrients. Most of the digestion takes place at the proximal small
intestine, duodenum and jejunum, where the villi are long and
thin. The jejunum has the highest ratio of Paneth cells secreting
antimicrobial peptides [34], which decorate the rather loose mu-
cus, thereby guarding the epithelial layer and keeping the crypts
sterile (reviewed in [35]). The villi become progressively shorter
and broader towards the ileum (reviewed in [36]), where again,
the mucus takes over an important part of the protection: with the
highest ratio of goblet cells, the ileum has a thicker mucus layer
and a lower rate of digestion and absorption than the jejunum
[34] (reviewed in [31]). Lastly, the colon reabsorbs water and
invests into an extensive, thick and bi-layered mucus cover to be
able to safely harbour trillions of commensal bacteria. The colon
has no villi and the crypts are smaller than those of the small
intestine. There are no Paneth cells, and the goblet cell ratio can
be up to 25% of the epithelial layer [37]. Thus, the three gut
segments have different strategies for maintaining a safe distance
between the epithelial cells and the microbiota. MAMP recogni-
tion and activation of immune pathways is another layer of this
interaction and therefore, it is only reasonable that they are also
structured along the GI tract (reviewed in [38]). However, it
remains a fascinating riddle what exactly shapes the structure
of the PRR organization.

While it is intuitive that genes important for regional func-
tions, such as digestion and nutrient uptake, follow spatial
compartmentalization along the cephalocaudal axis (reviewed
in [39]), such an organization was not expected for epithelial
innate immune signalling. Previous studies had reported reg-
ulation of PRR signalling in response to stimulation with
MAMPs. For example, TLR4 responsiveness decreases after
birth, presumably because of the exposure to LPS during de-
livery and subsequent colonization of the gut [40]. Also, stim-
ulation of TLR9 with its ligand CpG-DNA leads to a decrease
of Tlr4 expression and inhibits TLR4 signalling [41]. Thus, it
was expected that contact with the microorganisms, their mol-
ecules and metabolites in the GI tract would lead to silencing
of PRR expression towards the gut lumen (reviewed in [14]).
However, contradicting results, caused by technical difficul-
ties such as unreliable antibodies targeting TLRs, led to con-
fusion in the field and it was unclear, whether a particular PRR
was expressed or not (reviewed in [42]). Early Northern blots
for mRNA of 77r2 and TIr4 in ex vivo isolated epithelial cells
indicated that expression levels of these two 7/r molecules
were segment-specific: T/r2 was expressed mainly in the co-
lon, while 7/r4 was mainly expressed in stomach and colon.
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The authors termed this “strategic compartmentalization” of
these TLRs [43]. Recent studies have now discovered that this
principle of segment-specific expression extends beyond these
two TLRs, and have unravelled a highly complex regional
organization of PRR signalling that does not always follow
the microbial load [44, 45].

The first of the two studies came from the Barton group and
revealed several levels of organization of TLR expression.
The group generated five strains of reporter mice, enabling
expression analysis of TLR2, 4, 5, 7 and 9, respectively.
TLR2 and 5 were expressed in the small intestine and the
proximal colon, TLR4 was expressed in colon and TLR7
and 9 were not expressed. Reporter expression in organoids
from these mice closely mimicked the in vivo expression,
indicating that the expression is independent of contact with
the microbiota or with immune cells [45].

The second study used a biobank of freshly generated hu-
man and murine organoids covering the different segments of
the GI tract: corpus, pylorus, duodenum, jejunum, ileum and
colon. Transcriptional analysis of the organoids confirmed the
expression patterns for the TLRs reported by the Barton
group, but in addition revealed a vast extent of differential
expression of TLRs, NLRs, inflammasome components and
other innate immunity-related genes (Fig. 3 and [44]). For
example, Nod2 was mainly expressed in the stomach, while
expressions of several inflammasome pathway components
like Nlrplb, Nlrp6 and Aim2 were restricted to the intestine.
Various receptors were uniformly expressed; for example,
Tlr3 expression was detected in every segment of the murine
Gl tract in high amounts, whereas 71r5 was expressed in every
segment but in low amounts [44]. As a result, each segment
appears to have its very own, specific complement of innate
immune receptors and signalling components.

Comparing the murine with the human gastrointestinal
organoids demonstrated that in both species the principle of
complex organization of PRR signalling components was the
same, but individual PRR expression profiles could differ.
Some PRRs, like 7LR4 and NLRP6, were similarly patterned
along the GI tract of both species. TLR4 was expressed pre-
dominantly in the stomach and colon and NLRP6 expression
was restricted to the segments of the intestine. On the other
hand, several PRRs such as 7LR] and TLR?2 showed patterns
that differed between both species. While in murine
organoids, expression of both increased along the GI tract
and was highest in the colon, in human organoids expression
was highest in the stomach and decreased along the GI tract
[44]. Moreover, expression of TLR5 was higher in human
organoids, with the highest levels observed in the stomach
[44].

As mentioned above, organoids also allow testing of
whether a particular pathway is functional by addition of the
ligand and subsequent analysis of downstream target gene
expression. Complementing the region-specific expression
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Fig. 3 Distribution of various
pattern recognition receptors
along the murine (left) and human
(right) gastrointestinal tract ac-
cording to a recent study [44]. In
this study, organoids were gener-
ated from six regions of the GI
tract of mice (left) and human
(right): the gastric corpus and py-
lorus, the small intestinal (SI) du-
odenum, jejunum and ileum and
the colon. The graphic illustrates
the relative level of RNA expres-
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analysis, the study also found that human and murine
organoids show region-specific function: the murine stomach
responded to the TLR4 ligand LPS, but not the TLR2 ligand
PAM3CSK4 or the TLRS ligand flagellin, by upregulating the
NF-«kB target gene Cxcl2. Murine jejunum upregulated Cxcl2
in response to PAM3CSK4 and flagellin, but not in response
to LPS. In addition, the colon expressed Cxcl2 in response to
all of these 3 tested ligands [44]. In contrast, human organoids
from all regions expressed the human Cxc/2 analogue /L-8 in
response to flagellin, but not in response to LPS and
PAM3CSK [44]. Thus, not only expression but also function
of PRRs in the gut is highly organized and segment-specific.
These experiments were conducted by adding the stimulus to
the organoid medium, thus only stimulating the basal side,
since the apical side faces the sealed-off lumen of the
organoids. Other experiments demonstrated that there is an
even higher level of organization, since PRR expression with-
in a segment can be restricted to specific cell types or even
subcellular locations, such as only the basal compartment.
These are outlined in more detail below.

Every region of the GI tract expresses its specific set of innate
immune genes. Although a generalization is difficult, the current
data suggest that TLRs are expressed most highly in the stomach
and colon, while the small intestine is characterized by expres-
sion of inflammasome components. Currently, the underlying
molecular mechanism and the evolutionary benefit are unclear.

NAIP

We suspect that the physical and chemical barriers covering the
epithelial layers in the different gut segments each require mon-
itoring of specific threats. For example, the stomach and colon
both have a bi-layered, thick mucus layer with the inner mucus
layer firmly attached to the epithelial layer, while the small intes-
tine is covered by a thin, viscous mucus layer [46]. The different
constitutions of the mucus layers in turn are likely due to the
different functions of the respective gut segments (digestion vs
nutrient uptake vs water resorption). It is conceivable that the
mucus thickness influences the type of PRRs necessary at the
specific sites.

Specialized cells with immune function
in the epithelium

A long-standing concept in epithelial innate immunity is the
existence of cell type-specific innate immune recognition.
Prototypes of the specialized epithelial cells with defence func-
tion are the microfold (M) cells and the Paneth cells—recently
complemented by a specialized goblet cell, the sentinel goblet
cell. The existence of such specialized cells highlights the intri-
cate and redundant systems that ensure the balance of nutrient
uptake, co-existence with the microbiota, and monitoring of pos-
sible invaders. Directed differentiation of organoids now also
allows the study of these cells in cell culture.
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M cells are located in the follicle-associated epithelium
covering the Peyer’s patches. They have a unique morphology
with irregular brush border and reduced microvilli structures.
Their role is to transport antigens in the gut lumen across the
epithelial layer to the underlying lymphoid tissue for regula-
tion of immune responses [47]. M cells themselves as well as
the follicle-associated epithelium were shown to express sev-
eral TLRs [48] (reviewed in [14]). However, M cells have
been difficult to study since there are not many in the epithelial
tissue and they are only found near the complex structure of
Peyer’s patches [47]. Nevertheless, M cells can be generated
in organoid cultures using directed differentiation. For this,
receptor activator of NF-kB ligand (RANKL) is added to the
medium, which upregulates the transcription factor SpiB,
which is characteristic for M cell differentiation [49].
Organoids generated from mice genetically deficient for the
NF-«kB subunit RelB are not able to produce M cells after
stimulation with RANKL, indicating that NF-kB activation
is essential for development of M cells [50]. In human
organoid culture, in addition to RANKL, lymphotoxin and
retinoic acid are crucial for inducing differentiation towards
M cells. These M cells specifically take up enteric viruses like
rotavirus and reovirus, indicating correct phenocopying of the
natural M cell function also in organoid cultures [51]. Future
organoid work will have to continue to unravel the intercon-
nection of epithelial NF-kB signalling, M cell development
and communication with immune cells.

Paneth cells are intermingled with the intestinal stem cells at
the base of the crypt and have long been considered to be the
guardians of the stem cell compartment because they secrete
antimicrobial peptides. For example, Paneth cells secrete alpha-
defensins, a process shown to be regulated by microbial patterns
and innate immune mechanisms [52, 53]. In addition, NOD2,
which was first detected in the crypt region of the murine small
intestine [54], regulates the secretion of several alpha-defensins
by Paneth cells, which in turn leads to activation of adaptive
immunity. Paneth cells also express TLRS and Paneth cell-
enriched organoids express especially high levels of TLRS.
RNA sequencing after stimulation reveals that while normal
small intestinal organoids only express moderate levels of the
TLRS downstream target genes in response to stimulation with
flagellin, such as NF-kB-induced cytokines, organoids directed
to contain high numbers of Paneth cells mount a much stronger
response, indicating that Paneth cells are the main responders to
flagellin in the small intestine [44, 45]. In contrast to target gene
expression, the most dramatic response of Paneth cells (degran-
ulation, extrusion and cell death) is not triggered by stimulation
with TLR ligands rather requires stimulation with the profession-
al immune cell-derived cytokine interferon-gamma [55]. These
results from organoids are in agreement with the observations
showing Paneth cell degranulation and extrusion after interferon-
gamma stimulation in vivo [55]. This elegantly underlines the
system of checks and balances in the epithelial layer.
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Goblet cells are important for epithelial defence because they
produce the glycosylated mucins crucial for the formation of a
mucus barrier on the epithelial layer (reviewed in [56]). In mice,
MUC?2 deficiency results in spontaneous inflammation and in-
creases susceptibility to infection [57, 58]. Recently, a subset of
goblet cells named sentinel goblet cells was described in the
mouse colon. Using tissue explants, the study identified a thick-
ening of the mucus layer in response to exposure to TLR1/2, 4
and 5 ligands, but not to TLR9, NOD1 and NOD2 ligands [59],
in congruence to a previous report of 7/r 2,4 and 5 being
expressed in goblet cells [60]. The authors determined that the
response also depended on the presence of the Nirp6
inflammasome and was independent of mucosal lymphocytes
using tissues from a range of knockout mice [59]. Also, a previ-
ous report had demonstrated the importance of the NLRP6
inflammasome for mucus secretion by goblet cells [61].
Imaging revealed that specific goblet cells located in the apical
regions of the crypt endocytosed fluorescently tagged LPS [59].
These newly termed sentinel goblet cells not only undergo rapid
degranulation and epithelial expulsion after treatment with the
TLR ligands but also transmit a calcium signal to neighbouring
cells via intercellular cytoplasmic bridges formed by gap junc-
tions, likely stimulating other goblet cells to increase mucus se-
cretion [59]. Both goblet cells and Paneth cells belong to the
secretory lineage. Organoids allow directed differentiation to-
wards both cell identities, yielding organoids heavily enriched
in either goblet cells or Paneth cells [62]. Comparing
transcriptomes of these skewed organoids helped identify key
regulators of the differentiation pathway [63]. Further analysis
of the omics data as well as functional analysis of these organoids
will allow better understanding of the role of both cell types in
innate immune defence.

Lastly, stem cells themselves have also been reported to ex-
press specific PRRs such as TLR4 [64, 65], which are not found
on the murine small intestinal villi or Paneth cells [66]. In addi-
tion, the majority of Nod?2 expression in the murine crypt appears
be restricted to stem cells [67]. Stimulation with NOD2 ligand
increased survival of stem cells and formation of organoids, in-
dicating that stimulation of PRRs may also regulate gut epithelial
regeneration directly.

Without a doubt, the current efforts to generate atlases of gene
expression covering every cell type in ever more detail will soon
give a more complete picture of the cellular organization of innate
immune signalling in the gut as well as in the entire body [68—71].

Cell polarity and side-specific innate immune
responses

Finally, it is also relevant to consider that gastrointestinal ep-
ithelial cells are highly polarized, with a specialized apical
side facing the lumen of the gut with its microbiota, and a
basolateral side facing the tissue. Under homeostasis,
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MAMPs reach the apical side only. However, when the epi-
thelial barrier is breached, microorganisms can also challenge
the basolateral side. It has thus been hypothesized that epithe-
lial cells may selectively mount a proinflammatory response
only when stimulated from the basolateral side, in order to
match the threat posed by the signal. For example, TLR9
was demonstrated to induce distinct signalling pathways when
stimulated from the apical or basolateral side in cancer cell
lines [72] and TLRS only induced the NF-«kB response gene
IL-8 when stimulated from the basal side [73].

While earlier studies using antibody labelling against TLRs
have reported specific expression on one side only (reviewed in
[14, 16]), analysis of TLR reporter mice using staining of an HA
tag did not confirm this, but instead demonstrated TLR2, 4 and 5
receptors on both apical and basal sides of the proximal colon as
well as some intracellular TLR4 [45]. These apparent differences
are likely due to the different technical approaches.

Organoids now allow direct functional testing of side-specific
immune responses, since the cellular polarization is retained in
organoids. Under standard conditions when organoids are grown
in an extracellular matrix, the apical side faces the lumen of the
organoid and the basal side faces the extracellular matrix [74-76].
When grown outside an extracellular matrix, the polarity can
reverse [77, 78]. When cells from organoids are seeded onto
standard cell culture surfaces, such as culture dishes or transwells,
the apical side faces the lumen of the well [44, 79-82].

Several studies used organoids to test the general func-
tion of particular PRRs without addressing specific differ-
ences between apical and basal stimulation. These studies
included the stimulus in the medium of the organoids,
which, under standard conditions, stimulates the basal side
of the cell. Using this technique, upregulation of NF-kB
downstream target genes was identified after basal stimula-
tion with ligands of TLR4 in the stomach, TLR2 and 3 in
the small intestine and TLR2, 3, 4 and 5 in the colon of mice
[44, 45, 83] and to ligands of TLR2 and 5 in the stomach
and TLRS in the small intestine and colon of human [44].
Furthermore, basal stimulation of murine colon organoids
with TLR4 agonists induced cellular differentiation, espe-
cially towards the secretory lineage [64], while NOD2 ag-
onists induced increased survival of stem cells [67, 84], and
taurine stimulated NLRP6-dependent upregulation of the
inflammasome downstream target gene IL-18 [85]. In all
these studies, apical stimulation was not tested.

Only few studies have addressed the side-specific functions of
PRRs. It is noteworthy that contrary to the studies using polarized
cancer cell lines, so far, none of the studies using organoids has
identified a side-specific activation of a typical NF-kB-dependent
proinflammatory gene. Transwell monolayers derived from hu-
man colon organoids express similar levels of the NF-«B target
gene IL-6 when stimulated from the apical or basal side with
ligands of TLR1/2, 3, 4, 5, 7/8 and 9 [82]. Murine gastric
organoids also responded to an apical stimulation with the

TLR4 ligand LPS in several assays, including in transwells and
microinjection of LPS into the lumen of organoids [44]. Murine
small intestinal epithelial cells did not express the NF-«kB target
gene icaml in response to a range of ligands, irrespective of
whether they were added to intact organoids, thus stimulating
the basal side, or added to single, dissociated cells, thus stimulat-
ing all sides [55].

However, looking beyond the NF-kB response, a recent study
identified a side-specific function of TLR3 and its importance in
viral infection [82]. Results of experiments with human colon
organoid-derived monolayers showed that the expression of the
critical virus-defence genes type I and type III interferon was
upregulated after basal stimulation with TLR3 agonist, but not
after stimulation with other TLR agonists. When infected with a
virus, similarly, the interferon response of the organoids was
much stronger when infected from the basal side compared to
infection from the apical side. This was visible in organoid-
derived monolayers as well as in organoids microinjected with
the virus. The study further identified the clathrin-sorting adapter
AP-1B as the molecule responsible for polarized expression of
TLR3. Correspondingly, mice deficient in Ap-/b showed exac-
erbated immune responses after viral infection [82]. This con-
firms the polarized function of PRRs and highlights the impor-
tance of this level of regulation in further modulating pathogen
recognition and defence.

So far, there is no “one size fits all” answer to the polarity
question and resolving the side-specific nature of PRR signal-
ling remains a technically challenging task for the future.

Tolerance as a response to colonization
and as a default developmental program

The mechanisms contributing to the organization of epithelial
innate immunity are still unclear. The main concept in this
regard has been the induction of tolerance after colonization
of the sterile gut during birth, the so-called window of oppor-
tunity (reviewed in [86—88]). This concept postulates a prim-
ing period of the innate and adaptive immune system after
birth, which sets the stage for immune homeostasis and sub-
sequent host-microbial interactions.

The neonatal immune system and epithelial innate im-
munity are uniquely equipped to master this transition
from sterility to co-existence with the microbiota. At
birth, the human neonatal intestine is fully mature with
intestinal villi and crypts containing Paneth cells. The
murine neonatal intestinal epithelial layer is more imma-
ture and undergoes a dramatic change measurable on the
transcriptome level comparing different stages of devel-
opment [89] and visible in the tissue architecture and cell
differentiation: The crypt-villus axis is not formed yet and
cell proliferation is lower, with no cell migration or exfo-
liation. It does not contain mature Paneth cells; however,
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enterocytes produce the cathelicidin-like antimicrobial
peptide (CRAMP) [90]. Paneth cells appear when crypts
form 2 weeks after birth [91]. At the time of weaning, the
epithelium is fully formed with crypts and villi,
enterocytes, goblet cells and enteroendocrine cells;
Paneth cells have taken over the antimicrobial peptide
production; and goblet cells have increased the production
of mucins to form the mucus layer (reviewed in [92]).

This age-dependent transition of the epithelium goes hand
in hand with a gradual decrease of TLRS expression in the
small intestinal epithelium. At the same time, expression of
TLR3 increases during the neonatal period. Other PRRs, such
as TLR2, 4 and 9, are expressed at similar levels in neonatal
and adult mice [45, 93].

The mechanisms leading to regulation of PRR expres-
sion and function after birth remain unclear. As men-
tioned above, several studies have proposed a contribution
of the environment, in particular microbial colonization,
to the regulation of PRR expression after birth [40, 41]
(reviewed in [14]). However, germ-free vs specific
pathogen-free mice did not show differences in TLR ex-
pression in either small intestine or colon, indicating that
neither upregulation of TLR3 nor downregulation of
TLRS in this early period depends on the microbiota
[45, 93]. Also, in organoids, expression of many, but
not all, PRR signalling components was already defined
in organoids from tissues that had never been in contact
with microbial products [44]. This indicates that a large
part of the organization of the innate immune signalling
pathways is defined independently of contact with the
microbiota and appears to be determined by default de-
velopmental processes, such as the ones outlined above,
which shape the general tissue identity along the GI tract.
This does not exclude a further fine-tuning of PRR ex-
pression by environmental factors during adulthood.

The importance of the timely regulation of epithelial-
microbial interactions becomes clear when the immature
epithelium is prematurely confronted with microbial col-
onization: pre-term infants are prone to the development
of necrotizing enterocolitis (NEC), characterized by intes-
tinal necrosis, systemic sepsis and multiple organ failure.
Although the pathogenesis is considered multifactorial,
several studies have indicated that it develops in response
to an imbalance between proinflammatory signalling and
repair mechanisms in the premature gut (reviewed in [94])
and a contribution of PRRs has been suggested [41, 65,
95-97]. Several studies have used human fetal organoids
[24, 98, 99], normal murine organoids exposed to bacteria
and hypoxia to model NEC [100], or organoids from a
murine NEC model as well as from NEC patients [101].
Future studies will use these established and new
organoid models to further define the contribution of the
epithelium in NEC.

@ Springer

Modelling epithelium-dependent aspects
of IBD with organoids

Loss of intestinal epithelial barrier integrity is a defining feature
of IBD, i.e. CD and UC, and seems to be caused by a multifac-
torial interplay of genetic predisposition, environmental factors,
changes of gut microbiota and alterations of the local and sys-
temic immune response (reviewed in [27]). Current therapeutics
predominately target the (aberrant) immune responses in IBD,
which are associated with high rates of non-responders and side
effects (reviewed in [27]). An improved understanding of the
epithelium-specific contribution to the pathophysiology of IBD
is required to identify novel therapeutic targets that may also be
able to directly impact intestinal epithelial barrier restoration and
thus mucosal healing.

To gain insights into the epithelial pathology, several groups
have established living biobanks comprised of organoids gener-
ated from individual patients with UC or CD. Although this
approach is obvious, so far, only few studies have reported results
from organoids derived from this group of patients [102—104].
This may be explained by the observation that organoids from
patients with IBD are more difficult to generate. Our own expe-
rience is that organoids generated from CD patients grow more
slowly during the first passages and some samples were lost—
which was associated with a higher rate of bacterial contamina-
tion in the cultures [105].

Characterization of organoids derived from patients with IBD
revealed a phenotype with decreased size and budding capacity,
increased rate of cell death, luminal debris and partially inverted
polarization of epithelial cells [106]. Global comparison of
organoids from UC or CD patients and healthy controls showed
that transcriptional and methylation differences seen in the intes-
tinal epithelium were maintained in vitro [102, 103, 107]. Also,
an earlier study from organoids generated from patients with CD
suggested permanent alterations of intestinal stem cells in IBD.
This was based on the observation that organoids generated from
active CD lesions maintained high expression levels of intestinal
epithelial stem cell markers [108]. This was to some extent con-
firmed in a recent study in which colon organoids derived from
paediatric IBD patients showed a prolonged-expression pattern
of antigen-presenting genes [109].

Focusing on changes of intestinal epithelial barrier func-
tion, including loss of tight junctions and desmosomes, which
are usually found in IBD [110], it was shown that organoids
from CD patients maintain this phenotype of junctional alter-
ations under culture conditions [105]. This was especially the
case when organoids were generated from sites of severe in-
flammation [105]. A decrease in junctional proteins could also
be induced in organoids from healthy donors by application of
the proinflammatory cytokine TNF-o and/or IFN-y [106,
111]. However, the fixed pattern of changes of junctional
proteins in organoids from patients with IBD was observed
only on the protein level but not on the mRNA level [105].
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These observations suggest that a number of changes are
fixed in organoids from IBD patients. The observation that
some, but not all, permanent changes are only visible on pro-
tein, but not RNA-level, suggests that there are permanent
alterations in post-transcriptional modifications or protein
degradation in organoids from IBD patients. This however
remains to be investigated in detail.

What exactly induces the permanent alterations in expres-
sion patterns of the inflamed epithelium is unclear. An effect
of the microbiota was long suspected; however, a recent study
demonstrated that the effect of the microbiota on the epitheli-
um is lost over time [112]. The study compared several mouse
facilities, because the different microbiome compositions of
mouse colonies have been identified as confounding factors in
in vivo studies. To clarify this effect, the study compared
epithelial isolates and organoid cultures from germ-free mice
and two separate specific pathogen-free mouse colonies with
different microbiota. While the freshly isolated epithelium
showed an imprint of the microbiota exposure on RNA and
protein level, this effect was lost after several weeks of culture
of small intestinal organoids [112]. Also, a global comparison
of gene expression of organoids generated from inflamed or
non-inflamed regions of the same IBD patients demonstrated
that the IBD organoids of the inflamed regions lost the inflam-
matory gene expression already after a few weeks in culture.
The transcriptomes of the organoids were then clustered per
patient; thus, the permanent differences between IBD and
healthy controls remained. The inflammatory phenotype in
the IBD organoids could then be re-induced by addition of a

cytokine cocktail [107]. Overall, this suggests that permanent
changes observed in organoids from IBD patients are inde-
pendent of contact with microbiota or cytokines.

Thus, although it is reasonable to speculate that some of the
permanent changes in intestinal epithelial cells from patients
with IBD may be caused by changes in innate immune sig-
nalling, the evidence for this is currently scarce. In addition,
not all of the epithelial changes observed in the inflamed re-
gions in the gut are permanently conserved in the purified
epithelium, indicating important contributions from the local
environment. In the future, new studies with more complex
organoid models, also incorporating immune cells, inflamma-
tory cytokine stimulation and co-cultures with microorgan-
isms, should help to address this hypothesis in more detail.

Conclusions, future perspectives and outlook

In summary, while many diseases within the GI tract remain
incompletely understood, increasing evidence points to a crit-
ical role of the gastrointestinal epithelium in the pathogenesis
of many of them—although its specific role remains unclear.

The limited knowledge of innate immune function of the
gastrointestinal epithelium has been attributed to a lack of
appropriate experimental models. With the implementation
of the organoid technology, a major step has been taken to
overcome this problem. Organoids generated from each re-
gion of the gastrointestinal tract will add significantly to the
existing knowledge. As revealed by previous studies, the

Q,—\_*af&

vY vy

More complex models
€.g. organ-on-a-chip
@ ¢

e}
’6

Co-culture with immune cells
il o

o[ To ole Tole]
©00090c%0

Infection modeling

Fig. 4 The use of organoids for the study of epithelial innate immunity.
Clockwise: Organoids have been generated from different segments of
the gastrointestinal tract and have been shown to retain tissue identity.
Organoids from patients can be stored in biobanks to enable research on
specific pathologies such as IBD. Using culture modifications, the cells in
organoids can also be directed towards specific cell identities, such as
secretory cells, enterocytes and M cells. Because organoids retain the
polarity of the cells, they also allow testing of apical and basal

Site-specific organoids

Biobanks of organoids

Directed differentiation _,{:3;’

N
©

Apical/basal functional tests

N i v
% No contact to microbial compounds ’

stimulation. For this, cells can be seeded in transwell systems.
Organoids are a reductionist model, which is not in contact with
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immune cells in co-culture experiments. In the future, more complex
models will also allow combinations of several organoid types in
microfluidic lab-on-a-chip devices
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generation of organoids provides the crucial advantage of be-
ing able to observe responses of primary gastrointestinal cells
as opposed to transformed cell lines, which are mostly gener-
ated from gastrointestinal malignant tumours. One of the most
fascinating and interesting features of organoids is that they
maintain specific characteristics of the segment of the gastro-
intestinal tract they were generated from as part of their cell
identity during adulthood. According to current experimental
studies, the regional identity is fixed in the gastrointestinal
stem cells. In this context, a remaining issue will be to deter-
mine exactly how and when during development this intrinsic
programming occurs.

When looking at specific concepts of how the epithelium
may respond to or interact with the environment, organoid
technology has now enabled illumination of the differential
and segment-specific expression and function of PRRs within
the gastrointestinal epithelium. The overall functional conse-
quences for the complex regulatory systems within the whole
gastrointestinal tract are still unclear and will have to be ad-
dressed in the future. For this, it will also be important to co-
culture organoids with immune cells (reviewed in [113]), cells
of the enteric nervous system [114] and luminal factors such
as bacterial co-cultures (reviewed in [115]) (Fig. 4).

A further important aspect is that organoids generated from
patient tissue affected by GI diseases such as IBD maintain some
of the characteristics seen in the corresponding tissue specimens
they were derived from. This offers the unique possibility to
further unravel the epithelium- and disease-specific contribution
to the pathogenesis of GI diseases—not only those involving
inflammation-induced changes but also those involving changes
in malignant diseases. Both of them may turn out to involve a
specific contribution of epithelium-derived innate immunity. For
this, the systematic establishment of “living biobanks” would be
an important step. As a vision for the future, such living biobanks
could be attached to already existing biobanks, which currently
provide solely “dead” biomaterials. This would represent another
important step not only for research but also in facilitating indi-
vidualized diagnostics and therapy for patients.

Box 1. Innate immunity and epithelial cells in the GI tract

In homeostasis, it is likely that due to the mucus layer, which poses a
diffusion barrier, only low concentrations of MAMPs reach the
epithelial layer [59]. At these low, MAMPs seem not to elicit a
proinflammatory response but still impact the epithelial cells in several
ways. Mice deficient for either TLR2, 4, 5, and 9, the TLR-pathway
mediator MyD88 or the NLRP6 inflammasome are highly susceptible
to experimentally induced colitis [116—119]. Mice devoid of TLR2 or
MyD88 show disrupted tight junctions, more apoptotic epithelial cells
and higher barrier permeability [116]. NLRP6 deficiency leads to re-
duced mucus secretion [61]. Mice devoid of NOD2 show higher epi-
thelial cell death rates after treatment with doxorubicin, indicating that
they are more susceptible [67]. In line with this observation, patients
with mutations in the NOD2 gene are predisposed to develop IBDs
especially CD [120]. While these studies clearly point to the impor-
tance of innate immune signalling for epithelial homeostasis, it is
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unclear whether the observed impact is due to the innate immune
signalling in epithelial cells or in professional immune cells.

To disentangle the interplay of professional immune cells and epithelial
cells, several studies have used epithelium-specific knockouts, or more
recently, epithelial organoids. In mouse models, none of the
epithelial-specific deletions of PRRs leads to spontaneous inflamma-
tion. However, mice with epithelial-specific knockout of MyD88 are
more susceptible to experimental colitis and show severe barrier
disruption, impaired goblet and Paneth cell responses [121] and re-
duced production of mucin and antimicrobial peptides [121, 122].
Small intestinal organoids do not mount an inflammatory response to
several purified PRR ligands [55], although this cannot be generalized
and depends on the species, location and age of the tissue the organoids
are generated from [44, 45].

The absence of a spontaneous inflammatory phenotype in epithelial
cell-specific PRR knockout models does support the hypothesis that
factors other than a general inflammatory response of the epithelium
have an impact on epithelial homeostasis. For example, stimulation
with the NOD2 agonist muramyl dipeptide (MDP) increased the
number of organoids growing out of isolated stem cells, indicating that
the innate immune signalling supported survival of the stem cells [67,
84]. Furthermore, data from mice highlight the importance of the
anti-apoptotic effects of NF-«B signalling in response to other stimuli,
such as TNF-« [123]. Interestingly, in humans, polymorphisms in
innate immune genes including NOD2 and TLR4 are associated with
an increased risk to develop IBD [124] and blockage of TNF-« is
currently the most efficacious treatment for IBD in some patients
(reviewed in [125]).

A picture emerges, in which a low level of innate immune stimulation is
important for mucus secretion, barrier integrity and epithelial cell
survival. Its impairment may allow translocation of intestinal bacteria
from the lumen into the subepithelial tissue, leading to inflammation.
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