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Abstract: Hulunbeir grassland, as a crucial ecological barrier and energy supply base in northwest
China, suffers from a fragile ecological environment. Therefore, it is crucially important for Hulunbeir
grassland to achieve the sustainable development of its social economies and ecological environments
through the evaluation of its ecological security. This paper introduces the indexes of the ecological
pressure index (EPI), ecological footprint diversity index (EFDI), and ecological coordination coefficient
(ECC) based on the ecological footprint model. Furthermore, the Stochastic Impacts by Regression on
Population, Affluence, and Technology (STIRPAT) model was applied to analyze the main driving
factors of the change of the ecological footprint. The results showed that: The ecological footprint (EF)
per capita of Hulunbeir grassland has nearly doubled in 11 years to 11.04 ha/cap in 2016, while the
ecological capacity (EC) per capita was rather low and increased slowly, leading to a continuous
increase of per capita ecological deficit (ED) (from 5.7113 ha/cap to 11.0937 ha/cap). Within this,
the footprint of fossil energy land and grassland contributed the most to the total EF, and forestland
and cropland played the major role in EC. The EPI increased from 0.82 in 2006 to 1.25 in 2016, leading
the level of ecological security to increase from level 3 (moderately safe) to level 4 (moderately
risky). The indexes of the EFDI and ECC both reached a minimum in 2014 and then began to rise,
indicating that Hulunbeir steppe’s ecological environment, as well as its coordination with economy,
was considered to be worse in 2014 but then gradually ameliorated. The STIRPAT model indicated
that the main factors driving the EF increase were per capita GDP and the proportion of secondary
industry, while the decrease of unit GDP energy consumption played an effective role in curbing the
continuous growth of the EF. These findings not only have realistic significance in promoting the
coordinated development between economy and natural resource utilization under the constraint
of fragile environment, but also provide a scientific reference for similar energy-rich ecologically
fragile regions.

Keywords: ecological footprint; ecological capacity; ecological security; STIRPAT model;
Hulunbeir grassland

1. Introduction

Ecological security means that a country or a region enriches ecological resources that could
continuously meet social progress and economic development and lessens the restriction of the
ecological environment on social and economic development [1]. However, with the acceleration of
industrialization and urbanization, the increase of population, and a subsequent greater use of natural
resources, ecological security issues, such as grassland degradation, forest decline, desert encroachment,
and biodiversity loss are gradually becoming prominent. Maintaining a dynamic equilibrium
between humans and nature becomes particularly hard and important in ecologically fragile areas [2].
This requires to research the relationship between human activity and environmental change, optimize
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the structure of resource utilization, and minimize the impact of human behavior on the ecological
environment under the premise of maintaining sustainable economic growth and safeguarding human
well-being [3,4].

To further understand the change of the ecological environment, many beneficial explorations in
terms of concept connotation, evaluation framework, and control approach of ecological security have
been conducted [5–7]. The related researches have ranged from the empirical study of environmental
change and security to the interactions between them, emphasizing the harmonious coexistence of
socio-economic development and ecological security [1,8]. Additionally, various approaches have been
applied to evaluate the state of ecological security, such as the pressure-state-response [9], landscape
ecology [10,11], material/substance flow analysis [12,13], ecosystem services [14,15], and ecological
footprint [8,16,17]. Among which, the ecological footprint method is the most widely used. It is defined
as a bio-productive land area that maintains human living needs while absorbing pollution caused
by human activities. The primary advantages of this method are that it is easy to apply, repeatable,
and simple to understand [18,19]. Scholars have used this method to study multiple scales of ecological
footprints. On a large scale, Wackernagel et al. [20] researched the ecological footprints of 52 countries
that include 85% of the global population and 95% of the global economic output, finding that 35 of
these countries were experiencing ecological risk. Niccolucci et al. [21] studied the ecological footprints
of 150 countries from 1961 to 2007 by dividing the change tendencies of ecological footprint and
ecological capacity into four types: parallel, scissors differential, wedge, and downtrend. Li et al. [19]
researched the five countries in arid areas of Central Asia, showing that the ecological pressure in all
five countries was rising, and the overall ecological security situation changed from comparably safe
before 2000 to unsafe in 2005 and then may be at risk in 2025.

However, these large-scale studies generally ignored the differences in resources, technologies,
and other aspects among the various regions. In response to this gap, some scholars have recently
researched the ecological footprint based on comparatively smaller scales of province, city, and county.
For example, Dong et al. [22] evaluated the ecological security and natural capital utilization of Hainan
Province, China, from 2005 to 2016, uncovering the main factors influencing the changes of ecological
footprint by partial least squares regression model. Pan et al. [23] analyzed the dynamic changes in
supply and demand of resources and revealed that China’s Shanghai is suffering a high ecological
footprint intensity and a poor coordination relationship between its economy and environment.
Zhao et al. [24] evaluated the ecological security of Lhaze County in China’s Tibetan Autonomous
Region, showing that ecological environment has deteriorated from “early stages of damage status” in
the 1980s to “moderately damaged status” today.

Scholars have also used different models to analysis the main factors that affect the change
of the ecological footprint, such as the Stochastic Impacts by Regression on Population, Affluence,
and Technology (STIRPAT) [25], partial least squares regression (PLS) [26], and log-mean divisia index
(LMDI) [27]. One of the most representative methods for exploring the influencing factors is the
STIRPAT model. Its primary advantage is that it allows for non-monotonic or non-proportional effects
from the driving forces [28]. Currently, this model has been widely used in studies to analyze the effect
of population, affluence, and technology on environment.

Affected by climate change and human activities, mining areas often overlap with fragile ecological
regions [29]. Hulunbeir grassland, as an important natural ecological barrier and energy supply
base in north China, provides a significant contribution to the country’s economic development and
ecological security. However, global climate change and continuous socio-economic development with
excessive exploitation of resources have jointly induced soil and water loss, grassland desertification,
degradation, and salinization [13]. Eco-environmental issues have been paid close attention by the
whole society [30]. At present, the pertinent literatures in this area mainly focuses on the discussion
of the variation tendency of grassland production capacities [31] and correspondingly ecological
protection measures [32]. While research rarely shows how natural resources are used and ecological
security changes over time, these exhibit the remarkable effects of ecological policy implementation [33].
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Especially since the eleventh “Five Plan”, Hulunbeir city has further strengthened ecological restoration
and made efforts towards industrial transformation. Therefore, in this paper, the ecological footprint
(EF) framework and the ecological capacity concept are introduced to clarify the supply and demand
of the regional ecosystem. Three indicators of ecological pressure index (EPI), ecological coordination
coefficient (ECC), and ecological footprint diversity index (EFDI) from 2005 to 2016 are calculated to
provide a more comprehensive assessment of historical and current ecological security of mining areas
in Hulunbeir grassland. Additionally, the STIRPAT model is constructed to further study the main
socio-economic driving factors that lead to the emergence or even aggravation of ecological deficits
and quantify the importance of each driving factor. This study can provide a scientific basis for solving
the contradiction between the rapid development of the social economy and degradation of ecological
environment and thereby provide a reference for ecological environment management decisions for
mining areas in arid and semi-arid grasslands in China. 2. Study Area and Data Sources.

1.1. Study Area

Hulunbeir grassland is mostly distributed in Hulunbeir city (E 115◦31′–126◦04′, N 47◦05′–53◦20′),
northeast of Inner Mongolia (Figure 1). Except for the transition area of forest and grassland in the
eastern region, the rest are basically natural grasslands with an area of approximately 11.27 × 104 km2,
covering about 11.54% of Inner Mongolia’s total grassland area. Hulunbeir grassland as a whole is a
plateau landform with an altitude of 650–1000 m. It belongs to a continental arid to semi-arid climate
with an annual average temperature of −3–0 ◦C and annual precipitation of approximately 350 mm.
Hailaer River, Yimin River, and Gen River originating from the Greater Khingan Mountain are the
major water supplies for grasslands. From the western foothills of the Greater Khingan Mountains to
the Mongolian Plateau, there is a distribution of zonal grasslands with arid steppe, meadow steppe,
and forest steppe. The perennial herbaceous community is the basic feature of the grassland ecology in
this region, with about 1000 plant species. Moreover, Hulunbeir grassland is rich in coal resources,
with an area of about 2.7 × 104 km2 accounting for 31% of the total region. Since the reform and
opening up of China, the coal industry has undergone a rapid development. Especially in 2006, the coal
mines of Jalainur, Baorixile, and Yimin were listed in the second batch of 26 national planned coal
mining areas [34], with the coal industry expanding vigorously. At present, its proved reserves of
coal resources reach 29.785 billion tons, which is 1.8 times higher than the combined storage of the
three provinces in Northeast China (Heilongjiang Province, Jilin Province, and Liaoning Province) [35],
and more than 370 mining sites and 355 mining enterprises of various categories have been constructed.
The accumulated solid waste output produced by mining is about 370 million tons, and the total area
of mined-out subsidence area is approximately 42 km2 [36]. All of these problems are concentrated in
the grassland area, such as Hailar Basin, Labudalin, and Miandu River. The area of the degradation,
desertification, and salinization in Hulunbeir grassland has increased from 13% in the 1960s to 21% in
the 1980s, to about 30% in the 1990s and to nearly 50% in the beginning of this century [37], which
seriously handicaps the sustainable development of the regional economy and environment.

1.2. Sources of Data

Hulunbuir’s rapid economic growth is mainly supported by a high consumption of energy
resources. There are three large mining areas listed in the second batch of the 26 nationally planned
coal mining areas in 2006, which have promoted the rapid development of energy-related industries.
At the same time, the new eleventh “Five Plan” emphasizes the importance of ecological environment
protection and the necessary of industrial transformation to reduce dependence on energy-intensive
industries. The disparity between economic development and environmental protection is becoming
increasingly acute. Based on this situation, we mainly select the time series of 2006–2016 to explore
the dynamic change of the ecosystem’s health and natural resource utilization after the new eleventh
“Five Plan”. Detailed data sources and descriptions are shown in Table 1.
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Figure 1. Location of the overlapped areas of grassland and coal resources.

Table 1. Indicators and data sources.

Items Indicators Data Sources

Biological account

Agricultural products: wheat, corn, rice, sorghum, potato,
oil crop, vegetables, beans, wine, sugar, pork and eggs

Forest products: fruits and wood
Grass products: beef, lamb, poultry, milk, dairy products,

sheep wool, goat wool, cashmere
Aquatic products: freshwater

«Hulunbeir Statistical Yearbook» (2007–2017)

Energy account The consumption of raw coal, crude oil, coke, gasoline,
kerosene, diesel oil, fuel oil, electricity, heat «Hulunbeir Statistical Yearbook» (2007–2017)

Land use Land use area Land Resources Data of the Ministry of Natural Resources
(2006–2016) and «Hulunbeir Statistical Yearbook» (2007–2017)

Equivalence factor cropland (2.8), grassland (0.5), forest land (1.1), water (0.2),
fossil energy land (1.1), build-up land (2.8)

«Calculation of China’s equivalence factor under ecological
footprint mode based on net primary production» [38]

Yield factor cropland (1.7), grassland (0.19), forestland (0.91), water (1),
fossil energy land (0), build-up land (1.7)

«Calculating national and global ecological footprint time series:
resolving conceptual challenges» [39]

«Quantitative analysis of sustainability development of inner
Mongolia» [40]

Population, economy,
and technology

Population: year-end resident population, urbanization rate
Economy: per capita GDP, proportion of secondary industry

output value
Technology: unit GDP energy consumption

«Hulunbeir Statistical Yearbook» (2007–2017)
«Inner Mongolia statistical yearbook» (2007–2017)

National economy and society developed statistical bulletin in
Hulunbeir (2006–2016)
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2. Methods

2.1. Construction of Ecological Security Evaluation Framework

Here, we selected four indicators of Flux (F), Pressure (P), Diversity (D), and Coordination (C) on
the basis of the method of ecological safety evaluation (Figure 2). F reflects the difference between
ecological footprint capacity (EC) and ecological footprint (EF). It indicates changes on an ecosystem’s
support to socio-economic system, thereby reflecting ESS from an absolute value change perspective.
F is the equivalent of the ecological balance, which can be calculated through the classic EF model.
The ecological pressure index (EPI), as a substitute for P, is the pressure level on the ecosystems
generated by a given socio-economic system or a specific population scale. It is defined as the ratio
of per capita EF (ef ) to per capita EC (ec). EPI reflects ESS by analyzing stress suffered by ecosystem
per unit of ecological capacity. Diversity (D) expresses both the amount and the distribution of the
different EF components, which reflects ESS from an EF composition and structure perspective. Finally,
Coordination (C) is used to measure the coordination degree between socio-economic development
and ecosystems. The ecological footprint is affected by population, economy, and technology. Thus,
we created multiple regression equations between the ecological footprints and variables to explore
the main driving factors of the ecological footprint change.

Figure 2. The framework of ecological security evaluation.

2.2. Evaluation Model of Ecological Footprint

The ecological footprint is the area of productive land and water needed to support the regional
population and the land needed to absorb the waste produced by those populations [41]. This approach
provides a kind of simple methodology but comprehensive way to measure direct and indirect human
consumption on the regional regenerative capacity. Then, by comparing it with the biocapacity
available, we can judge whether the development pattern of this region is in a sustainable state.
According to the theory of ecological footprint, the biologically productive land can be divided into 6
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types, i.e., cropland, grassland, forestland, water, fossil energy land, and build-up land [20], each type
has a different production capacity of per unit area. The specific calculations formulas are as follows:

EF = N × e f = N ×
n∑

i=1

(aai × ri) = N ×
n∑

i=1

(
ci
pi
× ri

)
. (1)

In the formula above: EF is the total ecological footprint (ha); N is the total population; i is the
category of items consumed by a certain population (i = 1,2, . . . , n); aai is the ecologically productive
area from the ith consumption item; pi is the average productivity of the ith item in a certain area
(kg/ha); ci is the per capita quantity of the ith item (kg/ha) affected by the productivity and trade
balance amount; ri is an equivalence factor, which describes the ratio of the productive capacity of a
certain type of bioproductive land to the productive capacity of all the world’s bioproductive land.
The equivalence factor of each biologically productive land is shown in Table 1

EC = N × ec = N × (1− 12%)
∑6

j=1

(
a j × r j × y j

)
(2)

In the formula above: EC is the total ecological capacity (ha); j represents the area of the biologically
productive land required; a j represents the per capita area of the biologically productive land for items
of the jth category (ha); y j is yield factor, which describes the ratio of average land productivity of a
country or region to the global average productivity of the same land type. The yield factor of each
biologically productive land is shown in Table 1. In addition, the area of biologically productive land
should be decreased by 12% to account for biodiversity conservation [42].

2.3. Evaluation Model of Ecological Security

2.3.1. Ecological Deficit/Surplus

As the EF and EC are both measured by the area of biologically productive land, they can be
compared directly. Ecological deficit/surplus (ED/ES) presents the profit and loss of supply and
the demand situation of the regional ecological system [17]. When a region’s EC is less than the
EF in a region, an ecological deficit (ED) appears, indicating that the supply of regional ecological
resources neither meet the demands of social development nor bear the corresponding environmental
purification and renewal. Therefore, the region may import resources from surrounding cities or even
other faraway cities to satisfy increasing local demand for natural resources and energy. Conversely,
ecological surplus (ES) indicates that the supply of regional ecological resources is sufficient to meet
the needs of human production. The formula for the ED/ ES is as follows:

ED/ES = EF− EC = N × (e f − ec) (3)

2.3.2. Ecological Pressure Index

The ecological pressure index (EPI) mainly reflects ecological pressure which is caused by the
consumption of resources and sequestering carbon dioxide emissions, and so forth, in the industry
and daily life of local residents [8], representing the pressure intensity suffered by regional ecological
environment. If 0 < EPI < 1, EPI will be positive and the supply of ecological resources exceeds
the demand for it, indicating that the ecological security remains in a sustainable status. If EPI = 1,
the supply of the ecological resource and the demand for it are equal, indicating that the ecological
security is in a critical status. Finally, if EPI > 1, people’s demand for ecological resources is greater than
its supply, indicating that the regional ecology is in a threatened status. Using data calculated for the
EFs of 147 countries or regions, as provided in the Living Planet Report by the International Monetary
Fund in 2004, Yuan [43] and Chu [17] detailed the classification standard of ecological security (Table 2).
The formula is shown as follows:

EPI = e f /ec. (4)
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Table 2. Classification standard of ecological security.

Ecological Security Grade Range of EPI Characterization State Ecological Security Alarm Level

1 <0.5 Pretty safe
No alarm2 0.50–0.80 Safe

3 0.81–1.00 Moderately safe Low alarm
4 1.01–1.50 Moderately risky Moderate alarm
5 1.51–2.00 Risky High alarm
6 >2 Very risky Severe alarm

2.3.3. Ecological Coordination Coefficient and Ecological Footprint Diversity Index

Ecological deficit is an absolute value and cannot reflect its relationship with resource endowment
conditions. Therefore, it is necessary to introduce the concept of an ecological coordination coefficient
(ECC) to compensate for this deficiency in the ecological deficit [4]. Ecological coordination coefficient
represents the coordination degree between regional ecological environment and socio-economic
development. The formula is as follows:

ECC = (e f + ec)/
√
(e f )2 + ec2 =

(
e f
ec

+ 1
)
/

√(
e f
ec

)2

+ 1 = (EPI + 1)/
√

EPI2 + 1. (5)

Due to ef and ec being larger than 0, the ECC ranges from 1 to 1.414. The closer it is to 1.414,
the better the coordination. Conversely, the closer it is to 1, the worse the coordination.

The ecological footprint diversity index (EFDI) reflects the abundance of different land types
and the fairness of ecological footprint distribution in a region [16,44]. The more equal the ecological
footprint distribution in an eco-economic system, the higher the ecological diversity is for the ecological
economy of given system components. Generally speaking, in the early stage of regional development,
the EFDI is relatively low. However, with the development of social economy, the diversity index
gradually increases, which can promote the improvement of energy utilization efficiency. The formula
is as follows:

EFDI = −
∑

pi ln pi. (6)

In the formula above: pi is the proportion of the ith category of land type in regional
ecological footprint.

2.4. The STIRPAT Modelling Approach

Ehrich and Holdren [45] firstly proposed the IPAT (Environmental Impact, Population,
Affluence, Technology) model to analyze the relationship between population, economy, technology,
and environment. While the weakness of the IPAT model is that it regards population, economy,
technology, and environmental issues as change relations in equal proportion, this is inconsistent with
the reality. In addition, the importance degree of each driver cannot be clearly judged. To overcome
these problems, Dietz and Rosa [46] proposed the Stochastic Impacts by Regression on Population,
Affluence, and Technology (STIRPAT) model, making quantitative analysis of environmental problems
more flexible. The generic STIRPAT model is given as:

I = aPbAcTdξ . (7)

In the formula above: I represents the environmental impact; a and ξ are the coefficient and
random error of the model; P, A, T represent population, affluence, and technology, respectively; b, c,
and d denote the exponentials of the driving forces.
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In order to measure hypotheses and assess the importance of each influencing factor, the STIRPAT
model is taken as a logarithm to get a linear model [25]:

lnI = lna + blnP + clnA + dlnT + lnξ (8)

However, the accuracy of the evaluation results will be reduced because of the multicollinearity
among socio-economic variables [47]. Therefore, in this study, the principal component analysis
method (PCA) was used to improve the STIRPAT model. The basic principle is: (1) Standardizing
the original data and then calculating the correlation coefficient matrix; (2) obtaining the eigenvalues
and variance contribution rates of the correlation matrix, and determining the principal components;
(3) sing principal components to replace the original variables for multiple regression F; (4) substituting
the original variables into the principal component regression model; (5) based on the results of
the principal component analysis, the logarithms of the extracted principal components were taken
respectively and then restored to the original variable form in the STIRPAT model.

3. Results and Discussion

3.1. Evaluation Results of Ecological Footprint and Ecological Capacity

The ef of the study area increased from 5.71 ha/cap in 2006 to 11.04 ha/cap in 2016, at a range of
93.34% (Table 3). From 2006 to 2014, the average annual rate was 8.01%, while, from 2015 to 2016,
the value of the ef showed a negative growth. This could be due to the effect of the global coal market
and emerging energy, as well as the regulation of illegal and irregular mining enterprises (37 mine
enterprises were closed in 2015) in Hulunbeir grassland. In terms of components of the ef, the change
in the water ef and build-up land ef over time was not obvious, but the the ef of fossil energy land and
cropland increased obviously, especially in 2010 to 2014, the fossil energy ef rose from 2.94 ha/cap to
5.29 ha/cap, which could be resulted from the boom of industrial enterprises above designated size
(increased nearly 100 over those 4 years). Similarly, the ef of grassland and cropland increased by
1.75 ha/cap and 0.65 ha/cap respectively over these 11 years, which reflected the increase of people’s
consumption of milk, meat, and agricultural products and that the living standard was gradually
improving. In addition, the ef of fossil energy land exceeded the ef of grassland since 2007 and became
one of the most important issues in daily life in recent years. In other words, the EF in the study area
has increasingly come from energy-related production’s consumption from then on. On the contrary,
the forest ef showed a declining trend in recent years, mainly because the study area implemented
effective measures against the commercial logging of natural forest since 2012 and cancelled the original
production index of 320,000 m3 of natural forest commodity timber, which significantly reduced the
consumption of wood.

Table 3. Changes of ecological footprint in study area from 2006 to 2016 (ha/cap).

Year Cropland Forestland Grassland Water Fossil Energy Land Build-Up Land ef EF (ha)

2006 1.33 0.64 1.80 0.07 1.79 0.07 5.71 1.51 × 107

2007 1.27 0.69 1.75 0.07 1.85 0.06 5.69 1.55 × 107

2008 1.63 0.64 2.00 0.07 2.50 0.06 6.90 1.88 × 107

2009 1.87 0.67 2.12 0.08 2.63 0.04 7.39 2.01 × 107

2010 2.24 0.55 2.24 0.08 2.94 0.17 8.22 2.23 × 107

2011 2.27 0.39 2.27 0.09 3.99 0.26 9.26 2.50 × 107

2012 2.65 0.42 2.41 0.09 4.23 0.13 9.93 2.52 × 107

2013 2.72 0.37 2.23 0.09 4.64 0.15 10.21 2.75 × 107

2014 2.99 0.39 2.51 0.08 5.29 0.18 11.43 2.89 × 107

2015 3.10 0.30 2.33 0.10 5.14 0.25 11.23 2.84 × 107

2016 3.09 0.19 2.45 0.10 4.95 0.26 11.04 2.79 × 107

Table 4 shows that the per capita EC of the study area experienced fluctuant growth from
6.81 ha/cap to 8.85 ha/cap throughout the study period, with an average annual rate of only 1.03%.
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But compared with the overall decreasing trend in China [16], the slight increase of the ec in Hulunbeir
grassland indicates that the implementation of ecological construction projects have played a positive
role in improving the supply capacity of regional resources. Specifically, as the biological productivity
of cropland and forestland was higher than that of other land use types, the ec of these two land use
types accounted for the largest proportion (58% and 33.55%, respectively) in Hulunbeir grassland,
followed by build-up land (4.64%), grassland (3.39%), and water area (0.42%). Additionally, the ec of
cropland grew fastest, from 2.15 in 2010 to 3.83 in 2016, indicating that the reclamation intensity of
cropland in the study area was strengthened and the other land utilization types (mainly grassland) had
been converted into cropland. The ec of forestland and grassland both experienced a trend of decreasing
first and then increasing, mainly because of a series of treatment measures, such as managing water
pollution, enclosure, returning grazing land to grassland, and the prohibition of commercial logging.

Table 4. Changes of ecological capacity in study area from 2006 to 2016 (ha/cap).

Year Cropland Forestland Grassland Water Build-Up Land Biodiversity Conservation Area ec Total EC (ha)

2006 2.15 5.04 0.30 0.03 0.22 0.93 6.81 1.84 × 107

2007 2.11 4.98 0.35 0.04 0.25 0.93 6.79 1.85 × 107

2008 2.50 4.97 0.29 0.04 0.27 0.97 7.10 1.94 × 107

2009 2.84 5.09 0.28 0.04 0.41 1.04 7.62 2.07 × 107

2010 3.17 4.95 0.28 0.04 0.47 1.07 7.84 2.13 × 107

2011 2.88 4.97 0.28 0.04 0.43 1.03 7.56 2.05 × 107

2012 3.37 5.30 0.30 0.04 0.49 1.14 8.36 2.12 × 107

2013 3.15 4.98 0.28 0.04 0.46 1.07 7.84 2.11 × 107

2014 3.41 5.31 0.30 0.04 0.50 1.15 8.41 2.13 × 107

2015 3.58 5.32 0.30 0.04 0.53 1.17 8.59 2.17 × 107

2016 3.83 5.31 0.30 0.04 0.57 1.21 8.85 2.24 × 107

3.2. Evaluation Results of Ecological Security

Based on the results of the ef and ec in study area, we obtained per capita ED/ES of the six productive
land types, shown in Figure 3. The ec was larger than the ef during 2006–2009, meaning that during
these 4 years, the ability of regional natural resources that supported human activities still remained in
a sustainable state as a whole. However, the ef exceeded the ec in 2010, and then the per capita ES
gradually transformed into per capita ED with the increase of the fossil energy consumption and the
grassland deterioration. This indicated that the equilibrium between demand and supply showed an
unbalanced status and the unsustainable tendency was increasingly obvious in Hulunbeir grassland.
Furthermore, the cropland, forestland and build-up land were in a state of ecological surplus during
the past eleven years, and the bearing capacity of forest land experienced a small upward trend after
the implementation of various protection policies. Build-up land and water area distributed near the
boundary between deficit and surplus changed slightly. However, the fossil energy land and grassland
showed an obvious deficit, and their change trend was basically consistent with the per capita ED,
indicating that these two components contributed the most to the change of per capita ED.

Trends of ecological pressure index (EPI), ecological footprint diversity index (EFDI) and ecological
coordination coefficient (ECC) in Hulunbeir grassland from 2006 to 2016 were shown in Figure 4. As a
whole, the reverse trend of ECC and EPI was obvious. The coordination of ecological environment
was good when ecological pressure was low; conversely, it was poor when ecological pressure was
high. Therefore, the threshold value of EPI could be determined by the critical value of ECC, and then
the ecological security level and ecological security alarm level could be determined. Specifically,
EPI rose from 0.83 in 2006 to 1.36 in 2014 after which it showed a slight downward trend from 1.36 in
2014 to 1.25 in 2016. In 2010, it was greater than 1, which meant that the degree of security increased
from level 3 (moderately safe) to level 4 (moderately risky) (Table 5). However, from 2014 to 2016,
although ecological security was still at level 4, the EPI decreased obviously, indicating that the
ecological security condition in the study area showed an evident improvement. It could be related
to the “Three Horizontal and Three Vertical” industrial transformation and development strategy
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implemented by governments, in 2014, and grassland ecological protection measures, such as returning
grazing to grassland and enclosure projects.

Figure 3. Changes of per capita ecological deficit/ecological surplus in Hulunbeir grassland from 2006
to 2016.

Figure 4. Evolution of ecological pressure index, ecological coordination coefficient and ecological
footprint diversity index in Hulunbeir grassland from 2006 to 2016.

Table 5. Changes of ecological security in Hulunbeir grassland from 2006 to 2016.

Year Ecological Pressure Index Ecological Security Grade Characterization State Ecological Security
Alarm Level

2006 0.83

3

Moderately safe

Low alarm
2007 0.84 Moderately safe
2008 0.97 Moderately safe
2009 0.97 Moderately safe

2010 1.05

4

Moderately risky

Moderate alarm

2011 1.22 Moderately risky
2012 1.19 Moderately risky
2013 1.30 Moderately risky
2014 1.36 Moderately risky
2015 1.31 Moderately risky
2016 1.25 Moderately risky

In addition, with an increase in the ecological deficit and ecological pressure, the EPI reached
its maximum in 2014, indicating that the degree of the use of natural resources, and the rate at
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which waste was being released, had already exceeded the system’s recycling and self-purification
capabilities. The ECC declined slightly over the study period, indicating the coordination between
regional ecological environment and socio-economic development was gradually decreasing. In 2014,
it reached the minimum, contrary to the EPI, indicating that when the ecological pressure rises to a
certain point, the ecological environment will become uncoordinated and unsafe.

The EFDI showed a downward trend from 2006 in 1.42 to 1.25 in 2016. At the same time, we can
see that the annual average decline rate of EFDI during the period 2006–2013 was 1.4%, the increase rate
of EPI was 5.6% at the same time. However, when the annual average decline rate of EFDI gradually
approached 0, the change rate of the EPI began to decline obviously. What is more, when the EFDI
reached the minimum in 2014, the EPI reached the maximum. Therefore, an increase of ecosystem
diversity by using different types of land resources equally and improving resource utilization efficiency
could help alleviate ecological stress and enhance the development capability of the ecological system.

3.3. Identification of Driving Factors of Ecological Footprint

Climate, precipitation, soil, and other factors have to go through a long evolution process before
they can affect the ecological footprint [22,48], which could be ignored for the time being. Therefore,
what we explore are internal drivers of the ecological footprint primarily skewing towards the impact
of regional economic and social development. On the basis of the STIRPAT model, the index of
energy footprint driving forces in study area was selected from three aspects of economy, society,
and technology. Economic growth requires a large amount of resources and energy from nature.
Meanwhile, it will produce various emissions of pollution, leaving a deep imprint on the natural
ecology and further affect the change of ecological footprint. Therefore, we selected per capita GDP
(A) (represents the comprehensive situation of regional economic development) and the proportion
of secondary industry (T) (highly relies on energy and raw materials and generates more wastes) to
represent the ecological footprint consumption of economic growth. Social development is another
important aspect that determines the change of ecological footprint, mainly reflected by population scale
and consumption structure [22,49]. Therefore, the year-end resident population (P) and urbanization
rate (U) were selected to explore the effect on the ecological footprint. Generally, the improvement
of science and technology levels will reduce the energy consumption, that is, the unit of energy
consumption will a produce greater value, and the waste rate of resources will be reduced. Hence,
we adopted the unit GDP energy consumption (C) to reflect the technology development level.

Initially, the correlation matrix method was utilized to check the correlation coefficients among
variables (Table 6). It is obvious that the collinearity among these independent variables was
higher because many correlation coefficients were greater than 0.8, indicating that there was serious
multicollinearity existing among them. This would impact the accuracy and credibility of STIRPAT
model. Thus, it was necessary to adopt the principal component analysis (PCA) to eliminate this effect.

Table 6. Correlation coefficient matrix between independent variables.

Index A T P U C

A- per capita GDP 1 0.905 ** −0.811 ** 0.816 ** −988 **
Significance test 0.000 0.002 0.002 0.000
T-proportion of the second industry 0.905 ** 1 −587 0.561 −0.882 **
Significance test 0.000 0.057 0.072 0.000
P- year-end resident population −0.811 ** 0.587 1 −0.955 ** 0.800 **
Significance test 0.002 0.057 0.000 0.003
U- urbanization rate 0.816 ** 0.561 −0.955 ** 1 −0.814 **
Significance test 0.002 0.072 0.000 0.002
C- unit GDP energy consumption −0.988 ** 0.882 ** 0.800 ** −0.814 ** 1
Significance test 0.000 0.000 0.003 0.002

** Correlation is significant at the 0.01 level (2-tailed).
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In order to avoid the influence between variables, Kaiser–Meyer–Olkin (KMO) test of sample
data should be conducted before principal component analysis (PCA). Results showed that the KMO
measurement value was 0.695, greater than 0.5, the Bartlett sphericity test value was 71.849, and the
sig < 0.001, passing the test, which indicated that PCA was feasible. According to the results of PCA
(Table 7), when the first two principal components were extracted, the cumulative contribution rate
was 97.332%, greater than 85%, indicating that it contained 97.332% of the original variable information
and could replace the original variable to achieve a satisfactory effect.

Table 7. Extraction results of principle component characteristic value and contribution rate.

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotate Sums of Squared Loadings

Total % of Variance Cumulative% Total % of Variance Cumulative% Total % of Variance Cumulative%

F1 4.199 83.979 83.979 4.199 83.979 83.979 2.445 48.908 48.908
F2 0.668 13.354 97.332 0.668 13.354 97.332 2.421 48.425 97.332

As showed in Table 8, the principal component F1 was mainly related to the total population,
urbanization rate, and unit GDP energy consumption, and the variance percentage was 48.908%.
The principal component F2 was mainly related to the per capita GDP, the proportion of the secondary
industry and unit GDP energy consumption, and the variance percentage reached 48.425%. On the
basis of the results of the principal component analysis, the two extracted principal components, F1
and F2, were respectively expressed by the influence factors after the logarithm, and then restored to
the original variable form in the STIRPAT model, shown as follows:

F1 = −0.135LnA− 0.384LnT + 0.584LnP + 0.585LnU − 0.121LnC (9)

F2 = 0.459LnA + 0.675LnT − 0.286LnP− 0.284LnU − 0.206LnC (10)

LnI = 0.795 + 1.160F2 + LnK. (11)

Table 8. Rotational component matrix and principal component score coefficient matrix.

Category Rotational Component Matrix Principal Component Score Coefficient Matrix

Indicator
Component Component

F1 F2 F1 F2

LnA 0.481 0.874 −0.135 0.459
LnT 0.253 0.957 −0.384 0.675
LnP −0.923 −0.339 0.584 −0.286
LnU 0.929 0.344 0.585 −0.284
LnC −0.660 −0.713 −0.121 −0.206

The original time series data of the ecological footprint were converted into a natural logarithm,
and the converted data were represented by LnI. With the dependent variable LnI as the control
variable and the comprehensive variables F1 and F2 as the explanatory variables, ordinary least square
regression was adopted to conduct regression analysis on the variables based on SPSS19.0 software.
The regression results and equation test are shown in the Table 9. The R2 and adjusted R2 were both
greater than 0.9, and the F statistic value is significant at the level of less than 0.01, indicating the overall
fit was very good. According to the regression coefficients, the regression equations of dependent
variable LnI and comprehensive variables F1 and F2 were obtained, shown in Equation (11).
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Table 9. Analysis coefficient of principal component regression.

Component
Unstandardized Coefficients Sig

B Std. Error

F1 0.795 0.477 0.134
F2 1.160 0.091 0.000
R2 0.976

Adjusted R2 0.970
F-statistic 160.668

Sig. 0.000

After the reduction of Equation (11), the expression of Hulunbeir grassland’s ecological footprint
and five driving factors based on STIRPAT model was obtained:

I = NA0.425T0.478P0.135U0.136C−0.335 (12)

Results of STIRPAT model indicated that the per capita GDP, the proportion of the output value
of the secondary industry, the total population, as well as the urbanization rate in the study area are
positively correlated with the ecological footprint, with force indexes 0.425, 0.478, 0.135, and 0.136
respectively. Among them, the proportion of the secondary industry had the largest effect on ecological
footprint. Every 1% increase in the proportion of secondary industry would cause an increase of 0.478%
in the total EF. With the rising of per capita GDP, the proportion of the secondary industry experienced
a rapid increase, from 27.6% in 2006 to 44.7% in 2016. The development of the secondary industry is
often accompanied by the consumption of energy resources and the discharge of wastes, putting great
pressure on the local environment. The rapid growth of the secondary industry will undoubtedly lead
to the increase of the regional ecological footprint. Therefore, the optimization of industrial structure is
an important factor to improve the quality of the ecological environment.

In addition, the positive driving effect of the population and urbanization rate on the ecological
footprint was small. Every 1% increase in the population and urbanization rate would cause an
increase of 0.135% and 0.136% in the EF, respectively. According to the statistics, the urbanization rate
increased slowly during 11a, from 65.72% in 2006 to 71.52% in 2016; the year-end resident population
dropped from 2.7 million in 2006 to 3.4 million in 2016. This was consistent with the analysis results
of the STIRPAT model, indicating that the population and city size of Hulunbeir grassland had little
impact on the change of the EF. The results of this study are inconsistent with Zheng’s research [50], i.e.,
urbanization rate and ecological capacity are the main factors affecting the ecological footprint in China,
but they are similar to Yang’s results [51], i.e., population and urbanization rate have little influence
on the ecological footprint, but the output value of the secondary industry has a great influence in
energy-rich ecologically fragile regions.

On the contrary, the technology level (unit GDP energy consumption) was the main negative
driving force on the growth of the EF, and every 1% increase in technology level may induce about
0.335% decrease in the EF, supplementing Yang’s [52] theoretical analysis on the inhibitory effect of
technical factors on the growth of the ecological footprint to a certain extent, i.e., the improvement of
science and technology provides clean technologies and production processes for industrial production,
which could, theoretically, reduce resource consumption, decrease the amount of contaminant emission,
and promote the utilization of renewable energy resources.

4. Conclusions

The EF framework used in this study offers an intuitive to rationally judge the relationship
between regional socio-economic development and ecological capacity from a supply-and-demand
perspective. Based on this theory, the indexes of the EPI, ECC, and EFDI were obtained to determine
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the level of ecological security and coordination between the ecosystem and economy. The main
conclusions are as follows:

The per capita EF of Hulunbeir grassland nearly doubled during the past 2006–2016 years. While,
the per capita EC was rather low and increased by only 29.9%, the footprint of fossil energy land
contributed the most to the total EF, followed by grassland, cropland, forestland, build-up land,
and water. In terms of time variation characteristics, the EF exceeded the EC in 2010, and the ecological
deficit began to show and gradually expand from then on. At the same time, the EPI increased
obviously, causing the degree of ecological security to rise from level 3 (moderately safe) to level 4
(moderately risky) and the alarm level changed from low alarm to moderate alarm. Additionally,
the value of the EFDI and ECC dropped to different extents during 11a, but both reached a minimum
in 2014 and have increased slightly since. Contrarily, the EPI reached a maximum in 2014 and then
decreased slightly. These changes show that the status of ecological environment and its coordination
with economy were in a worse position in 2014 but have been gradually alleviated since.

Driving force analysis shows that the per capita GDP and the proportion of secondary industry are
mainly positive driving factors of EF growth. However, technological advances played an important
role in curbing the growth of the EF during the study period. The increase of the population and
city size had little influence on the ecological footprint. Therefore, Hulunbeir city should continue
to strengthen the optimization and upgrading of the industrial structure, enhance the capacity of
technological innovation and promote the use of clean energy. At the same time, ecological environment
restoration should be strengthened to improve the carrying capacity of the environment.

Although the ecological footprint model has been widely used in ecological environment and
sustainable development research, the parameters involved in the model, such as the equivalence factor,
yield factor, and average yield, are various and the comparison scale is different (global scale, national
scale, and regional scale), which may have a certain impact on the evaluation results. Therefore,
it is necessary to further optimize the model to achieve a more comprehensive regional ecological
assessment in future studies.
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