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Abstract
Cholesterol is an essential plasma membrane lipid for the maintenance of cellu-
lar homeostasis and cancer cell proliferation. Free cholesterol is harmful to cells; 
therefore, excessive free cholesterol must be quickly esterified by acetyl-coenzyme 
A:cholesterol acetyltransferase (ACAT) and exported by scavenger receptor class B 
member I (SR-BI) or ATP-binding cassette protein A1 from specific cells such as mac-
rophage foam cells, which contain cholesteryl ester-derived vacuoles. Many vacuoles 
are present in the cytoplasm of Burkitt lymphoma cells. In this study, we observed 
that these vacuoles are often seen in high-grade lymphomas. Cell culture study using 
lymphoma cell lines found that esterified cholesterol is the main component of these 
vacuoles and the expression of cholesterol metabolism-related molecules was signifi-
cantly upregulated in lymphoma cell lines, with SR-BI and ACAT inhibitors (BLT-1 and 
CI-976, respectively) impeding lymphoma cell proliferation. Cytoplasmic free choles-
terol was increased by ACAT and SR-BI inhibitors, and the accumulation of free cho-
lesterol induced lymphoma cell apoptosis by inducing endoplasmic reticulum stress. 
Furthermore, synergistic effects of SR-BI and ACAT inhibitors were observed in a pre-
clinical study. Treatment with SR-BI inhibitor suppressed lymphoma progression in a 
tumor-bearing mouse model, whereas ACAT inhibitor did not. Therefore, SR-BI inhibi-
tors are potential new antilymphoma therapeutics that target cholesterol metabolism.
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1  |  INTRODUC TION

Non-Hodgkin lymphoma, including Burkitt lymphoma, DLBCL, and 
ATLL, are highly aggressive lymphomas that have difficult clinical 
courses.1 The overall survival of patients with Burkitt lymphoma 
and DLBCL is significantly improved by additional treatment with 
rituximab,2,3 although relapsed leukemia/lymphoma is resistant to 
this treatment, and novel therapeutic strategies are now in clinical 
trials. Adult T-cell leukemia/lymphoma is associated with retroviral 
infections, such as human T-cell leukemia virus type I or human T-cell 
lymphotropic virus type I. Outcomes from aggressive types of ATLL 
are poor, even when new anti-CCR4 Abs are used as an additional 
treatment.4 In addition, most cases of PCNSL are high-grade DLBCL 
and standard therapeutic protocol is chemotherapy with HD-MTX, 
combination therapy with rituximab, and WBRT. However, the 
5-year overall survival with combined HD-MTX and WBRT is ap-
proximately 20%.5,6 Therefore, the detailed mechanisms underlying 
the resistance of aggressive lymphomas to antilymphoma therapies 
should be identified to guide the treatment of lymphoma.

Cholesterol is one of the main components of cell membranes 
and is a precursor of bile acid and steroidogenic hormones.7 It is 
transported around the body in its bound form: LDL, or HDL. Low-
density lipoprotein is delivered into cells through receptor-mediated 
endocytosis by the LDLR, while ABCA1 and SR-BI are involved in 
cholesterol transport mediated by HDL binding. Cholesterol uptake 
and its metabolic upregulation are important factors in cancer cell 
growth and proliferation.8 Low-density lipoprotein receptor and 
the cholesterol synthesis enzyme HMG-CoA reductase are overex-
pressed in cancer cells, including leukemia/lymphoma cells.9 Excess 
free cholesterol is harmful to cells10,11; therefore, free cholesterol 
needs to be quickly esterified to CE by ACAT. The efflux of accu-
mulated free cholesterol is a mechanism for regulating cholesterol 
homeostasis. Many researchers have attempted to treat cancer cells 
with ACAT or HMG-CoA reductase inhibitors. In brain cancers, an 
LXR agonist promotes tumor cell death by inducing LDLR downreg-
ulation and increasing ABCA1 expression, and the antitumor effect 
of the LXR agonist is observed in a preclinical model.12,13 Therefore, 
targeting cholesterol metabolism could be a promising approach to 
cancer therapy; however, the effects of these drugs in treating can-
cers, including leukemia/lymphoma, are currently limited.

Many vacuoles are detected in the cytoplasm of Burkitt lym-
phoma cells, which are important characteristics in morphological 
diagnosis.14 Similarly, intracytoplasmic vacuoles are also observed 
in some circulating ATLL cells15; however, their components are un-
characterized. Comparable vacuoles composed of accumulated CE 
are observed in foamy macrophages, which are the primary indica-
tors of atherosclerosis.16 Therefore, the lymphoma vacuoles might 
contain large amounts of cholesterol and play an important role in 
cell proliferation. Targeting cholesterol metabolism could be an ef-
fective antilymphoma therapy.

In the present study, we observed vacuoles in high-grade lym-
phomas and hypothesized that these vacuoles reflected excessive 

cholesterol uptake with a high accumulation of CE. Molecules re-
lated to cholesterol homeostasis were overexpressed in several T-
cell and B-cell lymphoma cell lines, including PCNSL. Interestingly, 
an SR-BI inhibitor induced lymphoma cell apoptosis and prolonged 
survival in a preclinical model. The SR-BI inhibitor also synergisti-
cally increased the cytotoxic effects of the ACAT inhibitor. The pres-
ent study indicated that blocking cholesterol efflux could be a novel 
antilymphoma strategy.

2  |  MATERIAL S AND METHODS

2.1  |  Patients and samples

Touch imprint cytology samples were obtained from lymph node bi-
opsies from 92 patients diagnosed with follicular lymphoma (n = 15), 
ATLL (n = 23, lymphomatous type), or DLBCL (n = 54) from 2005 to 
2014 at Kumamoto University Hospital and Saitama Medical Center 
of Saitama Medical University. Touch imprint cytology samples were 
obtained from the brains of 11 patients diagnosed with PCNSL from 
2001 to 2012 at Kumamoto University Hospital. Written informed 
consent was obtained from all the patients. The study design and 
protocols were approved by the Kumamoto University Review Board 
(#1174) and Saitama Medical University Review Board (#1965). 
Intracytoplasmic vacuoles were evaluated in 10 randomly selected 
areas of high-power field of a microscope by two pathologists who 
were blinded to information about the patients’ backgrounds or their 
prognosis.

2.2  |  Cells and cell culture conditions

Human ATLL cell lines (ATN-1, ED, ATL-T, ATL-2s, ATL-35T, and MT-
1), EBV-infected B cell lines (103-LCL and 141-LCL), B cell lymphoma 
cell lines (DAUDI, BALL1, TL-1, RAJI, and SLVL) and PCNSL cell lines 
(HKBML and TK) were maintained in RPMI supplemented with 10% 
FBS. ED, ATL-T, ATL-2s, ATL-35T, and MT-1 cells were previously es-
tablished by Matsuoka and Wakutani,17,18 and other cell lines were 
purchased from the RIKEN Cell Bank.

Peripheral blood mononuclear cells were acquired from healthy 
volunteer donors. Written informed consent for sample collection 
and subsequent analysis was obtained. All protocols using human 
macrophages were approved by the Kumamoto University Hospital 
Review Board (No. 486) and carried out in accordance with the ap-
proved guidelines.

2.3  |  Cell staining

May–Grünwald–Giemsa and Sudan black B were purchased from 
Wako Chemicals, while Filipin III was obtained from Sigma-Aldrich. 
Staining was carried out according to the manufacturer’s protocol.
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2.4  |  Electron microscopy

The following cells were cultured with or without 40 μg/ml LDL for 
24 h, cells were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate 
buffer for 1 h and postfixed in 1% osmium tetroxide. After the dehy-
dration in a graded series of ethanol solutions with propylene oxide 
and embedding in Epon 812, ultrathin sections were cut with an ul-
tratome, stained with uranyl acetate and lead citrate, and observed 
with a Hitachi H-7700 electron microscope (Hitachi).

2.5  |  Chemicals

The ACAT inhibitor CI-976 was purchased from Santa Cruz Biotechnology. 
The SR-BI inhibitor BLT-1 was purchased from Sigma-Aldrich. Lipoprotein-
deficient serum was purchased from Johnson Matthey. Human LDL and 
HDL were purchased from Biomedical Technology.

2.6  |  Cytotoxicity assay

Cell viability was determined with a water-soluble tetrazolium salt 
(WST-8) colorimetric assay using a CCK-8 (Dojindo). Cells were cul-
tured in a 96-well plate (approximately 10,000–20,000 cells/well) for 
1–2 days and then subjected to the indicated treatments. After treat-
ment, 10 µl WST-8 solution was added to each well and incubated for 
30–60 min. Absorbance at 450 nm was measured using a microplate 
reader (SpectraMax i3x system; Molecular Devices). The culture me-
dium containing WST-8 without cells was used to set the background 
threshold, while culture medium containing WST-8 with cells was used 
as a control. Cell viability was determined with the following formula: Cell 
viability (%) = (sample − background) / (control − background) × 100.

2.7  |  Apoptosis assay

Activation of caspase-3/7 was measured by the Amplite Fluorimetric 
Caspase 3/7 Assay Kit (AAT Bioquest), according to the manufac-
turer’s protocol.

2.8  |  Intracellular lipid analysis

Intracellular total cholesterol, free cholesterol, and triglyceride 
analyses were carried out using the cholesterol E test, the free 
cholesterol E test, and the triglyceride E test, respectively (Wako 
Chemicals), according to the manufacturer’s protocol.

2.9  |  Real-time quantitative PCR

Total RNA was isolated using RNAiso Plus reagent, and reverse-
transcribed using the PrimeScript RT reagent kit (Takara Bio). 

Real-time quantitative PCR was carried out using TaqMan polymer-
ase with SYBR green fluorescence (Takara Bio) and an ABI PRISM 
7300  sequence detector (Applied Biosystems). The primer se-
quences are described in Table S1.

2.10  |  Western blot analysis

Cells were lysed in ice-cold lysis buffer supplemented with pro-
tease inhibitor cocktail (Sigma-Aldrich). Polyvinylidene fluoride 
membranes were incubated with primary Abs such as anti-ACAT1 
(GTX102637; Cene Tex), anti-SREBP2 (ab30682; Abcam), anti-lamin 
a/c (4777; Cell Signaling Technology), anti-GRP78 Bip (3177; Cell 
Signaling Technology), anti-ATF6 (65880; Cell Signaling Technology), 
anti-eIF2α (9722; Cell Signaling Technology), anti-phospho-eIF2α 
(9721; Cell Signaling Technology), anti-IRE1α (Ab48187; Abcam), 
anti-JNK (9258; Cell Signaling Technology), anti-phospho-JNK (9251; 
Cell Signaling Technology), anti-p38  MAPK (8690; Cell Signaling 
Technology), anti-phospho-p38  MAPK (4511; Cell Signaling 
Technology), anti-SR-BI (NB400-104; Novus Biologicals), anti-ABCA1 
(NB400-105; Novus Biologicals), anti-LDLR (ab52818; Abcam), anti-
phospho-IRE1 (ab48187; Abcam), and anti-β-actin (sc-47778; Santa 
Cruz Biotechnology). Horseradish peroxidase-conjugated goat anti-
mouse IgG (7076; Cell Signaling Technology) or HRP-conjugated 
goat anti-rabbit IgG (7074; Cell Signaling Technology) was used as 
the secondary Ab. Immunoreactive bands were visualized using a 
Pierce western blotting substrate plus kit (Thermo Fisher Scientific) 
and an ImageQuant LAS-4000 mini (Fujifilm).

2.11  |  Lymphoma tumor-bearing mouse model

SCID mice (6–8 weeks old) were purchased from Charles River Japan. 
ED cells (2 × 106 cells/mouse) were suspended in 100 µl RPMI and 
injected s.c. into SCID mice. CI-976 and BLT-1 were intraperitoneally 
administered on days 14–32 or on days 10–36 after the injection of 
ED cells. Nude mice (6–8 weeks old) were purchased from Charles 
River Japan. HKBML cells (5 × 105 cells/mouse) were suspended in 
5 µL RPMI and injected into the brain. BLT-1 was intraperitoneally 
administered on days 7–29 after the injection of HKBML cells. All 
animal experiments were approved by the Ethics Committee for 
Animal Experiments of Kumamoto University (Permission Number: 
B24-125) and carried out in accordance with the Guidelines for 
Animal Experiments of Kumamoto University.

2.12  |  Statistics

All data are representative of two or three independent experiments. 
Data are expressed as mean ± SD. Differences between the groups 
were examined for statistical significance using the Mann–Whitney 
U-test and nonrepeated measures ANOVA with Bonferroni’s test. 
Overall murine survival was assessed using Kaplan–Meier analysis 
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and compared using the log–rank test. Statistical significance was 
set at p < 0.05.

3  |  RESULTS

3.1  |  Intracytoplasmic vacuoles observed in 
lymphoma cells have high malignant potential

We first examined the cytoplasmic vacuoles in the touch imprint cy-
tology samples; we divided the cases into two groups according to 
the percentage of vacuole-positive lymphoma cells (negative, none 
or <5%; positive, ≥5%). Follicular lymphoma is low-grade/indolent, 
whereas ATLL and DLBCL are aggressive subtypes of lymphoma. 
Lymphoma cells with intracytoplasmic vacuoles were detected in 
57.4%, 69.5%, and 13.3% of DLBCL, ATLL, and follicular lymphoma 
cases, respectively (Figures 1A and S1A). Cytoplasmic vacuoles were 
also observed in 6 of 11 PCNS lymphoma patients (Figure 1A). Those 
cytoplasmic vacuoles were positively stained with Sudan black, indi-
cating that lipid was contained in the vacuoles (Figure 1B). Patients 
with vacuole-positive DLBCL had significantly shorter survival times 
than those without vacuoles (Figure 1C). However, the presence of 
vacuoles was not associated with the GCB/non-GCB subtype, serum 
sIL-2R, or serum LDH (Figure S1). These observations suggested 
that intracytoplasmic vacuoles were often present in high-grade 
lymphomas.

3.2  |  Excessive LDL uptake induces vacuole 
formation in lymphoma cells

Next we examined whether intracytoplasmic vacuoles were de-
tected in lymphoma cell lines. The cytoplasmic vacuoles were ob-
served in all ATLL cell lines and PCNSL cell lines, and in two of five 
B-cell lymphoma cell lines (Figure  2A,B and Table  1). Cytoplasmic 
vacuoles were also positively stained with Sudan black and Filipin III 
(Figures 2C and S2A). In this study, T lymphocytes stimulated by the 
anti-CD3 Ab and anti-CD28 Ab (activated T cells), B lymphocytes (B 
cells), and B lymphocytes transformed by EBV (141- and 103-LCL 
cells) were used as nonlymphomatous control cells. No positive-
stained vacuoles were seen in normal T lymphocytes, normal B lym-
phocytes, or one of the two EBV-transformed B cell lines (Figure 2C).

We then investigated whether similar vacuoles could be induced 
by treatment with lipoproteins such as LDL and HDL under LPDS con-
ditions. We found that treatment with LDL induced lipid accumulation 

and the appearance of vacuoles in lymphoma cell lines, but HDL did 
not induce lipid accumulation (Figure 2D,E). As summarized in Table 1, 
lipid accumulation was observed in all of the ATLL cell lines, one of the 
two EBV-transformed B cell lines, two of the five B-cell lymphoma cell 

F I G U R E  1  Lipid accumulation in lymphoma cells. (A) 
Cytoplasmic vacuoles in adult T-cell leukemia/lymphoma (ATLL), 
diffuse large B-cell lymphoma (DLBCL), and primary central 
nervous system lymphoma (PCNSL) cells. (B) Detection of lipid 
accumulation in lymphocytes by Sudan black B staining. (C) Kaplan–
Meier estimates comparing the overall survival rate between 
vacuole-positive (+) DLBCL and vacuole-negative (−) DLBCL

F I G U R E  2  Low-density lipoprotein (LDL) induces cholesterol accumulation in lymphoma cells. (A) Giemsa staining of human adult T-cell 
leukemia/lymphoma cell line (ED), human B cell lymphoma cell line (DAUDI), and human primary central nervous system lymphoma cell 
lines (HKBML and TK). (B) Electron microscopy images of lymphoma cell lines. (C) Detection of lipid accumulation in lymphoma cell lines by 
Sudan black B staining. (D) Microscopy of Sudan black B stained cells to determine the lipid accumulation of lymphoma cells incubated with 
LDL (40 μg/ml) or high-density lipoprotein (HDL; 40 μg/ml) for 24 h under lipoprotein-deficient serum (LPDS, 2.5%) conditions. (E) Electron 
microscopy of DAUDI and TK cells treated with LDL (40 μg/ml) for 24 h. (F) Total cholesterol (chol) and free cholesterol of lymphoma cells 
following incubation with LDL (40 μg/ml) for 24 h. (G) 3[H] cholesteryl ester (CE) in lymphoma cells following incubation with LDL (40 μg/ml) 
in the presence of 3[H]oleate for 24 h
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lines and two of the two PCNS lymphoma cell lines. Furthermore, the 
uptake of LDL induced the accumulation of both free cholesterol and 
CE in lymphoma cells (Figure 2F,G and Table 1), whereas the content 

of triglyceride in lymphoma cells was not changed by the uptake of 
LDL (Figure S2B). This indicated that intracytoplasmic vacuoles were 
associated with cholesterol accumulation in lymphoma cells.
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3.3  |  Upregulation of cholesterol metabolism-
related molecules in lymphoma cells

Significant upregulation of LDLR mRNA and protein was detected in all 
ATLL cell lines, one B cell lymphoma cell line, and two PCNS lymphoma 
cell lines compared with the following nonlymphomatous control cells: 
T lymphocytes stimulated by the anti-CD3 Ab and anti-CD28 Ab (acti-
vated T cells), B lymphocytes (B cells), and B lymphocytes transformed 
by EBV (103-LCL cells) (Figures 3A,B and S3). This suggested that LDLR 
played an important role in cell homeostasis in these lymphoma cell lines.

The LDL uptake induces the downregulation of LDLR expres-
sion in several cell types, including both normal and tumor cells. 

Low-density lipoprotein receptor is regulated by SREBP2, which 
is sensitive to cholesterol content in the ER at the transcriptional 
level.19 Interestingly, the expression of LDLR and SREBP2 was un-
changed in lymphoma cells following LDL stimulation, whereas non-
lymphomatous T cells, the EBV-infected B cell line (141-LCL), and B 
cells showed the downregulation of the expression of both genes 
(Figure 3C,D). This indicated that the abrogation of LDLR downregu-
lation was caused by SREBP2 overexpression in lymphoma cells and 
suggested that LDL metabolism was needed for homeostasis pro-
cesses, such as cell survival and proliferation in lymphomas.

Low-density lipoprotein (40–80  µg/ml) enhanced cell prolifera-
tion in LDLR-overexpressing lymphoma cell lines using LPDS after 
24 h (Figure 3E,F). In contrast, long-term (48 or 72 h) incubation using 
LDL (40–80 µg/ml) with LPDS decreased lymphoma cell viability, and 
the cytotoxicity of excessive LDL was abrogated by HDL (80  µg/ml) 
(Figure 3F). This suggested that HDL inhibited free cholesterol accumu-
lation by inducing cholesterol efflux through SR-BI or ABCA1. There was 
increased SR-BI and ACAT1 expression, and decreased ABCA1 expres-
sion in lymphoma cell lines (Figure 3G). Acetyl-coenzyme A:cholesterol 
acetyltransferase 1, SR-BI, and SREBP2 increased in some lymphoma 
cell lines, whereas HMGCR did not substantially change (Figure S4). 
This suggested that LDLR, ACAT1, and SR-BI played important roles in 
cholesterol metabolism in lymphoma cells, and excessive free choles-
terol was cleared by esterification and the efflux system (Figure 3H).

3.4  |  Acetyl-coenzyme A:cholesterol 
acetyltransferase and SR-BI inhibitors suppressed 
lymphoma cell proliferation in vitro

The ACAT inhibitor (CI-976) and SR-BI inhibitor (BLT-1) inhibited lym-
phoma cell proliferation in a dose-dependent manner (Figure  4A). 
In contrast, these inhibitors had no effect on the viability of acti-
vated T cells, 141-LCL cells, or B cells (Figure 4B). The knockdown 
of SR-BI and ACAT in lymphoma cells also induced cell death and 
reduced lymphoma proliferation (Figure S5). Caspase-3/7 activa-
tion in ATN-1 and ED cells was induced by treatment with either 
CI-976 or BLT-1 (Figure 4C). The caspase inhibitor z-VAD-fmk pro-
tected against cell death induced by treatment with BLT-1 or CI-976 

TA B L E  1  Cholesterol accumulation in lymphoma cells

Lipid 
stain

3[H]-cholesteryl 
ester

T lymphocyte Activated T 
cells

− −

ATLL ATN-1 + +

ED + +

ATL-T + −

ATL-2s + +

ATL-35T + +

EBV-infected B 
cell

103-LCL − −

141-LCL − −

B cell lymphoma DAUDI + +

BALL1 + ND

TL-1 − −

RAJI − +

SLVL − −

PCNS lymphoma TK + +

HKBML + +

Abbreviations: ATLL, adult T-cell leukemia/lymphoma; EBV, Epstein–
Barr virus; ND, Not detected; PCNS lymphoma, primary central nervous 
system lymphoma.

F I G U R E  3  Upregulation of cholesterol metabolism-related factors in lymphoma cells. (A,B) mRNA and protein levels of low-density 
lipoprotein receptor (LDLR) detected by real-time quantitative PCR (A), and western blotting (B), respectively. (C) Activated T cells, Epstein–
Barr virus-infected 141-LCL cells, and B cells were used as controls. LDLR expression of activated T cells, B cells, and lymphoma cells 
following incubation with LDL (40 μg/ml) for 12, 24, 48 or 72 h measured by western blotting. (D) Sterol response element-binding protein 
2 (SREBP2) expression of activated T cells and lymphoma cells following incubation with LDL (40 μg/ml) for 24 h measured by western 
blotting. (E) Cell proliferation of lymphocytes and lymphoma cells following incubation with LDL (40 μg/ml) for 24 h using LPDS. (F) Cell 
proliferation of lymphoma cells following incubation with LDL (80 μg/ml) (circles) or LDL (80 μg/ml) + high-density lipoprotein (HDL) (80 μg/
ml) (diamonds) for 48 h using LPDS. (G) Cholesterol metabolism-related proteins detected by western blotting. (H) Formation of intracellular 
vacuoles or cholesteryl ester droplets reflected the excessive uptake of cholesterol and increased acetyl-coenzyme A:cholesterol 
acetyltransferase (ACAT) activity. Accumulated cholesterol was exported through SR-B1 and converted to HDL. ACAT and scavenger 
receptor class B member I (SR-BI) inhibitors induced the accumulation of free cholesterol, which subsequently induced cell apoptosis due to 
the cytotoxic effects of cholesterol. Data are presented as mean ± SD. * p-value <0.05, ** p-value <0.01 compared with activated T cells, 
103-LCL cells, or LDL (40 or 80 µg/ml) treatment. ABCA1, ATP-binding cassette protein A1; ATLL, adult T-cell leukemia/lymphoma; PCNSL, 
primary central nervous system lymphoma
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(Figure S6). Furthermore, an additive effect was observed after com-
bined treatment with both CI-976 and BLT-1 in ATN-1 and ED cells 
(Figure  4C,D). Similar results were observed in B-cell lymphomas, 
represented by DAUDI, BALL-1, and TK cells (Figure 4E,F). In addi-
tion, CI-976 and BLT-1 synergistically increased the cytotoxic activ-
ity of CBDCA (Figure S7). These findings suggest that cholesterol 
metabolism regulation using ACAT and SR-BI inhibitors could be a 
promising therapy for reducing lymphoma proliferation.

3.5  |  Excessive LDL uptake enhanced the 
antilymphoma effect of ACAT and SR-BI inhibitors

Low-density lipoprotein uptake enhanced CI-976- and BLT-1-
induced cell death in lymphoma cells, whereas there was no effect 
on activated T cell proliferation (Figure 5A). Treatment with both CI-
976 and BLT-1 resulted in a greater accumulation of free cholesterol 
than that observed in the single-inhibitor treatments (Figure  5B), 
and significantly inhibited cell proliferation in the presence of LDL 
(Figure  5C). This showed that the enhanced accumulation of LDL-
derived free cholesterol by ACAT inhibitor blocking free cholesterol 
esterification, and SR-BI inhibitor blocking cholesterol efflux (Figure 
S8), selectively induced cell death in lymphoma cells. In contrast, 
HDL significantly attenuated the suppressive effects of CI-976 on 
lymphoma cell proliferation (Figure 5D), while having no effect on 
activated T cell and lymphoma cell proliferation (Figure  5E). The 
suppressive effects of BLT-1 on lymphoma proliferation were not 
influenced by HDL addition (Figure 5F). These data indicated that 
free cholesterol efflux through the SR-BI-HDL pathway is involved 
in lymphoma cell viability.

3.6  |  Scavenger receptor class B member I inhibitor 
induces ER stress through cholesterol accumulation in 
lymphoma cells

Excess cholesterol accumulation induces ER stress in mac-
rophages.20  The expression of CHOP, a major ER stress response 
protein, and other ER stress response-related proteins, including 
Bip, ATF6, p-eIF2α, and p-IRE1α, was induced in lymphoma cells 
following BLT-1 treatment (Figure  6A,B). In addition, the MAPK 
kinases p38 and JNK were activated in lymphoma cells following 
BLT-1 treatment (Figure 6C), which correlated with previous results 

showing that IRE1α induces apoptosis through the activation of 
p38 and JNK pathways.21 Furthermore, BLT-1-induced cell death 
in lymphoma cells was suppressed by incubation with p38 and JNK 
inhibitors (Figure S9). These data indicated that BLT-1-induced cho-
lesterol accumulation is involved in apoptosis by promoting ER stress 
responses.

3.7  |  Scavenger receptor class B member I inhibitor 
abrogated lymphoma progression and prolonged 
survival in vivo

The effects of i.p. administration of CI-976 and BLT-1 after ED cells 
were injected s.c. into SCID mice showed that BLT-1  significantly 
suppressed tumor development, whereas CI-976 displayed no anti-
lymphoma effects (Figure 7A). Cleaved caspase 3-positive cells were 
increased in s.c. tumor tissues treated with BLT-1 (Figure 7B). BLT-1 
significantly prolonged the survival in the lymphoma-bearing mouse 
model (Figure 7C). In addition, BLT-1  significantly prolonged the 
survival in the PCNS lymphoma-bearing mouse model (Figure 7D). 
Cleaved caspase 3-positive cells were also increased in intracerebral 
tumor tissues treated with BLT-1 (Figure 7E). These results suggest 
that the SR-BI inhibitor could be a promising candidate agent for an-
tilymphoma therapy.

4  |  DISCUSSION

Formation of cholesterol-associated intracytoplasmic vacuoles was 
observed in ATLL and PCNSL cell lines compared with B-cell lym-
phoma cell lines. These intracytoplasmic vacuoles could be associ-
ated with the clinical course of patients with the more aggressive 
ATLL and PCNSL compared with patients with the comparatively 
milder DLBCL, or follicular lymphoma. Furthermore, significantly 
upregulated cholesterol metabolism-related factors ACAT1 and SR-
BI were found in lymphoma cells. The inhibition of SR-BI and ACAT 
caused the accumulation of free cholesterol and suppressed lym-
phoma growth by inhibiting free cholesterol efflux and CE formation 
(Figure S8). The effect of SR-BI and ACAT inhibitors in high-grade 
lymphomas was stronger than that in low-grade lymphoma, indicat-
ing that targeting cholesterol metabolism is an effective therapy for 
high-grade lymphomas (Table S2 and Figure S10). The ACAT inhibi-
tors have anticancer effects in some cancer cell lines22–24; however, 

F I G U R E  4  Effects of acetyl-coenzyme A:cholesterol acetyltransferase and scavenger receptor class B member I inhibitors on 
lymphoma cell proliferation. (A) Proliferation of lymphoma cells following incubation with the indicated concentrations of CI-976 or 
BLT-1 for 24 h. (B) Proliferation of activated T cells, B cells, and Epstein–Barr virus-infected 141-LCL cells following incubation with the 
indicated concentrations of CI-976 or BLT-1 for 24 h. (C) Caspase-3/7 activation of lymphoma cells following incubation with the indicated 
concentrations of CI-976 (10 µM) and/or BLT-1 (10 µM) for 24 h. (D) Proliferation of lymphoma cells following incubation with the indicated 
concentrations of CI-976 (10 µM) and/or BLT-1 (10 µM) for 24 h. (E) Caspase-3/7 activation of lymphoma cells following incubation with the 
indicated concentrations of CI-976 (10 µM) and/or BLT-1 (10 µM) for 24 h. (F) Proliferation of lymphoma cells following incubation with the 
indicated concentrations of CI-976 (10 µM) and/or BLT-1 (10 µM) for 24 h. Data are presented as mean ± SD. *p-value <0.05 compared with 
the control (Cont). RFU, relative fluorescence unit
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no significant therapeutic effects were observed in either the pre-
sent study or in another study using a murine model. Recent in vitro 
and in vivo studies showed that ACAT inhibition abrogates pancre-
atic cancer growth and progression by increasing intracellular free 
cholesterol accumulation, which increases ER stress and apoptosis.25 
Cholesterol ester droplet formation and ACAT1 overexpression are 

observed in clear cell renal cell carcinoma, although the effects of 
ACAT inhibitors has never been investigated.26 Overexpression of 
ACAT1 and SR-BI is observed in nasopharyngeal, breast, and pan-
creatic cancers27–29;  however, few studies have described the up-
regulation or functional significance of cholesterol metabolism in 
lymphoma. Our data provided the first evidence that targeting SR-BI 

F I G U R E  5  Effects of acetyl-coenzyme A:cholesterol acetyltransferase and scavenger receptor class B member I inhibitors on lymphoma 
cell proliferation during incubation with lipoproteins. (A) Proliferation of activated T cells and lymphoma cells following incubation with or 
without low-density lipoprotein (LDL) (40 µg/ml) for 24 h. (B) Total cholesterol (chol) and free cholesterol of ED cells following incubation 
with LDL (40 μg/ml) in the presence of CI-976 and/or BLT-1 for 24 h. (C) Proliferation of lymphoma cells following incubation with both CI-
976 (10 µM) and BLT-1 (10 µM) in the presence of LDL for 24 h. (D) Proliferation of lymphoma cells following incubation with CI-976 (10 µM) 
in the presence of high-density lipoprotein (HDL) (40 µg/ml) for 48 h. (E) Proliferation of activated T cells and lymphoma cells following 
incubation with HDL (40 µg/ml) for 48 h. (F) Proliferation of lymphoma cells following incubation with BLT-1 (10 µM) in the presence of HDL 
(40 µg/ml) for 48 h. Data are presented as mean ± SD. #p-value <0.05, *p-value <0.05 compared with untreated controls

F I G U R E  6  Effects of scavenger 
receptor class B member I inhibitors on 
endoplasmic reticulum stress-related 
protein expression in lymphoma cells. 
(A) C/EBP homologous protein (CHOP) 
expression of lymphoma cells following 
incubation with BLT-1 (40 μM) for 3 h, 
measured by real-time quantitative PCR. 
(B) Western blot analysis of Bip, ATF6, 
eIF2α, p-eIF2α, IRE1α, p-eIF2α, and 
β-actin expression of lymphoma cells 
following incubation with BLT-1 for 3 h. 
(C) Western blot analysis of JNK, p-JNK, 
p38, p-p38, and β-actin expression of 
lymphoma cells following incubation with 
BLT-1 for 3 h



2140  |    YANO et al.

F I G U R E  7  Effects of the acetyl-coenzyme A:cholesterol acetyltransferase and scavenger receptor class B member I inhibitors on tumor 
progression in tumor-bearing mice. (A) SCID mice were injected s.c. with ED cells and treated with CI-976 (20 mg/kg) and BLT-1 (20 mg/kg), 
followed by the measurement of tumor weights (scale bar = 1 cm). (B) Cleaved caspase 3-positive cells in s.c. tumor tissues were evaluated 
by immunostaining. (C) SCID mice were injected s.c. with ED cells and treated with CI-976 (20 mg/kg) and BLT-1 (20 mg/kg), followed by the 
measurement of survival rates. (D) Nude mice were injected with HKBML cells into the brain and treated with BLT-1 (20 mg/kg), followed by 
the measurement of the survival rate. (E) Cleaved caspase 3-positive cells in intracerebral tumor tissues were evaluated by immunostaining
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and ACAT could be an effective strategy for treating lymphomas by 
regulating cholesterol metabolism.

Cholesterol homeostasis is tightly regulated by a complex protein 
network that monitors cholesterol import, synthesis, export, metab-
olism, and esterification.7 Both SREBF2 and LXR are key regulators 
of cholesterol homeostasis.30 The ER cholesterol level is a sensor for 
intracellular cholesterol homeostasis. A decrease in ER cholesterol 
triggers the translocation of SREBF2 from the ER to the Golgi, to 
the nucleus, where it activates the transcription of genes involved in 
cholesterol synthesis, such as HMGCR, and cholesterol import into 
cells (LDLR). Overexpression of LDLR is observed in several cancer 
cell types, although its significance is only elucidated in pancreatic 
cancer. Silencing of LDLR abrogates cell proliferation, tumorigenic 
capacity, and ERK1/2 activation, and enhances the cytotoxic effects 
of chemotherapy drugs.30 Consequently, pancreatic cancer patients 
with high LDLR expression have poor clinical prognoses.30 These re-
sults indicate that upregulated cholesterol uptake and metabolism 
are closely associated with cancer cell chemoresistance.

Lymphomas are difficult to cure, with the prognosis of PCNSL 
in particular being especially poor. Methotrexate-based chemother-
apy is selected for PCNSL because the standard therapy for general 
lymphoma is ineffective.31,32 Recently, treatment with tirabrutinib, a 
Bruton tyrosine kinase inhibitor, and chemotherapy with autologous 
stem cell transplantation have shown efficacy in PCNSL; however, 
the prognosis remains poor.33–35 Metabolically active tumors show 
elevated glycolysis and lipogenesis, resulting in increased lipid levels 
in tumor cells, which induces tumor proliferation.36 In normal cells, 
cholesterol is strictly maintained at stable levels.19 However, when 
ER cholesterol levels increase, a negative feedback loop is triggered 
that inhibits de novo cholesterol synthesis.37,38 Excess free choles-
terol is esterified (detoxified) to CE by intracellular ACAT, which is 
located in the ER of normal cells such as macrophages. In contrast, 
the CD36 scavenger receptor protein SR-BI is abundantly expressed 
in the liver where it functions in the reverse cholesterol transport 
pathway, and in steroidogenic tissues, where it mediates cholesterol 
delivery.39 Furthermore, SR-BI is an HDL receptor functioning as a 
bidirectional cholesterol transporter. In normal cells such as macro-
phages, this process involves the selective transfer of CE/free cho-
lesterol in an HDL particle into the cell in the absence of endocytic 
uptake or HDL degradation.40,41 In prostate cancer, LDLR and SR-
BI overexpression is suggested to be related to castration-resistant 
prostate cancer progression.42 In contrast, SR-BI silencing abrogated 
cell proliferation.43 Overexpression of SR-BI in breast cancer cells is 
closely associated with poorer clinical outcomes.28 Expression of SR-
BI is significantly higher in Burkitt lymphoma and DLBCL cells than in 
normal B lymphocytes and targeting of SR-BI by HDL nanoparticles 
has an antilymphoma effect in combination with cholesterol starva-
tion.44 These researchers described the potential antilymphoma ef-
fect of an SR-BI inhibitor, which is consistent with the results in this 
study. The SR-BI inhibitor increased the cytotoxic effects of CBDCA 
on lymphoma cells, indicating that cholesterol efflux through SR-
BI was associated with chemoresistance (Figure S7). These results 

indicated that targeting cholesterol metabolism could be a promising 
approach for treating aggressive chemoresistant lymphomas.

Endoplasmic reticulum stress is a condition in which unfolded 
proteins possess an incorrect high-order structure and accumulate 
in the ER. As ER stress interferes with cell function, normal cells 
have an avoidance system called the UPR.45,46 The CHOP tran-
scription factor is involved in ER stress-dependent apoptosis if UPR 
does not work properly or is overstressed.47–49 The accumulation of 
UPR in mammals is mainly mediated by stress sensor proteins in-
cluding PERK, IRE1, and ATF6.48,50–52 The dissociation of a molec-
ular chaperone (Bip) from stress sensor proteins is involved in the 
activation of UPR signaling by binding to UPR.53,54 Endoplasmic 
reticulum stress is suggested to be a therapeutic target for cancer. 
Toyocamycin is an IRE1 RNase domain inhibitor that induces apop-
tosis in myeloma cells.55 In the present study, SR-BI inhibitor induced 
apoptosis through the ER stress signaling pathway in lymphoma cells 
(Figure 6).

In conclusion, SR-BI and ACAT were overexpressed in lymphoma 
cells with LDLR expression maintained after LDL stimulation. There 
was no negative feedback system and cholesterol efflux was acti-
vated through the HDL-SR-BI pathway. This suggested that the ac-
tivation of LDL-derived cholesterol uptake, and cholesterol efflux 
through the HDL-SR-BI pathway played critical roles in lymphoma 
cell survival and proliferation. The changes in cholesterol metabo-
lism due to treatment with SR-BI and ACAT inhibitors suppressed 
lymphoma cell proliferation through cholesterol accumulation 
(Figure S8) and the efficacy of the SR-BI inhibitor was verified in 
a tumor-bearing mouse model. These findings indicated that SR-BI 
and ACAT inhibitors have therapeutic potential in lymphoma treat-
ment by targeting the cholesterol metabolism pathway.
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