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Abstract

Background: The biological process underlying axonal myelination is complex and often prone to injury and disease. The
ratio of the inner axonal diameter to the total outer diameter or g-ratio is widely utilized as a functional and structural index
of optimal axonal myelination. Based on the speed of fiber conduction, Rushton was the first to derive a theoretical estimate
of the optimal g-ratio of 0.6 [1]. This theoretical limit nicely explains the experimental data for myelinated axons obtained
for some peripheral fibers but appears significantly lower than that found for CNS fibers. This is, however, hardly surprising
given that in the CNS, axonal myelination must achieve multiple goals including reducing conduction delays, promoting
conduction fidelity, lowering energy costs, and saving space.

Methodology/Principal Findings: In this study we explore the notion that a balanced set-point can be achieved at a
functional level as the micro-structure of individual axons becomes optimized, particularly for the central system where
axons tend to be smaller and their myelin sheath thinner. We used an intuitive yet novel theoretical approach based on the
fundamental biophysical properties describing axonal structure and function to show that an optimal g-ratio can be defined
for the central nervous system (<0.77). Furthermore, by reducing the influence of volume constraints on structural design
by about 40%, this approach can also predict the g-ratio observed in some peripheral fibers (<0.6).

Conclusions/Significance: These results support the notion of optimization theory in nervous system design and
construction and may also help explain why the central and peripheral systems have evolved different g-ratios as a result of
volume constraints.
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Introduction

Myelination is a unique cellular process that can have a

dramatic impact on the structure and physiology of an axon and

its tissue surroundings. For example, as more myelin is added to an

axon, the sheath gets thicker and begins to occupy an increas-

ing proportion of the surrounding wire volume, altering the

biophysical properties that describe axonal function. It is a widely

held view that the g-ratio (the ratio of the inner axonal diameter to

the total outer diameter) is a highly reliable ratio for assessing

axonal myelination. Furthermore, it is generally believed that the

g-ratio of a myelinated axon is optimized to achieve maximal

efficiency and physiological optimization. This concept is sup-

ported by the observations that during the recovery process from

demyelinating disease, central axons undergo an initial period of

hyper-remyelination and increased diameters which then eventu-

ally revert to the normal g-ratio [2–5].

Rushton was the first to derive an optimal theoretical g-ratio of

0.6 [1]. In this classic study the calculation of g-ratio is based on

the speed of fiber conduction. However, it was also realized that

other aspects of axonal myelination including space and energy

consumption likely influence the g-ratio [1], although this has not

yet been accounted for. For example, in addition to Ruston’s

approach, subsequent models have also inherently neglected the

influence of volume constraints on optimized design by holding the

external diameter constant (i.e. fixed volume) [1,6,7]. Further-

more, Rushton’s model was also later questioned with respect to

the CNS where axons tend to be smaller and their myelin sheath

thinner [8]. Here it was pointed out that conduction velocity

maximization need not be the only criterion for optimized design,

particularly for the CNS [8]. Indeed, if the speed of conduction

and the minimization of conduction delays was the only concern

regarding a given axons myelo-architectural design, then the

g-ratio should be ,0.25, since conduction speed continues to

increase monotonically with increasing myelination [9]. Obvious-

ly, this is not supported by the experimental data especially on

central myelinated fibers where g-ratio is significantly higher than

0.6 [10–16].

Few studies have thus far attempted to address the discrepancy

regarding the g-ratio in CNS fibers estimated by these models and

experimentally measured values. Conceptually, this discrepancy

can be explained by the fact that these models are largely

concerned with a single parameter (i.e. minimizing conduction

delays) rather than the idea of system optimization. System

optimization denotes a process through which an optimal solution

naturally emerges from a set of alternatives to maximize favorable
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and minimize unfavorable outcomes [17–22]. This conjecture is

intuitive in the case of axonal myelination if one considers that in

order for the central system to compensate for continual increases

in the total diameter of one axon, then the number and/or size

and/or myelin thickness of the axons in the same wiring space will

have to be reduced. Thus, a theoretical limit must be set for

individual axons that does not allow for the unlimited expansion of

the axons wire volume to outweigh the benefits associated with

myelinating that axon. This theoretical limit, commonly defined as

a global optimum, can be examined by evaluating the relationship

between the biophysical properties describing axonal structure and

function with increasing myelination.

Results

Theoretical Approach
When an axon internodal segment is progressively wrapped by

myelin lamellae (Figure 1), the basic biophysical properties that are

used to describe that axons structure-function relationship also

change. With this, we can define that the efficiency of axon

internodal myelination (Em) is proportional to the gains provided

by the conservation of energy ( f (Q)), minimization of conduction

delays, i.e. via faster internodal membrane charging times resulting

from reduced capacitance ( f (t)), and the preservation of

conduction fidelity, i.e. via increased insulation and less transverse

conductive leak ( f (l)). With the obvious need to conserve space in

the CNS [23], an increasing wire volume resulting from an

increasing sheath thickness works against the gains associated with

increasing myelination and, as a result, wire volume ( f (v)) is

inversely related to Em:

Em!
f Qð Þbf tð Þbf lð Þb

f vð Þd
ð1Þ

where f (x) equals the property function (see below) and b and d
represent weighting factors. Q, t and l are all based on the same

electrical properties and since changing the weighting factor is

equivalent to changing the electrical parameters, the weighting

factor must be the same for each (i.e., b). v, on the other hand, does

not depend on axonal electrical parameters and therefore can be

differentially weighted (i.e., d). Therefore, a balance between the

gains and cost associated with increasing myelination must be

negotiated for optimized myelo-architectural design.

Considering an axonal internodal segment of unit length

(Figure 1), the function of the internodal segment is to first

insulate and preserve conduction fidelity via reducing transverse

conductive leak [24–26]. This feature can be related to the

biophysical properties of the axon by l (equation 2). As an

internodal segment becomes more and more myelinated, l
increases, further reducing transverse conductive leak and

increasing the spread of current [24,25].

l~ Rm=pdið Þ
.

p
.

p di=2ð Þ2
� �� �1=2

ð2Þ

where Rm and p represent the specific membrane resistance

(V?cm2) and axon core resistivity (V?cm) respectively. Increasing

myelination reduces the segmental charging time (t) by nonlinear

decreases in capacitance per unit length (i.e., distance). This

decrease in capacitance outweighs the increase in resistance, thus

resulting in a net increase in the rate of internodal conduction

[24,25,27,28]. Furthermore, increasing myelination also reduces

the charge quantity (Q), where Q directly reflects the energy cost of

conducting an action potential [27,29]. These parameters can also

be related to the biophysical properties of the axon by t (equation

3) and Q (equation 4) respectively,

t~RmCm ð3Þ

Q~diplCmDV ð4Þ

where l and Cm represent the unit length (cm) and the specific

membrane capacitance (mF/cm2) respectively. An increasing wire

volume (equation 5) resulting from an increasing sheath thickness

works against the gains associated with increasing myelination.

v~pl do=2ð Þ2 ð5Þ

General Relationship and Optima Function
Since Q and t decrease with axonal myelination, the relative

efficiency gains (i.e., energy and charging time savings relative to

that same internodal segment lacking myelin) can be expressed

as f Qð Þ~ 1{ Qm=Qnð Þð Þ and f tð Þ~ 1{ tm=tnð Þð Þ respectively;

where m and n represent the myelinated and non-myelinated

internodal segments respectively. l, on the other hand, increases

with axonal myelination and therefore the relative efficiency gains

are expressed as f lð Þ~lm=ln. v also increases with axonal

myelination and thus f vð Þ~vm=vn. However, since space in the

brain is severely limited, v works against design efficiency

counteracting the gains resulting from axonal myelination. Hence,

it can be considered as an ‘‘efficiency penalty’’. The general

relationship can therefore be expressed as shown in equation (1).

We can define a new term, the Relative Efficiency Index (Ei), to

simplify things where;

Ei~Em= Emð Þmax

Figure 1. Geometrical and electrical properties of a myelinated
axon internodal segment of unit length and a schematic of the
equivalent circuit. di and do represent the inner and outer (i.e., di +
total myelin sheath thickness) axon diameters respectively. Rm and Cm

used in the model can be related to the axolemma (ax) and myelin (my)
electrical components as follows: Rm = Rax+nRmy and 1/Cm = 1/Cax+n/
Cmy, where n is the number of myelin lamellae with a periodicity of
16 nm (naı̈ve). Ra depends on both the geometric properties of the
inner core and the core resistivity (p). Axon electrical parameters; p = 70
V?cm, Rax = 4.76103 V?cm2, Rmy = 800 V?cm2 (per lamellae), Cax = 1 mF/
cm2, Cmy = 0.6 mF/cm2 (per lamellae). All values are based on published
work (see [30,59–62] and text).
doi:10.1371/journal.pone.0007754.g001

g-Ratio Optimization
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Therefore, with Em,(Em)max and thus Ei,1 (see Figure 2B), the

global maximum and optimized myelo-architectural design will

have a value of Ei = 1 (i.e., Ei = 1 = (Em)max/(Em)max).

Nervous System g-Ratio Optimization
To evaluate the structural parameters in relation to system

optimization, we first modeled an axon of 2 mm inner diameter (di)

and plotted the efficiency index with increasing myelin sheath

thickness assuming that wire volume does not contribute to design

optimization at all (i.e. d = 0). Much like that reported by Smith

and Koles based on conduction velocity alone [9], no optimized

structure exists since efficiency continues to increase monotonically

(Figure 2A). When however, wire volume is included in the model

and it plays an equivalent role in optimizing design (i.e. d = b = 1),

an identifiable maximum or peak (marked as ‘‘2’’ in Figure 2B) is

observed corresponding to a total myelin sheath thickness of

0.58 mm (0.29 mm on each side of axon, see Figure 1). This

indicates that for this axon to utilize space efficiently while

preserving spike fidelity and maximizing both spike conduction

and energy savings, the fiber diameter (do = di+ total sheath

thickness) must approach 2.58 mm. Having less myelin than this

fails to maximize the potential gains from myelination (marked as

‘‘1’’ in Figure 2B), while having more than this, occupies too much

volume and outweighs the gains associated with increasing

myelination (marked as ‘‘3’’ in Figure 2B). This theoretical

evaluation suggested that axon myelo-architectural design is

represented in the biophysical properties of the axon itself,

indicating that different caliber axons should have different

optimized myelin sheath thicknesses.

To examine whether this ‘‘optimized’’ myelo-architectural

design can also apply to other axon calibers, we solved for the

optimized myelin sheath thickness corresponding to the typical

range (0.5–4.0 mm) of inner diameters observed in central white

matter [12]. The model predicts that if axonal myelo-architecture

is indeed a result of an optimized design, then there should be a

tight linear correlation between the inner and outer diameters of

these myelinated axons (i.e., a fixed g-ratio). To illustrate this, we

first plotted the efficiency index curves for increasing calibers of

axons. As shown in Figure 3A, the peak, or global maximum, is

shifted to the right with increasing caliber of axon (only three have

been shown for clarity). Next we plotted di versus do at maximal

efficiency (i.e. corresponding the peak of the efficiency curve) for

different axon calibers to determine the expected ‘‘optimized’’

g-ratio (Figure 3B). Here, the slope of the plot represents the

g-ratio of axons as defined by the inner diameter of the axon (di)

divided by fiber diameter (do). Indeed, our model reveals that

system optimization of individual myelinated axons is achieved

when the inner diameter approaches 77% of the outer diameter,

i.e. a g-ratio of 0.76–0.77 (Figure 3A–D; theoretical model in panel

B: r = 1.0, R2 = 0.99, p,0.0001; model fit to experimental data in

panel D: R2.0.96 for each). Note, however, that g-ratio values are

generally observed following histological processing and thus the

expected experimentally observed g-ratio range at optimum

efficiency would be on the order of 0.76 to just over 0.80

(g-ratioobserved <0.76–0.81).

Finally, if the volume does not have as much of an influence on

optimized axon myelo-architecture design, as may be predicted for

some fibers in the PNS with thicker myelin sheaths, then a d,b
should be able to predict these lower PNS g-ratio values. To

examine this, we reduced the influence of the volume constraint by

roughly half to see if a thicker myelin sheath would represent the

new optimized condition. Indeed, we found that reducing d by

about 40% (Figure 4A and B) resulted in optimized g-ratio values

approaching that of some experimentally observed PNS fibers

(e.g. 0.6) (see Table 1).

Discussion

In the present study we have developed a simple model

describing how a myelinated axon can achieve optimal design by

attaining a specific set of structural and functional parameters. We

found that when volume is considered as an important limitation

to the system, it lowers the set-point for which optimization occurs

and results in a theoretical g-ratio boundary value that closely

resembles the experimentally observed values for most central

axons (Table 1). By contrast, when volume is less of a constraint on

Figure 2. The model can predict an optimized level of
myelination for a given axon. A: Relative efficiency index with
increasing lamellae (i.e. increasing sheath thickness) without volume as
a constraint (i.e., d = 0). A global optimum does not exist. B: Top, a
schematic illustrating a 2 mm inner diameter (di) axon with an increasing
(1R3) myelin sheath thickness; where the total myelin sheath thickness
equals the difference between the outer (do) and inner diameters (i.e.,
do-di). Bottom, relative efficiency index for different myelin sheath
thicknesses. ‘‘2’’ represents the level of ‘‘optimized’’ (i.e, maximal
efficiency) myelination for this particular axon. ‘‘1’’ and ‘‘3’’ illustrate that
lower or higher levels of myelination provide a less efficient myelo-
architectural design. Here volume is a constraint (d = b = 1).
doi:10.1371/journal.pone.0007754.g002

g-Ratio Optimization
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the system, thicker myelin sheaths are most efficient with g-ratios

approaching that observed in some peripheral fibers (see Table 1).

Theoretical Considerations
There are two important questions related to the basic findings

reported in this study. First, does our simplified high myelin-

resistance axon model (Figure 1) represent the real situation?

The answer to this question can be gained by first examining the

accuracy of other related axonal parameters derived from the

same model. For example, if our theoretical framework approx-

imates the physiological situation, then we should be able to

predict the internodal resistance and capacitance measurements

for a stretch of axon with specified dimensions (i.e., <10.5 mm

inner diameter and 1 mm in length) [30]. Indeed, our simplified

axon model predicts an internodal resistance of 277 MV and a

capacitance of 1.79pF, which are consistent with the range of

experimentally determined values of 220–350 MV and 1.2–1.9pF

for internodal resistance and capacitance respectively [30].

Interestingly, these parameters correspond to g-ratio values on

the order of 0.78 [31]. Second, does our simplified axon model

represent the central nervous system? Central axons, particularly

those located within the white matter of the mammalian brain,

often preclude direct electrical property measurements due to their

small size. However, based on the similar conduction properties

among peripheral and central axons of equivalent caliber [32] and

their common dependency on the axon’s electrical properties [25],

the structural parameters we used to construct our model (Figure 1)

do not seem inappropriate. Indeed, both our experimental data on

the g-ratio and those reported in previous studies are in good

agreement with our model predictions (Table 1).

What about the other axon model that has been described

previously? Blight and Someya reported a low myelin-resistance

axon model [33,34]. In this model, a total resistance of 145 MV,

instead of 220 MV, was used to represent the same stretch of axon

as that described by Tasaki (see above). We evaluated the

predicted ‘‘optimized’’ axon myelo-architecture of this low

myelin-resistance axon model and found that the g-ratio was

.0.90 (e.g., optimal total sheath thickness of 0.19 mm for a 2 mm

axon), a value that is inconsistent with previously reported values

(Table 1). In fact, g-ratios as high as this are typically only seen

Figure 3. Model predictions for optimized axon myelo-architectural design (i.e., g-ratio) for different axon calibers of central white
matter. A: Example relative efficiency index curves for increasing diameter axons (1.5-blue, 2.5-green and 3.5-grey) illustrating that the optimized
level is scaled to axon inner diameter as indicated by the shifting of the peak or theoretical global maxima. For clarity, only 1.5, 2.5 and 3.5 mm caliber
axon efficiency curves are shown. B: The theoretical predicted relationship between the inner (di) and outer (do) axon diameter for optimized axon
myelo-architecture of increasing caliber when volume is a constraint (d = b = 1). The model predicts that do and di are significantly correlated
(correlation coefficient r = 1.0, R2 = 0.99; p,0.0001), where di = (0.76–0.77)do. do = di + total sheath thickness. Blue, green and grey triangles correspond
to their respective curve in panel a. C: a representative TEM image illustrating a relatively thin myelin sheath thickness for most CNS axons. Scale bar
= 1 mm. D: Experimentally determined axon myelo-architecture for different axon calibers from rat brain. The experimentally determined relationship
between the inner and outer axon diameters from the rat brain. Values are corrected for tissue shrinkage resulting from the fixation process (see
Methods) to compare to the model prediction for naı̈ve axons (Figure 3B). The red line represents the theoretically predicted relationship for
optimized axon myelo-architectural design (model fit to experimental data: R2.0.96 for each). Inset: a typical example of a brain white matter axon
indicating both di and do. Midbrain: myelinated axons from the rat brainstem; forebrain: myelinated axons from the rat internal capsule. Summarized
experimental values are listed for di, do and the sheath thickness (all in mm units). Inset scale bar = 0.5 mm.
doi:10.1371/journal.pone.0007754.g003

g-Ratio Optimization
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under non-physiological conditions [10,13] and approaches the

theoretical value for spike failure [9]. Hence, the low myelin-

resistance model may partially reflect current shunting (resulting

from the puncture wound during microelectrode penetration

[33,34]) which can significantly distort and underestimate resis-

tance measurements [35]. These data also suggests that our model

possesses a high degree of sensitivity in estimating structural

parameters, although it is built based on the simple notion of

system optimization.

Theoretical and Observed g-Ratios of Central and
Peripheral Fibers

The experimentally measured g-ratios of central fibers (0.72–0.81;

Table 1) seem to fall into a narrow range that is compatible with the

expected theoretical estimate reported here (g-ratioobserved <0.76–0.81).

The typically ,5% difference between the theoretical and observed

data may be caused by certain uncontrollable factors in the latter as

result of histological processing. However, for some peripheral axons,

we do notice that the difference between our estimated g-ratio and

that reported in the literature, which can approach 0.6 (see Table 1 for

example), is significantly larger. It is known that some peripheral axon

g-ratio values tend to be lower than central axon g-ratio values [36],

although the underlying mechanism remains unclear. It is possible

that in the peripheral system the space constraint is less of a limiting

factor than in the brain, as axonal myelination in the PNS tends to be

optimized for maximizing conduction velocity so that long projection

axons can ensure rapid sensory and motor responses [1]. On the

contrary, the relatively few but extremely large (e.g. .10 mm)

diameter axons in some central systems may represent the case

through which evolutionary pressure may have favored an even

greater demand on the volume constraint. In other words, the volume

constraint is likely more of an influence in much larger diameter axons

since they inherently already occupy a larger volume, and thus, it may

be predicted that much larger diameter axons as discussed by Paus

and Toro [37] have slightly larger g-ratios that deviate from linearity.

Functional Implications
Evolutionary optimization in brain systems was first attempted

by Cajal about 100 years ago who mentioned the economy of

space, time and matter as laws of brain maturation [38]. Some

well-known examples of system optimization have since been

Figure 4. Optimized g-ratio for different neural systems. A:
Efficiency index curves for a 1 mm diameter axon where d=b= 1 (CNS-
black curve) and where volume is less of a constraint d = 0.6b (PNS-grey
curve). Note that the peak is shifted to the right indicating that when
volume is less of a constraint then the optimal sheath thickness is larger. B:
Plots of di versus do representing different neural systems. In grey (circles)
is when volume is less of a constraint (d = 0.6b). In black (triangles) is when
volume is as equally important as the other parameters (d = b = 1) in
defining an optimal structure (re-plotted from previous figure for
comparison). The slopes of the lines, which represent the g-ratio,
correspond to approximately 0.58–0.59 for the grey (PNS; correlation
coefficient r = 1.0, R2 = 0.99; p,0.0001) and 0.76–0.77 for the black (CNS).
Curves were generated using the parameters defined in Figure 1 and were
the same for both the ‘‘CNS’’ and ‘‘PNS’’ plots with the exception of d.
doi:10.1371/journal.pone.0007754.g004

Table 1. Some summarized experimental g-ratio data.

CNS g-Ratio Source

Corpus Callosum 0.75–0.81 a–d

Spinal Cord 0.79 b

Optic Nerve 0.81 b, e–f

Superior Cerebellar Peduncle 0.76–0.81 g

Anterior Commissure 0.72–0.79 h

Internal Capsule 0.78{

Brainstem 0.81{

PNS

Sciatic 0.55–0.68 f, i–k

Sural 0.47–0.6 l–m

Saphenous 0.61 k

Hypoglossal 0.69 n

Facial 0.69 n

Splanchnic 0.78 n

Vagal 0.73 n

Glossopharyngeal 0.78 n

Oculomotor 0.8 n

Tibial 0.69–0.76 o

Trochlear 0.71 p

Phrenic 0.54–0.59 q

Some previously published g-ratio values for myelinated axons. The data are
reported as the mean value (or range of means - except for the anterior
commissure that only reported a range). Note that mean values are in good
agreement with our predictions (g-ratioobserved<0.76–0.81) for CNS and some
PNS axons. Sources: a, [10]; b, [12]; c, [16]; d, [32]; e, [15]; f, [36]; g, [13]; h, [63]; i,
[64]; j, [65]; k, [66]; l, [67]; m, [68]; n, [69]; o, [70]; p, [58]; q, [71]. {signifies data
from the present study (rat internal capsule raw data; 0.7860.01 SEM, n = 85;
and rat brainstem raw data; 0.8160.01 SEM, n = 70).
doi:10.1371/journal.pone.0007754.t001

g-Ratio Optimization
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described for the nervous system, including the neuropil wire

fraction [39], and the adaptation of sparse coding and analog

transmission through which energy savings associated with

information transfer can be increased by distributed activity across

networks of neurons and synapses [40,41]. Optimization theory has

also been applied to explain axonal network topology and

distribution patterns [21,23,42,43], neuronal morphology [44],

and how grey/white matter volumes can be universally scaled

across different species [45]. In these studies, it was shown that as

the system operates optimally, a set of structural and functional

parameters can emerge that define the physiological and/or

structural boundaries. Our result is another example consistent

with optimization theory and provides insight into the fundamental

basis for central white matter design and construction.

Electrophysiological studies in vitro have shown that central

axons are endowed with diverse conduction velocities and that

regional axonal myelination can play an important role in

influencing both the fidelity and timing of spike propagation

[14,46,47]. These results are consistent with the notion that axons

can utilize myelination as an adaptive mechanism to achieve

rapid, reliable and energetically favorable information transmis-

sion. In this context, hyper-myelination and unrestricted spatial

expansion of an axon is expected to incur significant cost to the

system as a whole, since the other cellular elements occupying the

same space and volume must modify their morphological

properties in order to cope with the space ‘‘crunch’’ [39]. Thus,

the g-ratio may be considered a reflection of the set-point at which

the structural and functional organization of individual fibers has

achieved a high degree of balance and optimization. This

microscopic optimization of axonal myelo-architecture also

supports the finding that fixed volume scaling can be seen

between white matter and gray matter across different animal

species [45,48]. However, one question still remains: How is this

set-point value and the globally optimized structure achieved? The

underlying mechanisms may include not only the intrinsic

electrical and biochemical properties of the axon itself [5,49],

but also active communication between axons and their local

environment and neighboring glia [50–52].

Methods

Transmission Electron Microscopy
All experimental protocols were approved by the University of

Calgary Conjoint Faculties Research Ethics Board (Protocol #
MO8090). Under this protocol, animals are housed in The

University of Calgary Animal Resource Center facility receiving

constant care throughout the year. Tissue blocks of the forebrain

and midbrain region of the mature rat brain were prepared as

previously described [46]. Tissue blocks were immersed in 2.5%

glutaraldehyde fixative/0.1 M sodium cacodylate buffer for one

hour and then rinsed 0.1 M sodium cacodylate buffer three times

ten minutes each. Tissue blocks were then post-fixed in 1%

osmium tetroxide/0.1 M sodium cacodylate buffer for one hour,

thoroughly rinsed three times five minutes each with distilled

water, and then dehydrated with acetone. Tissues were embedded

in 1:1 acetone:resin for one hour followed by 100% resin for one

hour and then 100% resin overnight. Tissues were then placed in

100% resin for one hour before placing into moulds with fresh

resin for polymerization in a 60uC oven overnight. Thin sections

(0.07 mm) sections were collected on copper mesh grids for

transmission electron microscopy. All specimens were examined

under a Hitachi H-7000 electron microscope and images were

acquired through a SIA-8 CCD camera mounted on the

microscope for examination with Northern Eclipse Software

(Cheektowaga, NY, USA). For morphological analysis, acquired

images were analyzed for axon inner and outer diameters by

taking the maximum and the minimum diameter and calculating

the average as previously described [53].

Tissue Shrinkage Correction
Although the absolute degree of tissue shrinkage and the naı̈ve

myelin periodicity can slightly vary, the total myelin sheath can be

estimated in the naı̈ve state by assuming a relative reduction in

myelin tissue periodicity resulting from histological processing.

This can be approximated by the apparent 2–3 nm discrepancy

between the myelin periodicity observed via X-ray diffraction

(naı̈ve axons) and that for electron microscopy (fixed axons) as a

result of dehydration and embedding during histological process-

ing [54]. Since the myelin hydration layer (water layer) periodicity

in the naı̈ve state roughly corresponds to 2.5 nm [54], then

dehydration results in a reduction from roughly 16 nm to 13.5 nm

[55–58]. Therefore, a lamellae periodicity of 16 nm and 13.5 nm

for the naı̈ve and fixed axon respectively were used. As a result, the

fixed myelin sheath was multiplied by 16/13.5 to approximate the

true ratio in the naı̈ve state.
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