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Bone Cell Communication Factors Provide a New Therapeutic 

Strategy for Osteoporosis
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Bone homeostasis is strictly regulated by the balance between bone resorption by osteo-

clasts and bone formation by osteoblasts. Many studies have shown that osteoclasts 

affect osteoblasts, and vice versa, through diffusible paracrine factors, cell-cell contact, 

and cell-bone matrix interactions to achieve the correct balance between osteoclastic 

and osteoblastic activities in the basic multicellular unit (BMU). The strict regulation 

that occurs during bone remodeling hinders the long-term use of the currently available 

antiresorptive agents and anabolic agents for the treatment of osteoporosis. To over-

come these limitations, it is necessary to develop novel agents that simultaneously in-

hibit bone resorption, promote bone formation, and decouple resorption from 

formation. Therefore, a more detailed understanding of the mechanisms involved in 

osteoclast-osteoblast communication during bone remodeling is necessary.
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INTRODUCTION

The bone is a dynamic organ that undergoes continuous 

renewal through bone remodeling processes to maintain 

its mechanical characteristics and calcium homeostasis. 

Bone remodeling is a complex and sophisticated series of 

sequential events, which occur within a temporary ana-

tomical structure called the basic multicellular unit 

(BMU), involving various cell types including osteoclasts, 

osteoblasts, osteocytes, T-cells, macrophages, pericytes, 

vascular endothelial cells, canopy bone lining cells, and 

precursor populations of osteoblasts and osteoclasts.
1-3

 In 

particular, osteoclasts and osteoblasts are the two major 

cells regulating bone remodeling processes. Osteoclasts 

and osteoblasts are responsible for old bone resorption and 

new bone formation, respectively. Bone remodeling in each 

BMU proceeds in cycles consisting of distinct phases: the 

recruitment of osteoclasts and bone resorption by osteo-

clasts; the coupling of resorption to formation or reversal 

from catabolism to anabolism; the recruitment of osteo-

blasts and new bone formation by osteoblasts; and the ter-

mination of these processes.
4-7

 As an imbalance between 

bone formation and bone resorption results in multiple 

metabolic bone diseases like osteoporosis and osteopet-

rosis, each phase of the bone remodeling process must be 

strictly regulated by various local or systemic factors and 

intracellular signals to maintain bone homeostasis.
8-11

Osteoporosis is the most common metabolic bone disease 

caused by excessive bone resorption relative to formation. 

It is characterized by low bone mass, the deterioration of 

bone tissue, and an increased risk of bone fracture. 

Osteoporosis-related fractures most commonly occur in the 

hip, wrist, spine, or shoulder, particularly in post-meno-

pausal women.
8-11

Several drugs are currently available for osteoporosis 

treatment. These drugs target either the inhibition of bone 

resorption or the promotion of bone formation. However, 

certain limitations of antiresorptive agents and bone- 

forming drugs have been revealed. Antiresorptive drugs, 

such as alendronate, zoledronic acid, risedronate, and 

ibandronate, effectively block the formation and function 

of osteoclasts, but simultaneously reduce bone formation. 

In contrast, anabolic drugs, such as parathyroid hormones, 

teriparatide, and recombinant human parathyroid hor-

mone, increase bone formation markers, but also increase 

bone resorption markers. These long-term adverse events 
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induced by antiresorptives and bone-forming drugs sug-

gest that the coupling process between bone resorption and 

formation plays a crucial role in the complete restoration 

of the bone removed during remodeling cycles.
8,10-14

 

Therefore, an understanding of the signaling pathway in-

volved in the coupling process will help develop novel drugs 

that simultaneously block bone resorption and promote 

bone formation without certain adverse events. Here, we 

have reviewed the coupling factors that may be an ideal tar-

get for the management of osteoporosis. 

RANKL/RANK SIGNALING

The receptor activator of the nuclear factor kappa B li-

gand (RANKL) is an essential factor for osteoclast differ-

entiation and function. It is secreted by osteoblasts and os-

teocytes, and binds to receptor activator of nuclear factor 

kappa B (RANK) on the surface of osteoclast precur-

sors.
3,15,16

 In addition, the physiological roles of the RANKL 

in osteoblasts have recently been elucidated. The vesicular 

RANK, secreted from maturing osteoclasts, binds to the os-

teoblastic RANKL to promote bone formation by osteo-

blasts. The osteoblastic RANKL regulates bone formation 

through the activation of PI3K-Akt mTOR to induce the ex-

pression of runt-related transcription factor 2 (Runx2).
3,17,18

 

Therefore, the RANKL-RANK system could regulate both 

bone resorption and bone formation by using RANKL for-

ward signaling and RANKL reverse signaling, respectively. 

Denosumab, a monoclonal antibody against RANKL, is 

available for the management of osteoporosis and skeletal 

problems caused by the spread of cancers to bone. 

Denosumab binds to RANKL, thereby inhibiting osteo-

clast forward signaling. Despite its efficacy in the in-

hibition of bone resorption, adverse effects, such as low 

bone formation, may impede long-term use.
8,19-21

 Interes-

tingly, Ikebuchi and colleagues developed an anti-RANKL 

antibody that reduced osteoclast formation and function by 

binding and inactivating multiple RANKL monomers, and 

stimulated osteoblast differentiation by binding to the 

cell-surface of the RANKL.
17,18

 Therefore, RANKL-RANK 

forward or reverse signaling offers a new strategy for the 

management of osteoporosis, which is able to trigger bone 

formation while inhibiting bone resorption. 

SCLEROSTIN

Sclerostin is encoded by the SOST gene in humans.
22

 

After discovering that the lack of SOST expression was the 

cause of the high bone mass in human Van Buchem disease 

and sclerosteosis, considerable evidence from in vitro, ani-

mal, and human studies has demonstrated that sclerostin 

plays an important role in bone homeostasis.
23,24

 Sclerostin 

is secreted primarily from osteocytes, but not osteo-

blasts.
23,25

 It has been identified as binding to LRP5/6 re-

ceptors and antagonizing the canonical Wnt pathway.
26,27

 

The inhibition of the Wnt pathway by sclerostin leads to the 

inhibition of bone formation by osteoblasts. In addition, 

sclerostin stimulates bone resorption through its in-

hibitory action on the canonical Wnt pathway, because ac-

tivation of the canonical Wnt pathway in osteoblasts in-

creases the expression of osteoprotegrin (OPG), a decoy re-

ceptor for RANKL, and reduces bone resorption.
14,24,28-30

Sclerostin expression is also detected in osteoclast pre-

cursors and its expression is decreased when osteoclasts 

are formed in vitro.
24,31

 Tnfrsf11b(Opg)-/- and Tnfsf11 

(Rankl)-transgenic mice with a high-bone turnover exhi-

bited a low level of sclerostin, suggesting that the sup-

pression of sclerostin was associated with bone resorption 

is critical for the coupling of bone resorption to forma-

tion.
27,32

Romosozumab, a monoclonal antibody against sclero-

stin, can simultaneously increase bone formation and de-

crease bone resorption when administered subcutaneously. 

However, it is usually administered for only 1 year owing 

to its gradual decrease in efficacy.
8,33-35

 

SLIT3

Slit guidance ligand (SLIT) proteins were originally 

identified as chemorepellents that controlled axon cross-

ing in the midline of the brain. Recently, Kim et al.
36

 reported 

that SLIT3 was a coupling factor to regulate resorption-for-

mation coupling. SLIT3 production is increased during os-

teoclast differentiation. The secretion of SLIT3 by osteo-

clasts stimulates pre-osteoblast migration and β-catenin- 

mediated osteoblast differentiation. In addition, SLIT3 

suppresses osteoclast differentiation via the inhibition of 

Rac activation in an autocrine and paracrine manner. 

Therefore, the dual roles of SLIT3 in both osteoblasts and 

osteoclasts result in osteoporotic bone phenotypes that in-

volve a decrease in bone formation and an increase of bone 

resorption in mice lacking Slit3 or its receptor Robo1.
36-38

 

Importantly, the injection of a truncated SLIT3 containing 

the ROBO-binding LRR2 domain into ovariectomized mice 

reversed ovariectomy-induced bone loss by simultaneous-

ly enhancing bone formation and reducing bone resorp-

tion.
3,36-38 

SEMAPHORINS

Although semaphorins (SEMAs) were first identified as 

axon guidance cues, they have been shown to play im-

portant roles in angiogenesis, tissue development, and the 

immune response.
39-42

 Of the eight classes of semaphorin 

family proteins, several studies have suggested important 

roles of SEMA4D and SEMA3A in bone metabolism.
3,43,44 

SEMA4D is a transmembrane semaphorin highly ex-

pressed in osteoclasts, but not in osteoblasts. FC-SEMA4D, 

a soluble FC receptor SEMA4D fusion protein, inhibits os-

teoblast differentiation and function without altering 

proliferation. The binding of SEMA4D to its receptor com-

plex, consisting of ErbB2 and Plexin-B1, leads to activation 

of the small GTPase RhoA. Genetically altered mice with 

Sema4d and Plxnb1 deletion, as well as mice expressing an 
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FIG. 1. The dual roles of bone cell communication factors during 

bone remodeling. The forward Receptor activator of nuclear factor 

kappa-B ligand (RANKL) signaling pathway originating from os-

teoblasts is known to induce osteoclast differentiation, and re-

verse RANKL signaling from osteoclasts also induces osteoblast 

formation. Several in vitro and in vivo studies have shown that 

some bone cell communication factors, such as semaphorin 3A 

(SEMA3A), slit guidance ligand 3 (SLIT3), and collagen triple-he-

lix repeat-containing 1 (CTHRC1), stimulate bone formation 

while suppressing bone resorption, and other factors, such as sem-

aphorin 4D (SEMA4D) and sclerostin, inhibit bone formation 

while increasing bone formation. The roles of these bone cell com-

munication factors in both osteoclasts and osteoblasts offer a new 

strategy for the development of bone disease therapies. 

osteoblast-targeted dominant-negative RhoA, exhibited a 

high bone mass due to enhanced osteoblastic bone 

formation.
45,46

 However, the regulation of bone mass by 

SEMA4D may be more complicated. Dacquin et al.
44

 repor-

ted that the increased bone mass phenotype in Sema4d-de-

ficient mice was primarily due to a functional defect in 

osteoclasts. The authors showed that Sema4d-deficient 

primary osteoclasts led to delayed osteoclast differentiation 

and reduced osteoclast resorption activity that was in part 

due to the unbalanced regulation of β3 integrin subunit 

signaling.
44

 Although the precise mechanisms through which 

SEMA4D contributes to bone homeostasis have not been 

elucidated, the injection of Sema4d siRNA or SEMA4D- 

specific antibody into an ovariectomy-induced animal 

model of osteoporosis reversed bone mass, suggesting that 

SEMA4D was a beneficial target for osteoporosis treat-

ment.
45,47

SEMA3A was first identified in the involvement of pat-

terned neuronal connections and is now recognized as a me-

diator linking osteoclasts and osteoblasts.
48

 SEMA3A is 

mainly expressed by osteoblasts and its receptor, Nrp1, is 

expressed by osteoclast precursors.
48-50

 Sema3a-deficient 

osteoblasts showed a defect in osteoblast differentiation 

owing to the inhibition of β-catenin activation, whereas 

SEMA3A treatment caused a decrease in the differ-

entiation of osteoclast precursors through the inhibition of 

RhoA activation.
51

 Hayashi et al.
51

 reported that a global 

Sema3a deletion in mice caused a severe osteopenic pheno-

type that was associated with a decrease in osteoblastic 

bone formation and an increase in osteoclastic bone resorp-

tion. Interestingly, mice with osteoblast-specific deletion 

of Sema3a did not undergo any change in bone parameters, 

whereas mice with neuron-specific deletion of Sema3a ex-

hibited a markedly low bone mass, similar to mice with 

global deletion of Sema3a.
52

 These results were indicative 

of the indirect effects of SEMA3A on bone metabolism 

through the nervous system. Furthermore, the injection of 

SEMA3A into ovariectomized mice prevented ovariectomy- 

induced bone loss, both through the promotion of bone for-

mation and the suppression of bone resorption.
51

CTHRC1

Collagen triple helix repeat containing 1 (CTHRC1) was 

originally identified in injured arteries.
53

 The expression 

of CTHRC1 was found to be induced in mature bone-resorb-

ing osteoclasts.
54

 The recombinant CTHRC1 protein 

stimulated osteoblastic differentiation of marrow stromal 

ST2 cells. Cthrc1 null mice showed a lower bone mass due 

to decreased bone formation, whereas Cthrc1 transgenic 

mice exhibited a higher bone mass owing to an increase in 

bone formation.
54

 Collectively, evidence obtained from in 

vitro and in vivo experiments indicated that CTHRC1 was 

an important stimulator of osteoblastic bone formation. To 

further define whether CTHRC1 acted as a coupling factor, 

expressed only by mature bone-resorbing osteoclasts, to 

stimulate bone formation, recombinant RANKL was in-

jected into mice with osteoclast-specific Cthrc1 deletion. 

The acute phase of osteoclastic bone resorption occurred to 

the same extent as in control mice, whereas the anabolic 

response followed by resorption was inhibited or delayed 

in the mice with osteoclast-specific deletion of Cthrc1.
54

 In 

contrast, it has been shown that CTHRC1 was secreted by 

osteoblasts and some osteocytes, but not by osteoclasts.
55

 

In that study, the authors also demonstrated that CTHRC1 

negatively regulated osteoclast differentiation through 

the inhibition of RANKL-induced NF-kB signaling activa-

tion and ERK1/2 phosphorylation. Their results revealed 

that the lower bone mass observed in Cthrc1-null mice was 

also the result of increased bone resorption as well as a de-

creased bone formation. Collectively, the in vitro and in 

vivo evidence supports the potential importance of 

CTHRC1 in bone remodeling; however, it remains to be de-

termined if the role of CTHRC1 in bone remodeling is medi-

ated by signals from the osteoblast lineage or from 

osteoclasts. 

CONCLUSIONS

Generally, coupling factors are the molecules that are in-

volved in the stimulation of osteoblastic bone formation in 

response to osteoclastic bone resorption to preserve normal 
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bone mass.
3,56

 However, recent studies have shown that 

some molecules, such as sclerostin, SEMA4D, and SEMA3A, 

control bone remodeling through cell-cell communication 

between bone cells rather than a classical coupling process. 

Negishi-Koga et al.
43,45

 proposed that such factors should 

be called bone cell communication factors, as they partic-

ipate in the bone remodeling process by regulating inter-

cellular cross-talk among bone cells.
3 
Herein, we have dis-

cussed bone cell communication factors that are likely to 

be ideal therapeutic targets for osteoporosis (Fig. 1). As the 

orchestration of bone remodeling is strictly regulated by 

various known and as yet unknown bone communication 

factors, future investigations should be focused on the dis-

covery of additional coupling signals and elucidate how 

these factors coordinate resorption and formation coupling 

in concert.
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