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Research on improved 
convolutional wavelet neural 
network
Jingwei Liu1,2,3*, Peixuan Li1,3, Xuehan Tang1, Jiaxin Li1 & Jiaming Chen2

Artificial neural networks (ANN) which include deep learning neural networks (DNN) have problems 
such as the local minimal problem of Back propagation neural network (BPNN), the unstable problem 
of Radial basis function neural network (RBFNN) and the limited maximum precision problem of 
Convolutional neural network (CNN). Performance (training speed, precision, etc.) of BPNN, RBFNN 
and CNN are expected to be improved. Main works are as follows: Firstly, based on existing BPNN and 
RBFNN, Wavelet neural network (WNN) is implemented in order to get better performance for further 
improving CNN. WNN adopts the network structure of BPNN in order to get faster training speed. 
WNN adopts the wavelet function as an activation function, whose form is similar to the radial basis 
function of RBFNN, in order to solve the local minimum problem. Secondly, WNN-based Convolutional 
wavelet neural network (CWNN) method is proposed, in which the fully connected layers (FCL) of 
CNN is replaced by WNN. Thirdly, comparative simulations based on MNIST and CIFAR-10 datasets 
among the discussed methods of BPNN, RBFNN, CNN and CWNN are implemented and analyzed. 
Fourthly, the wavelet-based Convolutional Neural Network (WCNN) is proposed, where the wavelet 
transformation is adopted as the activation function in Convolutional Pool Neural Network (CPNN) 
of CNN. Fifthly, simulations based on CWNN are implemented and analyzed on the MNIST dataset. 
Effects are as follows: Firstly, WNN can solve the problems of BPNN and RBFNN and have better 
performance. Secondly, the proposed CWNN can reduce the mean square error and the error rate of 
CNN, which means CWNN has better maximum precision than CNN. Thirdly, the proposed WCNN can 
reduce the mean square error and the error rate of CWNN, which means WCNN has better maximum 
precision than CWNN.

Artificial neural network (ANN)1,2 is a classic machine learning method. ANN is based on a collection of connected 
units or nodes called artificial neurons, which loosely models the neurons in a biological brain. Each connection, like 
the synapses in a biological brain, can transmit a signal from one artificial neuron to another. ANN can learn knowl-
edge and use the learned knowledge to reason about results by the following two modes: Training mode (learning) and 
Forward calculation mode (reasoning). Convolutional neural network (CNN)3,4 is a method which based on feature 
extraction of convolution calculation.

The motivation of this study is as follows: Firstly, find a powerful simple neural network which has fast training 
speed like Back propagation neural network (BPNN)5,6 and Fully connected layers (FCL)7–9. Secondly, solve the local 
minimum problem according to Radial basis function neural network (RBFNN) method. Thirdly, improve the preci-
sion of CNN and verify the better performances of the proposed Convolutional wavelet neural network (CWNN) 
and Wavelet convolutional neural network (WCNN) based on the two well-known MNISIT and CIFAR-10 datasets.

Existing typical ANN and DNN methods are as follows: BPNN, RBFNN, Wavelet neural  network10,11 (WNN), CNN, 
FCL, etc. Each of the above ANN (BPNN, RBFNN, WNN, and CNN are defined as XNN in this study) has advantages 
and disadvantages as follows: Firstly, the  BPNN12–14 is a forward network. It is based on error back  propagation15 and 
gradient descent algorithm. BPNN algorithm is widely used in many commercial applications. Advantages of BPNN are 
as follows: Firstly, BPNN has strong nonlinear mapping ability and high self-learning ability and adaptability; Secondly, 
BPNN can be wildly used because it can be well adapted to various samples; Problems and disadvantages of  BPNN16 
are as follows: Firstly, in the training process, the error of BPNN may drop into the local minimum; Secondly, in the 
training process, the convergence  rate17 is slow. Secondly,  RBFNN18,19 is a feedback network. The RBFNN hidden layer 
is composed of radial basis functions. Advantages of RBFNN are as follows: Firstly, RBFNN has no local minimum 
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problem, which is the biggest problem of BPNN; Secondly, RBFNN has strong mapping ability from input to output 
and good classification ability. Problems and disadvantages of RBFNN are as follows: Firstly, it is very difficult to find 
the center of RBFNN hidden nodes; Secondly, it is difficult to determine the number of nodes in the hidden layer of 
RBFNN. Thirdly, CNN is a deep neural  network20,21. A convolutional neural network consists of an input and an output 
layer, as well as multiple hidden layers. The hidden layers of a CNN typically consist of convolutional layers, activation 
function, pooling layers, fully connected layers and normalization layers. The advantage of CNN are as follows: CNN 
has more powerful learning ability for complex learning task. The disadvantage of CNN is that: when the learning object 
is too simple, the learning complexity of CNN is much bigger than the other ANNs. As a result, the learning speed of 
CNN may be slower than the other ANNs. Fourthly,  FLC22 is one of the simplest neural networks, which has only two 
connected layers. The advantage of FLC is that: FLC has a very fast learning speed for simple learning cases than BPNN 
and RBFNN. The disadvantage of FCL is that: FLC cannot learn complex samples, even cannot complete some learning 
work which can be complete by BPNN and RBFNN.

Main contributions of this study are as follows: Firstly, the structure of BPNN, the radial basis function of RBFNN 
and the wavelet function are adopted to implement WNN. Secondly, based on WNN and CNN, CWNN is proposed 
to improve the performances. Thirdly, based on both MINIST and CIFAR-10 datasets, all the above discussed methods 
are compared.

The rest of this paper is organized as follows: “Results” section addresses the results obtained by three experiments 
on WNN and CWNN. "Methods" section details the methodology of WNN and CWNN. "Data" section introduces 
datasets and "Design of simulation" section introduces more details about all experiments. "Conclusions" section sum-
maries all the simulation results and suggests some directions for further research.

Results
Four experiments are implemented between BPNN, WNN, CWNN and WCNN in order to prove the improved effects. 
Firstly, "feasibility experiment" is designed to verify the feasibility (convergence) of WNN and prove that WNN can solve 
the problems of BPNN and RBFNN. Secondly, "performances experiment" is designed to verify the best performances 
(such as maximum precision, minimum error) of BPNN, RBFNN and WNN. Thirdly, "CWNN experiment" is designed 
in order to prove that the performances of the proposed CWNN is better than CNN. Fourthly, "WCNN experiment" is 
designed in order to prove that the performances of the proposed WCNN is better than CWNN and CNN.

Definition 1 1 completed simulation process (1CSP) means a completed training process from beginning time 0 to 
the complete time (the time when the training error is less than the target error).

Definition 2 1 simulation time (1CT) is only one training calculation. 1CSP contains many CTs. �w
(3)
jk  , �w

(2)
ij  , �aj , 

�bj are calculated once in 1CT.

Result of feasibility experiment. The dataset of "feasibility experiment" is generated by our designation which is 
specifically described in the section of "Data". Results of comparative simulations are discussed by two ways:

Firstly, error descending curves and error surfaces in 1CSP are plotted in Fig. 1.
All the simulations of BPNN, RBFNN and WNN are repeated for 10CSP. The condition to stop the simulation 

is that the target error in training process is less than a fixed value. Hence, the average CTs, the maximum error (between 
target value and calculated output) and the mean square error in each CSP can be calculated as follows:

The average CTs in each CSP of BPNN is 39,802. The maximum error is 0.050000. The mean square error is 0.000319. 
The error descending curve and error surface are drawn as Fig. 1a,d. The average CTs of RBFNN is 1580. The maxi-
mum error is 0.000314. The mean square error is 0.049570. The error descending curve and error surface are drawn as 
Fig. 1b,e. The average CTs of WNN is 1006. The maximum error is 0.000445. The mean square error is 0.049995. The 
error descending curve and error surface are drawn as Fig. 1c,f.

Secondly, statistical details of simulations in 10 CSPs are listed in Table 1, which are specifically discussed as follows:
10 CSPs of simulations of BPNN, RBFNN and WNN algorithms are compared to find out the differences of training 

times, mean square error and maximum error. Columns 2, 5, and 8 (XNN Training times) show how many CTs are 
required to complete the simulation in each CSP XNN. Columns 3, 6, and9 (XNN Mean square error) show the final 
mean square error after each training CSP. Columns 4, 7, and 10 (XNN maximum error) show the final maximum 
error after each training CSP. The maximum error is expected less than the target error. Therefore, if the training can be 
completed within 20,000 CTs, the maximum error is less than err_goal = 0.1 . The results show that WNN can solve 
the problems of BPNN and RBFNN with better performance and make preparation for the improvement from CNN 
to CWNN.

According to the above Fig. 1 and Table 1, we can draw the following conclusions: Firstly, all of the BPNN, 
RBFNN and WNN algorithms are convergent. According to the columns 2, 5, and 8, all the values are less than the 
max_epoch = 200, 000 , which means all the training process are convergent (all the training errors are lower than the 
target errors). It is proved that all the algorithms are feasible. Secondly, the average training times of WNN (CTs = 343) 
is the least, while the average training times of BPNN and RBFNN are 1305 and 2630. The average training times of 
RBFNN is the most. It is proved that WNN is the fastest algorithm, and RBFNN is the slowest one. Thirdly, the error 
descending curve of BPNN keeps decreasing, which causes problem of local minimum. BPNN also has problems such as 
slow convergence speed and local minimum  problem23. However, the problem of local minimum are solved by RBFNN 
and WNN because of the structure of network and the active functions of RBFNN and WNN. The error curve of RBFNN 
in Fig. 1b not only reduces the time but also avoids the local minimum. While the error curve of WNN in Fig. 1c, 
significant changes (break the process of decreasing) only happen at the very beginning time of the training process.
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Result of hyperparameter optimization experiment. The "Hyperparameter optimization experiment" is 
designed and implemented in order to verify the best performances (max precision, min error) of BPNN, RBFNN and 
WNN, with the comparative results analyzed.

The simulation results of the above 3 algorithms are shown in Table 2, which are specifically discussed as follows.
Columns 2, 5, and 8 (XNN Training times) show the numbers of CTs in each CSP. 20,000 means XNN cannot 

complete training within 200,000 CTs (i.e., the square error is not less than the target error with 20,000 training CTs). 
Columns 3, 6, and 9 (XNN Mean square error) show the final mean square error after each training CSP. Columns 
4,7, and 10 (XNN Maximum error) show the final maximum error after each training CSP. The maximum error is 
expected less than the target error. Therefore, if the training can be completed within 20,000 CTs, the maximum error 
is less than err_goal=0.02.

According to Table 2, we can draw the following conclusions: The success rate of WNN training is the highest (i.e., 
60% of WNN training processes are completed), while only 40% of RBFNN training processes are completed, and 0% 
of BPNN training processes are completed. The precision of WNN is the highest because when the target precision 

Figure 1.  Error descending curve (time–error curve shows the descent process of error in 1CSP) was plotted in 
2D figures. Error surface (all possible errors between 21 × 21 calculated outputs and target outputs) was plotted 
as 3D figures.

Table 1.  Simulation results of "Feasibility experiment".

Number of CSP
BPNN training 
times

BPNN mean 
square error

BPNN 
maximum 
error

RBFNN 
training times

RBFNN mean 
square error

RBFNN 
maximum 
error

WNN training 
times

WNN mean 
square error

WNN 
maximum 
error

1 1530 0.002328 0.099952 672 0.000966 0.099939 42 0.001329 0.096115

2 862 0.002457 0.099989 680 0.001164 0.093833 224 0.001596 0.099703

3 1791 0.002627 0.099962 319 0.001948 0.080631 173 0.001659 0.099784

4 972 0.002559 0.099991 985 0.001022 0.099876 954 0.001233 0.099798

5 1401 0.002637 0.099982 1417 0.001042 0.099998 713 0.001654 0.087587

6 1003 0.002255 0.099977 656 0.001518 0.099915 461 0.001911 0.099994

7 845 0.002162 0.099929 4464 0.001258 0.099445 222 0.001513 0.099781

8 2061 0.002355 0.099973 7401 0.000047 0.020000 111 0.001766 0.099980

9 1325 0.002577 0.099991 2330 0.001826 0.099944 478 0.001644 0.099883

10 1257 0.002481 0.099934 7374 0.001817 0.097768 53 0.001763 0.099677

Average 1305 0.002444 0.099968 2630
Slowest 0.001261 0.089135 343

Fastest 0.001607 0.098230

Success rate 100% 100% 100%
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( errol_goal ) is set from 0.1 to 0.02, the success rate of WNN is higher than RBFNN and BPNN. When the errol_goal 
is set from 0.02 to 0.005, only WNN can complete the training. The training speed of WNN is the fastest because the 
average training time of WNN (4936) is less than those of RBFNN (9631) and BPNN (20,000).

Result of CWNN experiment. CWNN experiments are based on MNIST and CIFAR-10 datasets which are 
widely recognized and adopted in the comparative experiments.

CWNN is better than CNN on MNIST. Results on MNIST are recorded in Table 3. Error rate (effect of method) and 
Mean square error (MSE, effect of training) are two important indicators. According to the results on MNIST, main 
findings are as follows: Firstly, classification task can be completed by both CNN and CWNN. The change trend of 
MSE is declining during the training processes of both CNN and CWNN. Secondly, training accuracy of CWNN is 
better than CNN. Under the same training frequency, the MSE of CWNN (0.14146) is smaller than CNN (0.16431). 
Thirdly, classification ability of CWNN is better than CNN. Under the same training frequency, the error rate of CWNN 
(0.12915) is smaller than CNN (0.16434).

CWNN is better than CNN on CIFAR‑10. The results of CIFAR-10 are recorded in Table 4. Error rate and Mean square 
error are two important indicators. According to the results on CIFAR-10, main findings are as follows: Firstly, clas-
sification task can be completed by both CNN and CWNN. The change trend of MSE is declining during the training 
processes of both CNN and CWNN. Secondly, training accuracy of CWNN is better than CNN. Under the same train-
ing frequency, the MSE of CWNN (0.25715) is smaller than CNN (0.29845). Thirdly, classification ability of CWNN 
is better than CNN. Under the same training frequency, the error rate of CWNN (0.18522) is smaller than CNN 
(0.20510).

Result of WCNN experiment. WCNN experiments are based on MNIST datasets. WCNN is better than CWNN 
on MNIST. Results on MNIST are recorded in Table 5. According to the results on MNIST, main findings are as fol-
lows: Firstly, classification task can be completed by WCNN. The change trend of MSE is declining during the training 

Table 2.  Simulation results of "Hyperparameter optimization experiment ".

Number of CSP
BPNN training 
times

BPNN mean 
square error

BPNN 
maximum 
error

RBFNN 
training times

RBFNN mean 
square error

RBFNN 
maximum 
error

WNN training 
times

WNN mean 
square error

WNN 
maximum 
error

1 20,000 0.000686 0.078208 20,000 0.007004 0.281643 1403 0.000052 0.019990

2 20,000 0.000441 0.052301 16,391 0.000078 0.019912 20,000 0.000261 0.032628

3 20,000 0.000559 0.056556 20,000 0.068413 0.762847 3740 0.000071 0.019316

4 20,000 0.000623 0.070849 7401 0.000047 0.020000 25e85 0.000065 0.019895

5 20,000 0.000687 0.082878 20,000 0.002712 0.136289 16,836 0.000030 0.019999

6 20,000 0.000610 0.071138 20,000 0.013012 0.401105 20,000 0.002192 0.109309

7 20,000 0.000572 0.068204 9546 0.000050 0.015604 1270 0.000048 0.019945

8 20,000 0.000601 0.070306 20,000 0.014854 0.338185 20,000 0.000183 0.039474

9 20,000 0.000617 0.070071 20,000 0.006495 0.211676 3943 0.000043 0.019992

10 20,000 0.000707 0.083616 5185 0.000073 0.019370 20,000 0.000562 0.063996

Mean No case success No case success No case success 9631 0.000062 0.018722 4963
best 0.000052 0.019856

Success rate 0% 40% 60%best

Table 3.  Simulation results of CNN and CWNN on MNIST. Underlined values represent the results with the 
highest accuracy or the lowest mean square error.

Numbers of SPs and 
statistical item Total numbers of ACs

Error rate of CNN 
(accuracy) MSE of CNN

Running times of 
CNN

Error rate of CWNN 
(accuracy) MSE of CWNN

Running times of 
CWNN

1 6000 0.1584 0.1604 163.2180 0.1114 0.1368 217.7990

2 6000 0.1592 0.1593 164.2330 0.2453 0.2010 228.4130

3 6000 0.1578 0.1591 173.3970 0.1221 0.1250 218.7320

4 6000 0.1499 0.1532 173.3970 0.1088 0.1287 253.8580

5 6000 0.1701 0.1691 190.1890 0.1068 0.1330 244.1440

6 6000 0.1771 0.1759 185.5980 0.1425 0.1586 238.8930

7 6000 0.1599 0.1631 194.7600 0.1184 0.1386 534.7950

8 6000 0.1762 0.1747 191.8820 0.1173 0.1388 119.7400

9 6000 0.1541 0.1581 196.8820 0.1088 0.1267 282.4970

10 6000 0.1807 0.1702 237.1220 0.1101 0.1274 250.3990

Average 6000 0.16434 (0.83566) 0.16431 187.0700 0.12915(0.87085)
Best 0.14146 Smaller 258.9270
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processes. Secondly, training accuracy of WCNN is better than WCNN. Under the same training frequency, the MSE 
of WCNN (0.0.08850) is smaller than CWNN (0.14146). Thirdly, classification ability of WCNN is better than CWNN. 
Under the same training frequency, the error rate of WCNN (0.07723) is smaller than CWNN (0.18522).

Methods
Wavelet neural network (WNN). The features, advantages and disadvantages of  WNN24,25 are as follows: WNN 
has activation functions of multi-scaled analysis and scale translation in hidden layers. Advantages of WNN are as fol-
lows: Firstly, WNN has high precision and high resolution. Secondly, wavelet transform method is good at analyzing 
local information of  signals26,27 which is also the feature of WNN. Thirdly, wavelet transform can do an excellent job 
such as function  approximation28,29 and pattern  classification30. It has been proved that the wavelet neural network 
is an excellent approximator for fitting single variable  function31. Problems and disadvantages of WNN are as fol-
lows: WNN cannot complete complex learning task because of structural limitation, etc. Similar problems also exist in 
BPNN, RBFNN and FCL.

WNN is designed as follows: Firstly, structure of BPNN is adopted as the basic structure of WNN; Secondly, the 
form of activation function in hidden layers of RBFNN is adopted; Thirdly, the wavelet transform function is adopted 
as the activation function. The structure of WNN is shown in Fig. 2.

Table 4.  Simulation results of CNN and CWNN on CIFAR-10. Underlined values represent the results with 
the highest accuracy or the lowest mean square error.

Numbers of SPs and 
statistical item Total numbers of ACs

Error Rate of CNN 
(accuracy) MSE of CNN

Error rate of CWNN 
(accuracy) MSE of CWNN

1 1000 0.1957 0.267 0.175239 0.242

2 1000 0.2611 0.4465 0.170323 0.2325

3 1000 0.1959 0.27 0.180921 0.257

4 1000 0.1888 0.263 0.177892 0.2455

5 1000 0.1985 0.2805 0.212793 0.2875

6 1000 0.2093 0.3135 0.192254 0.268

7 1000 0.2014 0.297 0.185923 0.267

8 1000 0.1884 0.26 0.172283 0.2335

9 1000 0.2048 0.2855 0.179464 0.25

10 1000 0.2068 0.3015 0.205191 0.2885

Average 1000 0.20510 (0.79489) 0.29845 0.18522 (0.81477)
Smaller 0.25715 Smaller

Table 5.  Simulation results of WCNN on MNIST. Underlined values represent the results with the highest 
accuracy or the lowest mean square error.

Numbers of SPs and statistical 
item Total numbers of ACs

Error rate of WCNN 
(accuracy) MSE of WCNN Running times of WCNN

1 6000 0.0478 0.0587 222.3220

2 6000 0.0566 0.0710 239.7420

3 6000 0.0977 0.1000 245.8560

4 6000 0.0501 0.0599 259.2540

5 6000 0.0680 0.0720 265.9660

6 6000 0.0473 0.0598 266.5450

7 6000 0.0366 0.0458 280.9490

8 6000 0.0397 0.0443 295.5480

9 6000 0.0701 0.0864 512.6480

10 6000 0.1954 0.1733 320.6640

11 6000 0.0576 0.0671 335.1010

12 6000 0.0654 0.0748 351.9140

13 6000 0.0483 0.0614 366.8210

14 6000 0.2870 0.3465 381.8980

15 6000 0.0763 0.0893 404.1410

16 6000 0.0452 0.0581 427.9340

17 6000 0.0670 0.0756 448.3010

18 6000 0.0573 0.0790 476.6720

19 6000 0.0483 0.0599 493.1710

20 6000 0.0860 0.0871 515.0280

Average 6000 0.07723(0.92277)
Best 0.08850 Smaller 355.5238
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The output neurons of hidden layer O−2
j (t) can be expressed as Eq. (1):

In Eq. (1), net−2
j (t)istheinputofneuronsjinhiddenlayer.�

a,b
(t) is the wavelet function (activation function). Param-

eters aj(t) and bj(t) are the scaling parameters of the wavelet function. t is the number of training time.
The number of nodes in hidden layer can be calculated according to the linear correlation theory: Redundant (repeti-

tive or useless) nodes can be found and deleted by the comparison of parameters �a,b(t) in each node in hidden layer. 
The wavelet function (activation function) can be selected according to the frame theory. The closer the frame is to the 
boundary, the better the stability of the wavelet function, but when the frame is closer to the boundary, the problem of 
data redundancy will occur.

The wavelet function that satisfies the framework conditions is selected in Eq. (2):

The loss function that we select is mean square error(MSE). E is the mean square error (MSE) of all samples, which 
can be formulated as Eq. (3). The reasons we use the mean square error (MSE) are as follows: Firstly, the outputs of 
WNN have negative numbers. Secondly, the cross-entropy loss function includes the logarithm function, which requires 
non-negative inputs.

In WNN, the back propagation of input errors ( δ−3
k  in the output layer, δ−2

j  in the hidden layer and δ−1
i  in the input 

layer) can be calculated as Eq. (4) to Eq. (6).

Gradient descent method is adopted to adjust weights and bias of the neural network. Parameters such as �w−2
ij  , 

�a−2
j  , �b−2

j  , �w−1
kj ,�b−1

k  are adjusted in each training process. i, j and k are the numbers of neuron in each layer. 
�w−2

ij  represents the changed values of weight between the neurons in the input layer and the hidden layer. �a−2
j  and 

�b−2
j  represents the changed values of bias between the input layer and the hidden layer. �w−1

kj  represents the changed 
values of weight between the neurons in the hidden layer and the output layer.�b−1

k  represents the changed values of 
bias between the hidden layer and the output layer. net−2

j  represents the input of hidden layer. At the training time t , 
the above parameters can be expressed as Eq. (7) to Eq. (11):

(1)O−2
j (t) = �a,b

(

net−2
j (t)− bj(t)

aj(t)

)

(2)�a,b(t) = cos(1.75t) · e−
t2

2

(3)E =
1

2

N
∑

n=1

(ŷn − yn)
2

(4)δ
−1
i =

∂E

∂net−1
i

=
1

N

N
∑

n=1

(ŷn − yn)(1− net−1
i )net−1

i , i = 1, 2, . . . , size−1

(5)δ
−2
j =

∂E

∂net−2
j

=
∂E

∂net−1
k

·
∂net−1

k

∂O−2
j

·

∂O−2
j

∂net−2
j

=
1

b−2
j

size−1
∑

k=1

δ
−1
k ·�

′

(

net−1
j −a−2

j

b−2
j

)

·w−1
ij , j = 1, . . . , size−2

(6)δ
−3
k =

∂E

∂net−3
k

=
∂E

∂O−3
k

=
∂E

∂net−2
k

·

∂net−2
j

∂O−3
k

=

size−2
∑

j=1

δ
−2
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Figure 2.  Structure of WNN. From left to right, there is an input layer, a hidden layer, and an output layer. net 
represents the inputs of hidden layer and O represents for the outputs of hidden layer.� represents the wavelet 
function (activation function).
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The adjusted results of the above weights and bias are expressed as Eq. (12) to Eq. (16), where α_WNN is the inertia 
coefficient of WNN, η_WNN is the learning rate of WNN.

According to the above descriptions, pseudocode of WNN method for simulations is shown in Algorithm 1.
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Convolutional wavelet neural network (CWNN). Based on CNN, the improvement of CWNN is that: 
the fully connected neural network (FCNN) of CNN is replaced by WNN. The structure of CWNN has two parts 
that including convolutional and pooling layer of neural network (CPNN) and WNN. In the hidden layer of the 
WNN, the activation functions are wavelet scale transformation functions. The structure of CWNN is drawn as 
Fig. 3.

Training algorithm of CWNN is similar to CNN, while the difference is that FCNN in CWNN is replaced by 
WNN in CWNN. The pseudocode of CWNN is listed in Algorithm 2.

Figure 3.  Structure of CWNN. CWNN is composed of CNN and WNN. CNN consists the convolution layer 
and the pooling layer. The fully connected neural network (FCNN) of CNN is replaced by WNN.
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Wavelet convolutional neural network (WCNN). The improvement of the proposed WCNN is that: 
the activation function of the convolutional layer in CNN is replaced by the �() . The activation function of CNN 
is sigmoid function, and the �() of WCNN is wavelet scale transformation function.

The structure of proposed WCNN is that: The first part of WCPNN is Wavelet Convolutional Pooling Neural 
Network (WCPNN), and the second part is Fully Connected Neural Network (FCNN). The structure of WCNN 
is shown in Fig. 4.

The training process of WCNN is similar to CNN, while the activation function of WCNN is different from 
CNN. The pseudocode of WCNN is listed in Algorithm 3.

Figure 4.  Structure of WCNN. WCNN is composed of WCPNN and FCNN. The first part of WCPNN is 
Wavelet Convolutional Pooling Neural Network (WCNN) and the activation function of WCNN is wavelet scale 
transformation function.
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Data
Datasets generation. The data of the first two experiments ("feasibility experiment" and "Hyperparameter 
optimization experiment ") can be generated in the following steps.

The first step is to generate the training set: The training set has two features: x and y. The label of the train-
ing set is z = f (x, y). The relationship between the two-dimensional features and the one-dimensional label can 
be expressed in Eq. (17):

According to Eq. (17), features of dataset ( F ) can be generated as Eq. (18). There are 3 different values in F , 
hence there are 3 × 3 = 9 groups of features. Label of dataset ( L ) can be calculated as Eq. (19):

The second step is to generate the test set: The features Ft are designed with 21 different values, hence there 
are 21 × 21 = 441 groups of features. According to Eq. (18), Ft can be designed as a matrix with 2 rows and 441 
columns. Each column of Ft represent one group of features. The test dataset can be generated by the pseudocode 
as Algorithm 3.

Datasets of MNISIT and CIFAR-10. MNISIT and CIFAR-10 are widely recognized and adopted in the 
comparative experiments. MNIST is well known from the National Institute of Standards and Technology. In 
MNIST, the training set consists of 250 digits handwritten from different people, and test set consists of the 
same proportion of digits data. CIFAR-10 is widely used in lots of image classification research. In CIFAR-10, 
there are 50,000 32 × 32 images in the training set and 10,000 32 × 32 images in the test set. To meet the need of 
comparison, the size of samples in CIFAR-10 is reshaped to 28 × 28. All samples are divided into 10 classes, with 
6000 samples in each class. Images in the two datasets are shown in Fig. 5.

Design of simulation
Architecture of WNN. "Feasibility experiment" is designed as follows: Common parameters for all the 
algorithms are set according to the same rules as follows: Firstly, the initial parameters such as wjk , wij are set 
with the same randomization rules. Secondly, the target precision is set as a very low value (i.e., the target error 
is set as a very big value), so all the above algorithms are very easy to converge. Thirdly, the training time is set as 
a large value, so all the above algorithms have enough training time to complete the training. The initialization 
work for specific parameters is as follows: Firstly, maximum training time limitation is set as a very large number 
( max_epoch = 20, 000 ) to ensure that BPNN, RBFNN, WNN have enough time to complete training. Secondly, 
target error is set as a very large number ( err_goal = 0.1 ) to make the training easy to complete. Thirdly, training 
processes of each algorithm are repeated 10 times (10 CSPs, CSP is defined in definition 2, i.e., case_repeat = 10 ) 
to observe statistical characteristics. Fourthly, the learning efficiency parameter is set as lr = 0.2 . Fifthly, the 
inertia coefficient parameter is set as la = 0.3 . Many values for lr and la were tested, where 0.2 and 0.3 were opti-
mal for lr and la , respectively. The termination condition is that: Firstly, when the current training error is less 
than the target error, the training process is completed. Secondly, when the current training time exceeds the 
maximum training time limit, the training is stopped.

"Hyperparameter optimization experiment" is designed as follows: Parameters for this simulation are set as 
follows: Firstly, the initial parameters such as wjk,wij were set with the same randomization rules. Secondly, the 
target precision was set very high to find the highest precision of BPNN, RBFNN, and WNN. Thirdly, the training 
time was set as a large value, so all the above algorithms have enough training time to complete the training. The 
initialization work for specific parameters is as follows: Firstly, maximum training time limitation was set as a very 
large number (max_epoch = 20,000). Secondly, maximum error was set as a very small number (err_goal = 0.02). 
Thirdly, simulations of BPNN, RBFNN, and WNN were repeated for 10 CSPs (case_repeat = 10). Fourthly, the 
learning efficiency parameter was set as lr = 0.2. Fifthly, the inertia coefficient parameter was set as la = 0.3.More 

(17)Z
(

x, y
)

= sin(90 · x)+ cos
(

90 · y
)

(18)F =

[

0 0 0 0.5 0.5 0.5 1 1 1
0 0.5 1 0 0.5 1 0 0.5 1

]

(19)L =
[

0 0.3 0.5 0.35 0.71 0.85 0 0.5 1
]
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values of lr and la were tested in different simulations, and the values of lr = 0.2 and la = 0.3 listed above are the 
best. The termination condition is that: Firstly, when the current training error is less than the target error, the 
training process is completed. Secondly, when the current training time exceeds the maximum training time 
limit, the training is stopped.

Architecture of CWNN. Simulation of CWNN is designed as follows: The network structures and param-
eters of CNN and CWNN simulation are listed in Table 6. Different values of the learning rate η and coefficient 
of inertia α are tested in repetitive simulations, and the values of η and α listed in Table 6 are the best ones.

Architecture of WCNN. Simulation of WCNN is designed as follows: The network structures and param-
eters of WCNN simulation are listed in Table 7. Different values of the learning rate η and other parameters are 
tested in repetitive simulations, and the values of η in Table 7 are the best ones.

Conclusions
In this paper, WNN, CNN are implemented and CWNN, WCNN are proposed, all of them are simulated and 
compared. Conclusions are as follows:

Firstly, both the structure of BPNN, the form of activation function in hidden layers of RBFNN and the 
wavelet transform functions are adopted to the design of WNN. The comparative results of BPNN,RBFNN and 
WNN are shown in Table 8.

According to Table 8, the following conclusions can be drawn: the mean MSE and mean error rate of WNN 
are lowest, and the training speed of WNN is the fastest, and the WNN method has no local minimum issue.

Secondly, CWNN is proposed. The fully connected neural network (FCNN) of CNN is replaced by WNN. 
WCNN is proposed. The activation function of the convolutional layer in CNN is replaced by the wavelet scale 
transformation function. The comparative simulations between CNN,CWNN and WCNN are shown in Table 9.

According to Table 9, the following conclusions can be drawn: All of CNN, CWNN and CWNN can complete 
the task of classification on MNIST.

Fifthly, training accuracy of CWNN is higher than CNN and classification ability of CWNN is better than 
CNN. Fifthly, training accuracy of WCNN is higher than CWNN and classification ability of WCNN methods 
are better than CWNN.

There are still some limitations of our methods although we’ve made some improvements based on CNN. 
Firstly, limitations of convolution layer. Back propagation algorithm is not a very efficient learning method, 
because these algorithms need the support of large-scale data sets. In back propagation algorithm, the parameters 
near the input layer will be adjusted very slowly when the layers are too deep. Secondly, limitations of pooling 
layer. A lot of valuable information such as information between the local and the whole will be lost in the pooling 
layer. Finally, the features extracted from each convolution layer cannot be explained, because neural network 
is a black box model which is difficult to be explained.

For the further research: Firstly, try to improve the learning ability and learning speed of CNN, WCNN and 
CWNN by changing the network structure. Secondly, use WCNN and CWNN as neurons to build a more lager 
and powerful neural network. Thirdly, design more experiments to prove the feasibility and verify the perfor-
mances of the improved methods and of the work above.

Figure 5.  Datasets. (a) MNIST is composed of many handwritten from different people. Training set contains 
of 250 digits and test set consists of the same proportion of digits data. (b) CIFAR-10 is widely used in lots of 
image classification research. There are 50,000 32 × 32 images in the training set and 10,000 32 × 32 images in the 
test set.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17941  | https://doi.org/10.1038/s41598-021-97195-6

www.nature.com/scientificreports/

Table 6.  Configurations of CNN, CWNN experiments.

No. Parameter type Parameter name CNN CWNN

1 1st to 5th layers First type of NN CPNN CPNN

2 2nd, 4th layers Activation function of convolutional layer Sigmoid Sigmoid

3 1st layer Dimension of the 1st layer 28× 28 28× 28

4 2nd layer Dimension of 1st convolutional layer 28× 28 28× 28

5 3rd layer Dimension of 1st pooling layer 24× 24 24× 24

6 2nd, 3rd layers Number of features 6 6

7 4th layer Dimension of 2nd convolutional layer 12× 12 12× 12

8 5th layer Dimension of 2nd 1 pooling layer 8× 8 8× 8

9 4th, 5th layers Number of features 12 12

10 − 1st, − 2nd, − 3rd layers Second type of NN FCNN WNN

11 − 3rd layer Dimension of -3rd input layer 192 192

12 − 2nd layer Dimension of -2nd hidden layer None 50

13 − 2nd layer Activation function of hidden layer None Wavelet

14 − 1st layer Dimension of − 1st output layer 10 10

15 − 1st layer Activation function of output layer Sigmoid Sigmoid

16 Hyperparameters Learning rate η 0.1 0.1

17 Hyperparameters Coefficient of inertia α None 0.2

18 Hyperparameters max_SPs 10 10

19 Hyperparameters max_ACs 6000 6000

20 Hyperparameters target_err 0.0000001 0.0000001

21 Hyperparameters BatchSize 10 10

Table 7.  Configurations of WCNN experiments.

No. Parameter type Parameter name WCNN

1 1st to 5th layers First type of NN WCPNN

2 2nd, 4th layers Activation function of convolutional layer Wavelet

3 1st layer Dimension of the 1st layer 28× 28

4 2nd layer Dimension of 1st convolutional layer 28× 28

5 3rd layer Dimension of 1st pooling layer 24× 24

6 2nd, 3rd layers Number of features 6

7 4th layer Dimension of 2nd convolutional layer 12× 12

8 5th layer Dimension of 2nd 1 pooling layer 8× 8

9 4th,5 th layers Number of features 12

10 − 1st, − 2nd, − 3rd layers Second type of NN FCNN

11 − 3rd layer Dimension of -3rd input layer 192

12 − 2nd layer Dimension of -2nd hidden layer None

13 − 2nd layer Activation function of hidden layer None

14 − 1st layer Dimension of -1st output layer 10

15 − 1st layer Activation function of output layer Sigmoid

16 Hyperparameters Learning rate η 0.1

17 Hyperparameters Coefficient of inertia α None

18 Hyperparameters max_SPs 10

19 Hyperparameters max_ACs 6000

20 Hyperparameters target_err 0.0000001

21 Hyperparameters BatchSize 10
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