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Abstract

Background: Cox proportional hazards regression models are used to evaluate associations between exposures of
interest and time-to-event outcomes in observational data. When exposures are measured on only a sample of
participants, as they are in a case-cohort design, the sampling weights must be incorporated into the regression
model to obtain unbiased estimating equations.
Methods: Robust Cox methods have been developed to better estimate associations when there are influential
outliers in the exposure of interest, but these robust methods do not incorporate sampling weights. In this paper, we
extend these robust methods, which already incorporate influence weights, so that they also accommodate sampling
weights.
Results: Simulations illustrate that in the presence of influential outliers, the association estimate from the weighted
robust method is closer to the true value than the estimate from traditional weighted Cox regression. As expected, in
the absence of outliers, the use of robust methods yields a small loss of efficiency. Using data from a case-cohort study
that is nested within the Multi-Ethnic Study of Atherosclerosis (MESA) longitudinal cohort study, we illustrate
differences between traditional and robust weighted Cox association estimates for the relationships between
immune cell traits and risk of stroke.
Conclusions: Robust weighted Cox regression methods are a new tool to analyze time-to-event data with sampling,
e.g. case-cohort data, when exposures of interest contain outliers.
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Background
Cox proportional hazards regressionmodels [1] are widely
used for analysis of time-to-event data. Modifications of
traditional Coxmodels have been developed to accommo-
date several important scenarios, including data sampled
from a bigger population of interest and data containing
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influential outliers. In the context of data sampling, esti-
mates can be weighted by the inverse sampling probability
[2]. To reduce the impact of violation of model assump-
tions, several robust methods have been proposed [3–6].
One robust method focuses on robustness to variation in
proportional hazards over time [5, 7], and incorporates
sampling weights. However, a related robust method that
focuses on robustness to influential outliers [3, 8, 9] does
not incorporate sampling weights.
One context in which sampling weights play an impor-

tant role is the case-cohort design, a strategy used to
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maximize power for a primary outcome of interest and, at
the same time, facilitate the analysis of multiple secondary
outcomes. When measurement of an exposure of interest
in all members of a cohort is not feasible, measuring it in a
random ‘cohort’ of participants, plus all additional ‘cases’
who experience the primary outcome can be an efficient
study design [10]. Several methods exist for analyzing
case-cohort data, but one relatively simple one involves
use of inverse sampling weights [11]. Accounting for the
sampling scheme is crucial in obtaining unbiased esti-
mates that reflect population-level associations between
exposure and outcome.
One example of an ongoing case-cohort study in which

outliers play an important role is a study of immune cell
traits analyzed in a sub-cohort of the Multi-Ethnic Study
of Atherosclerosis (MESA) longitudinal cohort study [12]
that includes all cases of angina and myocardial infarc-
tion (MI). A number of lymphocyte andmonocyte subsets
were measured in this sub-cohort, using methods similar
to those used by Tracy et al. [13] and Olson et al. [14],
with the goal of evaluating associations not only with the
primary outcomes of interest (angina and MI), but also
with a range of secondary outcomes. As shown by Tracy
et al. [13], the immune cell subsets often have skewed
distributions. Although Coxmodels do not require covari-
ates to be normally distributed, the chance that outliers
are influential increases when covariate distributions are
skewed. If all exposure values have a consistent associa-
tion with the outcome of interest, then the outlying values
do not bias the association of interest. However, if some
of the exposure values are outliers due to a separate bio-
logical process, then within these outliers there can be an
induced association with the outcome of interest that is
not causal, and thus biases estimation of the true associa-
tion of interest. We assume that such a structure exists in
the population, rather than being induced by the sampling
process. Currently, no method is available to both incor-
porate the sampling weights and provide robustness in the
presence of extreme outliers.
In this paper we extend Bednarski’s partial likeli-

hood method that provides robustness to influential out-
liers so that it can also incorporate sampling weights.
In the “Methods” section we describe our modifica-
tion to this robust Cox regression method. In the
“Simulations” section we illustrate via simulations that
this robust method has less bias than traditional weighted
Cox regression when a subset of the participants have
exposure values that are different from the rest, for rea-
sons that are unrelated to the event of interest, i.e. when
there are influential outliers with a different underlying
association with outcome. In the “Application” section we
evaluate the association between the immune cell traits
and stroke in the MESA case-cohort sample to illus-
trate practical differences between traditional and robust

weighted Cox regressions. In the “Discussion” section we
compare our weighted robust Cox regression method to
alternative estimators.

Methods
Methods for fitting Cox models that incorporate weight-
ing by inverse sampling probabilities are well-established
[2]. However the use of such weighting in combination
with robust modeling methods is not consistently imple-
mented. For example, sampling weights are implemented
in one robust method that focuses on robustness to vari-
ation in proportional hazards (PH) over time [5, 7], but
not in another that is more robust to influential outliers
[3, 8, 9]. These two methods incorporate a similar
approach to robustness, i.e. constructing an estimator
with minimum variance subject to a bound on the bias in
local neighborhoods of the Cox model, but each consid-
ers a slightly different family of estimators. Both lead to
partial likelihood estimators that achieve robustness via
weighting, so that when sampling weights also exist, the
implementations must incorporate both types of weights.
Here we will focus on extending Bednarski’s method,

implemented in the R package coxrobust, to gener-
ate a new R package coxrobustw that incorporates
sampling weights. In simulations and data analysis, we
include comparisons to Sasieni and Schemper’s methods,
implemented in the R package coxphw. We will refer to
Bednarski’s methods as ‘outlier-robust’ and to Sasieni and
Schemper’s methods as ‘PH-robust’ due to their focus on
robustness to different types of influence on Cox model
inferences.
We assume that we have observed data on n people,

indexed by i, each of which has the following values:
observed event time ti=min(Ti,Ci) where Ti ∈ R

+ is a
potential event time and Ci ∈ R

+ is a potential cen-
soring time so that ti ∈[ 0,Ti), zi=observed covariate
vector, with zi ∈ R

j where j is the number of covari-
ates, and �i=1[Ti<Ci], i.e. 0 for censored observations and
1 for observed events. Core quantities in implementation
of partial likelihood estimation for Cox models include
S(0)(β , t), S(1)(β , t), S(2)(β , t), and z̄(β , t) [15]. Table 1
specifies these quantities for traditional Cox models, Cox
models with influence weights as in coxrobust, and Cox
models with both coxrobust’s influence weights and
sampling weights.
Cox partial likelihood estimation uses the score estimat-

ing equation
n∑

i=1
[zi − z̄(β , ti)] = 0 [1, 16]. The outlier-

robust estimator in the coxrobust package uses the

modified estimating equation
n∑

i=1
A(ti, zi) [zi − z̄r(β , ti)] =

0, where A(t, z) is a smooth non-negative map which is
zero for large values of t and/or β ′z. Note that z̄ now
has the subscript r to indicate that it is a robust version
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Table 1 Key quantities in estimation of Cox model parameters and their variance

Cox PL Influence Weights Plus Sampling Weights

S(0)(β , t) = ∑

j:tj≥t
eβ

′zj S(0)r (β , t) = ∑

j:tj≥t
A(t, zj)eβ

′zj S(0)wr (β , t) = ∑

j:tj≥t
wjA(t, zj)eβ

′zj

S(1)(β , t) = ∑

j:tj≥t
zjeβ

′zj S(1)r (β , t) = ∑

j:tj≥t
A(t, zj)zjeβ

′zj S(1)wr (β , t) = ∑

j:tj≥t
wjA(t, zj)zjeβ

′zj

S(2)(β , t) = ∑

j:tj≥t
zjz′j eβ

′zj S(2)r (β , t) = ∑

j:tj≥t
A(t, zj)zjz′j eβ

′zj S(2)wr (β , t) = ∑

j:tj≥t
wjA(t, zj)zjz′j eβ

′zj

z̄(β , t) = S(1)(β ,t)
S(0)(β ,t)

z̄r(β , t) = S(1)r (β ,t)

S(0)r (β ,t)
z̄wr(β , t) = S(1)wr (β ,t)

S(0)wr (β ,t)

of the weighted mean of the covariate vector, incorpo-
rating the function A, as defined in Table 1. A takes as
an input the covariate vector z which could contain one
or more covariates with influential outliers. As noted by
Minder and Bednarski [8], the "double-trimming" accom-
plished by using A in both parts of the equation leads
to the Fisher-consistency of the estimator, so it targets
the Cox model parameters. This specific map A is desir-
able because β̂ is then Fréchet differentiable yielding a
consistent and asymptotically normal estimator of β for
infinitesimal extensions of the Cox model [3] [lemmas
4.2 & 4.3], the definition of outlier-robustness used by
Bednarski.
The outlier-robust estimator described in the previous

paragraph relies on mathematical details in Bednarski’s
1993 paper [3]. Highlights from that paper are included
here for clarity. Bednarski’s outlier-robust estimator relies
on writing the Cox score estimating equation in terms of
the empirical distribution function Fn(t, c, z) of the sample
(T1,C1,Z1), ..., (Tn,Cn,Zn):
∫ [

y −
∫
z1[(a∧t)≥w] exp(β ′z)dFn(t, a, z)∫
1[(a∧t)≥w] exp(β ′z)dFn(t, a, z)

]

1[w≤c]dFn(w, c, y) = 0.

This equation is modified with a class A of smooth func-
tions from R

+ × R
j → R

+ to give a modified class of
regression parameter estimators, defined by the vector
equation L(Fn,β ,A) =
∫

A(w, y)
[

y −
∫
A(w, z)z1[(a∧t)≥w] exp(β′z)dFn(t, a, z)

∫
A(w, z)1[(a∧t)≥w] exp(β′z)dFn(t, a, z)

]

1[w≤c]dFn(w, c, y) = 0

for A in A. Bednarski uses functions A yielding Fréchet
differentiable functionals L(Fn,β ,A) that give Fisher-
consistent estimators of Cox model parameters (Lemma
3.1 in [3]).
Bednarski [3] goes on to specify the conditions that

are necessary for
√
n-consistency, Fréchet differentiability,

and asymptotic normality (Theorems 4.1-4.3) in the case
without censoring, which can be extended to incorporate
censoring. For B a closed set in R

j containing an open
neighborhood of the true parameter β0, F the true distri-
bution of t and z from the Cox model distribution, A∗ a
class of functions fromR

+ ×R
j → R

+, A0 a non-negative
continuous function of time with bounded support Sb =

[ a, b], and A a class of functions {A0A;A ∈ A∗}, the
following conditions need to hold:

(A1) For all A ∈ A∗ and w ∈ Sb,∫
A(w, z)1[t≥w]dF(t, z) > ε for some ε > 0.

(A2) All the functions fromA∗ vanish outside a
bounded set, they are absolutely continuous and have
jointly bounded variation. The setA∗ is compact for
the supremum norm on C(Rj × R

+), i.e. the space of
continuous functions from R

j × R
+ to R

+.
(A3) The following functions of variables
(w, y) ∈ R

+ × R
j:

A(w, y)
∫
A(w, z)z1[t≥w] exp(β ′

0z)dF(t, z)
∫
A(w, z)1[t≥w] exp(β ′

0z)dF(t, z)

have jointly bounded variation for A ∈ A and β ∈ B.

In the case when censoring is present, indicators 1[t≥w]
become 1[(a∧t)≥w] and the inner integration is with
respect to F(t, a, z). The function A(w, y) is multiplied in
the outer integral by 1[w≤c] and the integral is with respect
to F(w, c, y).
Specifically, in the coxrobust implementation,

the map A is Aβ ,M(t, z) = M − min(M, t exp(β ′z)),
where M is an order statistic in the sample
t1 exp(β ′z1), ..., tn exp(β ′zn). The class of functions A∗ is
the set {Aβ ,M : β ∈ B,M ≤ M∗}, where M∗ is some fixed
upper bound for M. In the default implementation, M is
the 95th percentile, but the percentile is a modifiable input
to the R function. A and β are estimated iteratively, with
three iterations leading to convergence in the scenarios
they examined, and thus three iterations implemented in
the coxrobust package [3]. To incorporate sampling
weights, we added a step after the estimation of A and
β that incorporates the sampling weights w [11] into the

estimating equation
n∑

i=1
wiA(ti, zi) [zi − z̄wr(β , ti)] = 0,

with the details of the modified weighted mean covariate
vector z̄wr given in Table 1 [15]. The reason for adding
sampling weights after iteration is so that the influence
weights reflect influence due to outliers, rather than due
to large sampling weights.
In addition to deriving a consistent estimator of β , Bed-

narski [3] also derives an influence function that can be
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used to approximate the estimator’s variance, both at the
model and at small departures from it. The existence of
this influence function relies on sufficient smoothness
of A, as discussed in section 5 of his 1993 paper. The
resulting variance estimate for the specific choice of A
implemented in coxrobust is:

V̂r(β̂) = I−1
r (β̂)

[ n∑

i=1
[ ri(β̂)] [ ri(β̂)]′

]

I−1
r (β̂) (1)

where Ir(β̂) is the observed informationmatrix that incor-
porates outlier downweighting:

Ir(β̂) =
n∑

i=1
�iA(ti, zi)

S(0)
r (β̂ , ti)S(2)

r (β̂ , ti) −
[
S(1)
r (β̂ , ti)

] [
S(1)
r (β̂ , ti)

]′

[
S(0)
r (β̂ , ti)

]2

and ri(β̂) is a residual for the ith subject:

ri(β̂) = �iA(ti, zi)
[
zi − z̄r(β̂ , ti)

]

−
∑

k:tk≥ti

�kA(ti, zk)A(tk , zk) exp(β̂ ′zk)
S(0)
r (β̂ , tk)

[
z̄r(β̂ , tk) − zk

]
.

This specific formulation of the variance estimate does
not apply to all possible specifications of A, but does
apply to the one chosen by Bednarski for the coxrobust
package and implemented in this paper.
The variance estimate for the new coxrobustw algo-

rithm incorporates the sampling weights w into the jack-
knife variance estimate in Eq. (1), i.e.

V̂wr(β̂) = I−1
wr (β̂)

[ n∑

i=1
[ rwri (β̂)] [ rwri (β̂)]′

]

I−1
wr (β̂)

where Iwr(β̂) is the observed information matrix that
incorporates both sampling weights and outlier down-
weighting:

Iwr(β̂) =
n∑

i=1
�iwiA(ti, zi)

S(0)
wr (β̂ , ti)S(2)

wr (β̂ , ti) −
[
S(1)
wr (β̂ , ti)

] [
S(1)
wr (β̂ , ti)

]′

[
S(0)
wr (β̂ , ti)

]2

and rwri (β̂) is a residual for the ith subject:

rwri (β̂) = �iwiA(ti , zi)
[
zi − z̄wr(β̂ , ti)

]

−
∑

k:tk≥ti

�kwiA(ti , zk )wkA(tk , zk) exp(β̂′zk)
S(0)
wr (β̂ , tk )

[
z̄wr(β̂ , tk ) − zk

]
.

The new R package coxrobustw implements this
robust estimator that incorporates sampling weights,
using the modified score equation and variance estimate
detailed above. As in the original package, the algorithm
uses three iterations and a default M of the 95th percentile.
The package is publicly available at https://github.com/
csitlani/coxrobustw.

Results
Simulations
We conducted simulations to illustrate the utility of this
new weighted robust Cox regression procedure. For both
a complete population, and a case-cohort sample from
that population, we compared traditional Cox regression
model estimates to robust Cox regressionmodel estimates
using our new package coxrobustw (‘outlier-robust’)
and the existing coxphw that is robust to departures from
proportional hazards (‘PH-robust’). For the case-cohort
sample, the weighted versions of all three methods were
used, with weights being the inverse of the sampling prob-
ability. Two versions of the outlier-robust method were
included, with the truncation parameter M set to either
the 90th or the 95th percentile.
We generated time to event data by specifying the haz-

ard ratio associated with a one-unit difference in expo-
sure x (HRx), which was incorporated into the scale
parameter of a Weibull distribution, i.e. scale = 1000 ×
exp(− ln(HRx) × x) and shape = 1. The censoring time
also had a Weibull distribution, with scale = 2 and shape
= 1, and the observed time was set to be the minimum
of the censoring time and the time to event. We gener-
ated exposure data from a normal distribution, with mean
and variance described below, but truncated the values at
0 and 100 to mirror the type of exposure data available in
the MESA immune cell trait project. Immune cell traits
were analyzed as a percentage of their parent population,
e.g. Th1 cells were analyzed as a percentage of CD4+ cells.
Contamination was subsequently added by changing the
mean of the exposure distribution for a fixed portion of
the observations. For example, we simulated an exposure
with mean 12 and standard deviation (SD) 8, from which
the survival data were generated based on an assumed
HRx of 1.25. Then for a portion of the observations, we
replaced the exposure data with data from a normal dis-
tribution with higher mean, but still SD 8. The scenarios
in Table 2 include no contamination, 5% contamination
with mean 24, 5% contamination with mean 36, and 10%
contamination with mean 24. We evaluated the meth-
ods both on the full sample of n=6000 people, and on
the case-cohort sample that was generated by keeping all
people who experienced an event, plus a random sample
of size 600 from those who did not experience an event.
The average size of the case-cohort sample was 1080,
and the average percent of contaminated observations in
the sample matched the specified level of contamination,
regardless of whether or not a weighted percentage was
calculated. All simulations were conducted in R version
3.2.3 [17], and were repeated one thousand times for each
setup.
The results in Table 2 show that both the tradi-

tional Cox model and the robust versions provide essen-
tially unbiased estimates when no contamination is

https://github.com/csitlani/coxrobustw
https://github.com/csitlani/coxrobustw
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Table 2 Mean coefficient estimates (and mean standard errors) from 1000 simulations

Normal 5% 2x mean 5% 3x mean 10% 2x mean

Population Cox PL 0.223 (0.007) 0.141 (0.005) 0.081 (0.003) 0.118 (0.005)

(unweighted) PH-robust 0.224 (0.021) 0.130 (0.015) 0.074 (0.009) 0.106 (0.013)

outlier-robust90 0.224 (0.015) 0.204 (0.012) 0.175 (0.009) 0.185 (0.011)

outlier-robust95 0.224 (0.014) 0.200 (0.011) 0.163 (0.008) 0.179 (0.009)

Sample Cox PL 0.225 (0.011) 0.149 (0.015) 0.084 (0.009) 0.123 (0.012)

(weighted) PH-robust 0.233 (0.024) 0.150 (0.022) 0.084 (0.014) 0.121 (0.020)

outlier-robust90 0.224 (0.021) 0.192 (0.015) 0.152 (0.010) 0.171 (0.013)

outlier-robust95 0.224 (0.025) 0.189 (0.017) 0.144 (0.010) 0.167 (0.014)

The true value of the coefficient β is log(1.25)=0.223. Two versions of the outlier-robust method are included: one using truncation parameter M=0.90 (outlier-robust90) and
the other using M=0.95 (outlier-robust95)

present, i.e. themean coefficient estimate is approximately
log(1.25)=0.223. As expected, the traditional model is
more efficient than any of the robust methods when mod-
eling assumptions are satisfied. However, when contami-
nation is present, all methods are biased toward the null.
The traditional Cox model and the PH-robust method are
substantially more biased than the outlier-robust method
because they do not incorporate methods to detect and
minimize the influence of outliers. The outlier-robust ver-
sion, on the other hand, uses the map A specified in the
“Methods” section and implemented in the coxrobust
package, along with its truncation parameter M, to mini-
mize the influence of the contaminated observations.
The true parameter value is not recovered by the outlier-

robust method in part because the accuracy of outlier
detection is not consistently high. Outlier detection met-
rics are not straightforward, due to the use of A both at
the observation level and in contributions to the weighted
covariate mean z̄wr at each event time. However, aver-
aging over event times and simulations, for the three
contamination scenarios considered in this paper, the per-
centage of contaminated observations correctly identified
as such varies from 30 to 95%. Likewise, the percentage
of correctly discarded observations varies from 24 to 83%.
Outlier detection was similar in the population and in
the sample. Comparing choice of truncation parameter,
higher sensitivity for detecting contaminated observations
corresponds to lower percentage of correctly discarded
observations. On balance, using the 90th percentile as
the truncation parameter in the outlier-robust method
yields similar, but slightly less biased, estimates of asso-
ciation, when compared to using the 95th percentile. The
(unweighted) population results are qualitatively similar
to the weighted results for the case-cohort sample. The
weighted results use the new coxrobustw package.

Application
To illustrate the use of robust weighted Cox methods
in data obtained from human subjects, we analyzed a

secondary outcome in the MESA case-cohort study of
immune cell traits. Specifically, we examined occurrence
of stroke as the outcome event and 17 immune cell traits
postulated to be associated with cardiovascular disease
as the exposures of interest. The immune cell traits were
quantified as percent of total immune cells, or percent of a
subset of immune cells. Table 3 describes the specificmea-
sures that were used. Based on a review of the literature,
often in animal models, the lymphocyte subsets cluster
into four groups: 1) high levels of pro-inflammatory cells;
2) high levels of pro-fibrotic cells; 3) high levels of anti-
inflammatory and anti-fibrotic cells; and 4) high levels of
pro-inflammatory cells that mark chronic use of adaptive
immunity. All clusters are thought to increase cardiovas-
cular risk except for the third, which is thought to decrease
it [18–21]. The primary goal of this analysis was to illus-
trate the use of the new statistical method, rather than to
draw key conclusions about the associations between the
immune cell traits and stroke events.
The entire MESA cohort is a racially diverse cohort of

6814 adults between the ages of 45 and 84 years enrolled
between 2000 and 2002 from six field centers across the
United States. The MESA protocol has been approved
by the Institutional Review Boards of all collaborating
institutions, and all participants gave informed consent.
Cryopreserved blood samples from the baseline visit were
assayed at the University of Vermont to measure lym-
phocyte and monocyte subsets, using methods similar to
those used by Tracy et al. [13] and Olson et al. [14]. From
participants who had two vials of cryopreserved cells, a
random cohort of 765 participants was sampled, along
with all additional cases of MI and angina, for a total sam-
ple size of 1200 participants. Participants were followed
for stroke outcomes through 2015. In order to ensure that
estimates can be generalized to the MESA population, the
sampling design necessitates use of sampling weights in
statistical models, even for secondary outcomes such as
stroke. The weighted mean age of participants included
in this analysis was 62 years, and 54% were male. The
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Table 3 Definitions of the immune cell traits

Cell surface and intracellular markers

Pro-inflammatory cells

T helper type 1 (Th1) cells CD4+IFN+ (expressed as a % of CD4+ cells)

T helper type 17 (Th17) cells CD4+IL17+ (expressed as a % of CD4+ cells)

Activated CD4+ cells CD4+CD38+ (expressed as a % of CD4+ cells)

Activated CD8+ cells CD8+CD38+ (expressed as a % of CD8+ cells)

Natural Killer (NK) cells CD3-CD56+CD16+ (expressed as a % of lymphocytes)

Gamma delta T cells CD3+γ δTCR+ (expressed as a % of CD3+ cells)

Classic Monocytes CD14++CD16- (expressed as a % of monocytes)

Pro-fibrotic cells

T helper type 2 (Th2) cells CD4+IL4+ (expressed as a % of CD4+ cells)

Non-classic Monocytes CD14+CD16++ (expressed as a % of monocytes)

Anti-inflammatory and anti-fibrotic cells

T regulatory cells (T-reg) CD4+CD25+CD127- (expressed as a % of CD4+ cells)

Intermediate Monocytes CD14+CD16+ (expressed as a % of monocytes)

Pro-inflammatory cells that mark chronic use of adaptive immunity

Naive CD4+ cells CD4+CD45RA+ (expressed as a % of CD4+ cells)

Naive CD8+ cells CD8+CD45RA+ (expressed as a % of CD8+ cells)

Senescent CD4+ cells CD4+CD28- (expressed as a % of CD4+ cells)

Senescent CD8+ cells CD8+CD28- (expressed as a % of CD8+ cells)

CD4+ memory cells CD4+CD45RO+ (expressed as a % of CD4+ cells)

CD8+ memory cells CD8+CD45RO+ (expressed as a % of CD8+ cells)

sample was 39%White, 28% Black, 21%Hispanic, and 12%
Chinese American. Stroke events occurred in 6% of the
sample (N=70), which corresponds to a weighted rate of
4.6% in the population.
A number of the immune cell traits have outliers, imply-

ing the potential usefulness of robust methods that min-
imize their influence on association estimates. Summary
data provided in Table 4 illustrate that themaximum value
is often several SDs or more above the mean.
Analyses were performed using several methods: tradi-

tional Coxmodels, traditional Coxmodels afterWinsoriz-
ing the exposure at 4 SDs from the mean [22], and both
weighted robust methods (outlier-robust coxrobustw
and PH-robust coxphw). The truncation parameter M
was set at the 95th percentile, with sensitivity analyses
performed using the 90th percentile. Confidence inter-
vals based on sandwich variance estimates were used
throughout to account for the inverse-probability of sam-
pling weights. Separate models were fitted for each of the
immune cell traits, without adjustment for other traits. A
conservative approach of Bonferroni correction [23] was
used to account for the 17 immune cell traits. Estimated
hazard ratios are per SD of the percent of each immune
cell type.

Due to the small number of stroke events, we included
limited adjustment for covariates. Specifically, baseline
age, gender, and race/ethnicity (White, Black, Hispanic,
Chinese American) were included as adjustment variables
in the regression models. Based on previous analyses of
stroke in the MESA data [24], we ran sensitivity analyses
that included additional covariates such as season of blood
draw, systolic blood pressure, cardiovascular medications
(anti-hypertensives and statins), smoking, education (via
an indicator of having attained a bachelor’s degree or
higher), low-density lipoprotein cholesterol, total choles-
terol, diabetes, and body mass index.
After correction for multiple testing, there were no sig-

nificant associations between stroke and the immune cell
traits (Figure 1). Given that there were only 70 stroke
cases, the power to find an association was small, so the
lack of clinically important conclusions is not surpris-
ing, but our focus is on the comparative results across
methods. Consistent with our simulations, traditional Cox
methods and the PH-robust method gave estimates that
were more similar to each other than to the outlier-robust
method. Traditional methods using Winsorization were
quite similar to those without Winsorization, and were
thus different from the outlier-robust method. This dif-
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Table 4 Summary data for the 17 immune cell traits in the MESA case-cohort study

N Mean SD Min Max

Pro-inflammatory cells

T helper type 1 (Th1) cells 770 15.3 9.0 0.0 65.5

T helper type 17 (Th17) cells 770 2.1 1.4 0.0 15.7

Activated CD4+ cells 1051 26.1 12.1 4.1 77.0

Activated CD8+ cells 1062 23.6 12.2 2.2 71.8

Natural Killer (NK) cells 1087 5.0 5.7 0.0 33.7

gamma delta T cells 1087 6.6 6.1 0.3 57.7

Classic Monocytes 922 74.4 10.2 9.3 96.3

Pro-fibrotic cells

T helper type 2 (Th2) cells 770 2.9 1.7 0.0 11.9

Non-classic Monocytes 922 7.4 7.5 0.0 81.4

Anti-inflammatory and anti-fibrotic cells

T regulatory cells (T-reg) 1035 5.0 2.2 0.0 15.2

Intermediate Monocytes 922 18.1 7.1 3.0 46.0

Pro-inflammatory cells that mark chronic use of adaptive immunity

Naive CD4+ cells 1051 26.1 12.0 1.6 70.8

Naive CD8+ cells 1062 52.4 14.7 6.5 97.1

Senescent CD4+ cells 1051 13.9 10.0 1.0 69.1

Senescent CD8+ cells 1062 55.6 15.9 10.4 94.0

CD4+ memory cells 1051 51.7 13.4 12.8 86.7

CD8+ memory cells 1062 21.7 10.6 0.0 79.2

ference was not surprising, given the different levels of
truncation in eachmethod (95th percentile versus±4 SDs)
and the incorporation of both exposure value and time-
to-event in the outlier-robust method versus just exposure
value in Winsorization. Notably, when the outlier-robust
method differed from traditional Cox methods, it most
often gave point estimates further from the null, consis-
tent with the idea that the outliers may be the result of
an unrelated process that leads to attenuated association
estimates obtained with non-robust methods. The outlier-
robust method generated wider confidence intervals than
the traditional Cox method, which is to be expected given
the added robustness to influential outliers. Results were
similar when additional adjustment covariates were added
to the models or the truncation parameter M was set to
the 90th percentile.

Discussion
This paper extends Cox proportional hazards regression
methods that are robust to outliers in exposure data, so
that they also incorporate sampling weights. When out-
liers are not causally related to the outcome of interest in
the same way that other exposure values are, the outlier-
robust method provides a less biased estimate of the true
association than traditional methods. One application for

this weighted outlier-robust method is in a case-cohort
sample where the exposure of interest contains outliers;
we provided such an example in a MESA case-cohort
study where immune cell traits were measured. No sig-
nificant associations with stroke events were found using
traditional Cox models. Both in the scenario we simulated
and in the illustrative dataset, larger associations were
most often seen using the outlier-robust method, which
supports the idea that traditional methods may under-
estimate associations. That said, the relative results will
depend on the specific contamination model, and can-
not be generalized to all possible scenarios based on the
illustrations we provide.
Although normality is not required for covariates in Cox

models, some departures from normality, such as skew-
ness, lead to an increased chance of influential outliers.
In cases of contamination such as those described in this
paper, the skewness can reflect a source of bias in esti-
mation of the exposure-outcome association. Onemethod
to minimize this bias is the outlier-robust one we have
described. Alternative methods for analyzing exposure
data that are not normally distributed include artificially
truncating or Winsorizing [22], as well as transforming
the data.We have shown in our application thatWinsoriz-
ing the exposure data at 4 SDs from the mean generally
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Fig. 1 Stroke and immune cell trait associations in MESA. Estimated hazard ratios, per SD of immune cell subset, and 99.7% confidence intervals (to
incorporate Bonferroni correction for 17 tests) for associations between risk of stroke and immune cell subsets
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does not substantially change the estimates. In simula-
tion data not shown, Winsorizing at 2, 3, or 4 SDs from
the mean still resulted in a more biased association esti-
mate than using the weighted robust method, and the
corresponding variance estimate did not account for the
modification to the data. Log-transformation would make
the exposure distribution less skewed, while maintaining
reasonable interpretation; however, it would not incorpo-
rate the idea that the outliers are there for an external
reason, and thus are not related to the outcome in the
same way that other observations are. Consideration of
alternatives emphasizes the idea that the source of the out-
liers is important, and the choice of method may depend
on the reason outliers exist.
Specifically, different approaches might be warranted if

the outliers are the result of a separate biological pro-
cess, rather than being technical artifacts. For example,
if a participant has a damaged blood sample or there is
a technical malfunction of the flow cytometer used to
obtain immune cell traits, then omitting the incorrect data
is likely warranted. Truncation may be a better option for
less well-defined technical artifacts that are recognized
not to be plausible true values. On the other hand, in the
case where the outliers are the real product of a biologi-
cal process, for example if a participant has an undetected
human immunodeficiency virus infection which has led to
a low (or even zero) T helper type 1 (Th1) cell count, then
outlier-robust methods, such as the one proposed here,
are most appropriate.
The type of sampling would also affect the most

appropriate use of weighting in a robust Cox regression
approach. This paper focused on outcome-based sam-
pling, given covariates that have outlying values that are
in some sense wrong (atypical for the individual, assay
errors, etc). These covariates were not used to choose
the subsample; in fact, they were only measured on the
subsample. We would expect that the true values of
the covariates for these individuals would be related to
the sampling weights, because the true values would be
related to risk. However, conditional on risk, the outly-
ing values would not be related to the sampling weights.
Because sampling is not based on the outlying covariates,
there is no harm in detecting outliers based on the sam-
ple, rather than reweighting to the full cohort. There is
potentially harm in detecting outliers after reweighting,
because the outlier threshold will be excessively sensi-
tive to values in the reference subcohort. Under other
sampling schemes it might well be preferable to modify
the current procedure to include sampling weights in the
influence iteration.

Conclusions
Adding sampling weights to robust Cox regression meth-
ods provides a new tool to analyze time-to-event data

with sampling, e.g. case-cohort data, when exposures of
interest contain outliers. A readily available R package
facilitates implementation of this new method.
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