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A B S T R A C T   

A comparison was made between the traditional charcoal-grilled lamb shashliks (T) and four new methods, 
namely electric oven heating (D), electric grill heating (L), microwave heating (W), and air fryer treatment (K). 
Using E-nose, E-tongue, quantitative descriptive analysis (QDA), and HS-GC-IMS and HS-SPME-GC–MS, lamb 
shashliks prepared using various roasting methods were characterized. Results showed that QDA, E-nose, and E- 
tongue could differentiate lamb shashliks with different roasting methods. A total of 43 and 79 volatile organic 
compounds (VOCs) were identified by HS-GC-IMS and HS-SPME-GC–MS, respectively. Unsaturated aldehydes, 
ketones, and esters were more prevalent in samples treated with the K and L method. As a comparison to the RF, 
SVM, 5-layer DNN and XGBoost models, the CNN-SVM model performed best in predicting the VOC content of 
lamb shashliks (accuracy rate all over 0.95) and identifying various roasting methods (accuracy rate all over 
0.92).   

1. Introduction 

Due to their long history, lamb shashliks are considered a traditional 
Chinese dish. It is due to the unique flavor and sensory experience that 
these products are loved by consumers and influence their purchase 
decision (Wang et al., 2023). It should be noted, however, that as a 
traditional food, lamb shashliks are likely to pollute the environment 
with the fumes released during the preparation process, particularly 
those from fuel oil (Wang et al., 2022). As part of traditional food 
innovation, it is important to process the food in a traditional manner or 
according to a traditional recipe and ensure the product’s sensory 
characteristics are appropriate to ensure consumer acceptance (Guer-
rero et al., 2009). The art of cooking meat has evolved into more so-
phisticated techniques over time (Suman et al., 2016). Myogenic fibers 
and proteins in sarcoplasmic and connective tissues denature during 

heating, resulting in structural changes in the meat and altering its 
mechanical properties (Li et al., 2013). Cooking methods for traditional 
foods can be improved through innovation. In recent years, technolog-
ical advances have led to the development of other methods of roasting, 
such as the use of electric ovens (D), microwaves (W), air fryers (K), and 
electric grills (L). These methods can be used to avoid the disadvantages 
associated with traditional lamb shashliks while releasing the flavor of 
the meat (Wang et al., 2022). 

Scientists, chefs, gourmets and consumers in every culture are 
interested in the effects of different cooking methods on food’s sensory 
and physicochemical properties. Physicochemical indicators and sen-
sory evaluations assess how different cooking methods affect meat 
quality (Jiang et al., 2023). A sensory evaluation involves assessing 
food’s flavor qualities and sensory properties through human percep-
tion. Many industries have used this method, which is irreplaceable in 
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food development, quality control, product optimization, and classifi-
cation (Varela & Ares, 2012). Sensory evaluation is, however, influenced 
by individual differences among evaluators and is characterized by 
relatively low reproducibility and subjective nature. For this reason, 
multivariate intelligent sensory technologies including E-noses and E- 
tongues are used to obtain relatively complete information on the sen-
sory characteristics of foods. 

To analyze volatile organic compounds (VOCs) qualitatively and 
quantitatively, gas chromatography-mass spectrometry (GC–MS) is an 
effective and widely used method (Liu, Qian, Dong, Bai, Zhao, Li, & Liu, 
2020; Liu et al., 2020; Qian et al., 2023). Due to the complexity of food 
matrixes, the method usually requires complex sample pretreatment and 
long simultaneous detection times, which greatly hinders the analytical 
efficiency of HS-SPME-GC–MS. An important characteristic of gas 
chromatography with ion mobility spectrometry (GC-IMS) is its ease of 
operation, high resolution, improved separation, intuitive data visuali-
zation, high sensitivity and analytical speed, no sample preparation and 
atmospheric pressure operation (Yao et al., 2022; Zhu et al., 2022). This 
method allows samples to be differentiated at a low cost, in real time, 
and rapidly (Li et al., 2019; Shen et al., 2023). 

Data fusion combined with artificial neural network algorithms al-
lows the synthesis and analysis of data from multiple intelligent sensory 
technologies to simulate human brain activity. In recent years, the rapid 
development of deep learning technology has proven to be very 
powerful in a wide range of applications, attributed to its main advan-
tages, including powerful generalization capabilities, and large data 
training capabilities (Zhu et al., 2023). Convolutional neural networks 
(CNNs) are one of the most popular deep learning models and have been 
widely used in many fields from image recognition to speech translation. 
CNN-SVM models take advantage of their respective models and are 
applied to process data combining multidimensional techniques with 
sensory evaluation to explain the differences in sample features from 
multiple perspectives. Meanwhile, various instruments have been 
combined to study food flavor profiles as they generate more accurate 
and comprehensive results. 

Thus, this study investigated the effects of four new roasting methods 
compared to the T method on sensory evaluation, intelligent sensory 
technologies (E-nose and E-tongues), and VOCs in lamb shashliks. A 
feature-level data fusion strategy was applied to improve flavor identi-
fication accuracy. To predict VOCs and different roasting methods of 
lamb shashlik, five machine-learning models were applied using data 
from chemometric, E-nose, E-tongues, and sensory evaluations. 

2. Materials and methods 

2.1. Sample preparation 

A total of 24 six-month-old Sunit sheep (31.5 ± 1.5 kg carcass 
weight) with similar genetic backgrounds and a similar diet (cereal and 
silage) were randomly selected from the Xilingol League Yangyang 
Husbandry Co. and were slaughtered in one day on the commercial 
slaughter line. As per Chinese standard protocol GB 2707–2016, the 
longest section of lean backbone and tail fat was removed after 
slaughter. Using traditional cold chain logistics, meat and tail fat were 
frozen at − 20 ◦C and transported to Jinzhou, Liaoning, China. In an 
incubator (MIR-154-PC, Panasonic, Beijing, China) at 4 ± 1 ◦C, lean 
meat and fat were thawed until their core temperatures reached a range 
of − 3 ◦C to − 5 ◦C. The lean and fatty meat was cut into cubes of about 2 
cm3 (2 cm × 1 cm × 1 cm) after removing the surface fat, according to 
NY/T 3469–2019. Using a 15 cm bamboo skewer, 4 pieces of lean meat 
were skewered, and 1 piece of fat was skewered. A precision ther-
mometer (Benetech®, Shenzhen, China) was used to measure the in-
ternal temperature of the lamb shashliks (80 ◦C). The effect of roasting 
methods with different temperatures, times, and powers on the flavor of 
lamb shashliks was evaluated in a sensory evaluation. The optimal pa-
rameters for each of the five methods were determined based on sensory 

evaluation. Using the T grilling method, a charcoal grill was employed 
for grilling at 220–230 ◦C for 12 min, rotating every 1 min. The D 
method was performed in an electric oven (Panasonic NB-HM3810, 
Beijing, China) by roasting the lamb shashliks for 10 min at 200 ◦C 
and rotating them every minute. For the W roasting method, the lamb 
shashliks were microwaved (Galanz G70F23CN2P-BM1S0, Foshan, 
China) at 700 W at 2450 MHz for 8 min, turning every 1 min. For the K 
method, lamb shashliks were roasted at 1700 W for 5 min, turning every 
30 s, in an air fryer (Midea KZ120Q7-400G, Foshan, China). For the L 
method, the lamb shashliks were roasted on an electric grill (Bear DKL- 
E20J1, Foshan, China) at 2000 W for 7 min, rotating every 30 s. Lamb 
shashliks for instrumental analysis were frozen in nylon/polyethylene 
(9.3 mL O2/m2/24 h, 0 ◦C, 0.19 mm thick, Magic Seal®, Guangdong, 
China) in liquid nitrogen and stored at − 80 ◦C. 

The chemicals used in this study, 2-methyl-3-heptanone (99%, in-
ternal standard) and n-alkanes (C7-C40, 97%, external standard), were 
obtained from Aladdin (Shanghai, China) and Zhongke Standard Tech-
nology Co. All other authentic flavor standards were obtained from 
Tokyo Chemical Industry (TCI, Shanghai, China): hexanal (98%), hep-
tanal (97%), octanal (99%), nonanal (99.5%), (E)-2-octenal (97%), (E)- 
2-nonenal (97%), benzaldehyde (99.5%), 1-heptanol (98%), 1-octen-3- 
ol (98%) and 2-pentylfuran (98%). 

2.2. Evaluation of the sensory characteristics of lamb shashliks 

According to Ramirez et al. (2020), thirty sensory assessors under-
went an initial screening process (including matching and ranking tests) 
and nine training sessions on descriptors and methods applicable to 
meat products, from which final panel of 18 (nine males and nine fe-
males, aged 20 to 26 years) were selected. Sensory attributes (odor, 
flavor, appearance, and texture) of lamb shashliks using various roasting 
methods were analyzed using quantitative descriptive analysis (QDA). A 
total of 19 descriptors were identified characterize the lamb shashliks 
after discussion with panelists. A total of three sessions over a two-week 
period were conducted after a high level of agreement among the pan-
elists. Samples were held at 50 ◦C on white trays coded with random 
three-digit numbers and randomly handed to panelists, with three rep-
licates of each sample assessed by panelists. Each assessor received an 
assessment form and were invited to rate the intensity of each attribute 
on a linear scale with 10 cm (unstructured) anchored on the left end by 
“none” and on the right end by “strong”. During the QDA procedure, 
panelists were able to use filtered portable water or/and unsalted 
crackers provided between sample evaluations as materials for palate 
cleansing. The average sensory scores obtained by panelists for 19 de-
scriptors of the five roasting methods lamb shashlik samples were 
collected and used for further analysis. 

2.3. E-nose measurement 

PEN3 E-nose (Airsense Analytics GmbH, Schwerin, Germany) was 
used for the analysis by referring to the method of Shi et al. (2020). Ten 
metal oxide monolayer thick film sensors exist in the PEN3 system: W1C, 
W5S, W3C, W6S, W5C, W1S, W1W, W2S, W2W, and W3S, which can 
generate signals about different VOCs. Table S1 describes the perfor-
mance of the E-nose gas sensor array. Various roasting methods were 
used for cooking lamb shashliks in a 20 mL headspace sample bottle. The 
sample vial was heated for 40 min in a water bath at 50 ◦C. The pa-
rameters for the system were determined using an E-nose system with a 
chamber flow rate of 200 mL/min, an injection flow rate of 200 mL/min, 
and a measurement time of 120 s. Following the return of the sensor 
signal to baseline, the chamber was cleaned with fresh air, and the next 
sample was then measured. 

2.4. E-tongue measurement 

Among the five chemical sensors contained in the E-tongue (SA402b, 
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Insent Inc., Japan) are CA0 (sourness sensor), AE1 (astringency sensor), 
AAE (umami sensor), CT0 (saltiness sensor), and C00 (bitterness sensor). 
According to Shen et al. (2023), the lamb shashliks samples of variety 
roasting methods were homogenized (10000 rpm) with 200 mL distilled 
water (40 ◦C) for 60 s and then centrifuged at 5000 rpm for 40 min at 
4 ◦C. Supernatants were removed, and membrane passes (0.22 μm) were 
taken for analysis. Each sample was subjected to the E-tongue test to 
determine its water solubility. Four cycles of each sample were per-
formed, and the average of the three cycles was calculated after the first 
cycle. Before measurement, each sensor was checked to ensure it was 
operating within the specified mV range according to the manufac-
turer’s instructions. As a result of electrostatic or hydrophobic in-
teractions between taste-presenting substances and artificial lipid 
membranes, an E-tongue was used to detect changes in membrane po-
tential, leading to the evaluation of eight basic taste indicators, 
including umami, astringency, saltiness, bitterness, richness, sourness, 
aftertaste astringency (aftertaste-A), and aftertaste bitterness (aftertaste- 
B). 

2.5. Analysis of headspace solid-phase microextraction/gas 
chromatography-mass spectrometry (HS-SPME/GC–MS) 

Various roasting methods were used to process lamb shashliks, and 
VOCs were detected, as described by Liu et al. (2021), with some 
modifications. Headspace solid-phase microextraction (HS-SPME) was 
used to extract VOCs. As an internal standard, 2 g of chopped sample and 
1.5 μL of 2-methyl-3-heptanone (1.7 μg/mL in methanol) were quickly 
transferred to a 20 mL headspace vial, and the vial sealed with a PTFE 
spacer. In the following steps, the vial was placed in a water bath and 
kept at 55 ◦C for 15 min. For 45 min following incubation, carboxene- 
polydimethylsiloxane (CAR/PDMS, 75 μm) coated fibers (Supelco, 
Inc., Bellefonte, PA, USA) were exposed to the headspace vial to absorb 
VOCs from the sample. Immediately after coating, the fibers were 
injected into the gas chromatography (GC) unit port to desorb for 2 min. 
The VOCs were separated and identified using a gas chromatography- 
mass spectrometer (GC–MS) (TQ8040NX, Shimadzu Corporation) 
equipped with an Rtx-5MS (30 mm × 0.25 mm × 0.25 μm). At a 1 mL/ 
min rate, helium was used as the carrier gas in a constant flow mode. 
Inlet and ion source temperatures were 200 ℃. The oven temperature 
was ramped-up as follows: hold the temperature at 40 ◦C for 3 min, ramp 
up to 120 ◦C at 5 ◦C/min, ramp up to 200 ◦C at 10 ◦C/min, and hold at 
200 ◦C for 13 min. A full electron collision scan mode was utilized to 
obtain mass spectra at 70 eV and 400 m/z. Using 2-methyl-3-heptanone 
as an internal standard, the contents of each component were quantified. 

2.6. Analysis of Headspace-gas chromatography-ion mobility 
spectrometry (HS-GC-IMS) 

HS-GC-IMS (FlavorSpec®, Gesellschaft für Analytische Sensorsys-
teme mbH, Dortmund, Germany, Department of Shandong HaiNeng 
Science Instrument Co., Ltd., Shandong, China) was used for the analysis 
of VOCs. The analytical method proposed by Yao et al. (2021) was 
slightly modified. 3.00 g of chopped lamb shashliks was accurately 
weighed, transferred to a 20 mL headspace vial, and incubated at 60 ◦C 
for 15 min at 500 rpm. After this, 500 μL of volatile gas was collected 
from the headspace vial and automatically injected into the injector at 
85 ◦C without splitting. A metal capillary column (MXT-5, 15 m × 0. 53 
mm, 1 μm) was used to separate the VOCs bound to IMS at 45 ◦C. As a 
carrier/drift gas, high-purity nitrogen was used. The initial carrier gas 
flow rate was set at 2 mL/min, which was maintained at 2 mL/min for 
0–2 min, and then increased linearly from 2 mL/min to 100 mL/min for 
2–20 min. The total run time was 20 min, and the drift gas flow rate was 
150 mL/min. Ionization was carried out in an IMS ionization chamber at 
45 ◦C at a column temperature of 60 ◦C. GC-IMS analysis was conducted 
in triplicate. Retention indices (RI) were calculated using n-ketones (C4- 
C9). 

2.7. Machine learning prediction 

Each dataset was divided into 70% for model training and 30% for 
data prediction. A root mean square error (RMSE) and correlation co-
efficient (R2) were used to evaluate the performance of each model. R2 

represents the correlation between the predicted and measured values in 
a training or test set. RMSE represents the deviation between predicted 
and measured values in training or test sets. The closer the R2 is to 1, the 
smaller the RMSE and the higher the accuracy and stability. 

The use of data fusion strategies is widespread. A data fusion method 
combines data from different sources to allow for more extensive use of 
sample features and more accurate identification of samples. Data fusion 
includes three strategies: data-level fusion, feature-level fusion, and 
decision-level fusion (Xu et al., 2019). The feature-level fusion strategy 
was chosen to integrate data obtained from GC–MS, GC-IMS, E-nose, E- 
tongue, and sensory evaluations. 

To identify lamb shashliks processed in various roasting methods 
according to their flavor characteristics, five models were developed: 
SVM (Cortes and Vapnik, 1995), RF (Leo & Breiman, 2001), XGBoost 
(Chen & Guestrin, 2016), 5-Layer DNN (Hinton, 2006), and CNN-SVM 
(Islam et al., 2021). 

2.8. Statistical analysis 

To determine differences between means, one-way analysis of vari-
ance (ANOVA) and LSD tests were conducted using SPSS 26.0 software 
(SPSS Inc., USA). ANOVA was also performed to assess the variation in 
mean attribute scores between samples prepared using various roasting 
methods. To identify groups with significant differences, Tukey’s HSD 
test was used. WPS Office (Kingsoft Corporation, Beijing, China) and 
Origin 2022 (OriginLab Inc., Northampton, MA, USA) were used to 
determine radar plots and PCA. The OPLS-DA analysis was conducted 
using SIMCA-P 14.1 software (Umetrics, Umea, Sweden), and the clus-
tering heat maps were generated using TBtools version 1.098. Python 
3.7.3 was used to run SVM, RF, XGBoost, DNN 5-layer, CNN-SVM, and t- 
SNE. 

3. Results 

3.1. Effect of the roasting methods on sensory evaluation 

In Fig. 1A and Table S2, 19 sensory descriptors were used to rate the 
average strength of all lamb shashliks. Umami flavor exhibited the 
highest (from 6.7 to 9.1), followed by roasting-lamb odor (from 6.8 to 
8.9), intensity odor (from 6.5 to 8.9), buttery odor (from 3.8 to 8.9), 
fatty flavor (from 6.5 to 8.8), dryness (from 6.4 to 8.7), gravy flavor 
(from 5.6 to 8.7), greasy appearance (from 5.2 to 8.7), bloody flavor 
(from 7.1 to 8.6), hardness (from 6.5 to 8.5), juicy appearance (from 6.2 
to 8.5), fatty odor (from 6.6 to 8.4), gamy flavor (from 6.4 to 8.3), liver 
odor (from 4.5 to 8.3), chewy texture (from 5.9 to 8.2), rubbery texture 
(from 5.4 to 8.2), wet appearance (from 5.0 to 8.1), sour flavor (from 5.3 
to 7.7), and dark appearance (from 5.3 to 7.7). A significant difference 
was found in the above descriptors ratings of the samples differed 
significantly, indicating that these attributes were capable of revealing 
differences between lamb shashliks treated with various roasting 
methods. 

In addition, these data suggest that odor, flavor, appearance, and 
texture all play important roles in defining the sensory characteristics of 
lamb shashliks roasted in different methods. As shown in Table S2, the 
attribute intensity ratings showed trends in different methods of 
perceiving lamb shashliks. Sample T exhibited the highest umami flavor 
(9.1), roasting-lamb odor (8.9), intense odor (8.9), fatty flavor (8.8), 
dark appearance (8.7), greasy appearance (8.7), and juicy appearance 
(8.5) and the lowest buttery odor (3.8). Umami is the dominant flavor 
characteristic of roasted lamb (Liu et al., 2020). Besides sample T, the 
highest-rated samples were sample K (8.5), sample L (8.0), D (7.4), and 
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Fig. 1. Radar chart (A) and principal component analysis (B) of QDA for lamb shashliks with different roasting methods; Radar chart (C) and principal component 
analysis (D) of E-nose data for lamb shashliks with different roasting methods; Radar chart (E) and principal component analysis (F) of E-tongue data for lamb 
shashliks with different roasting methods. 
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W (6.7). Sample K was rated highest in terms of buttery odor (8.9), gravy 
flavor (8.7), bloody flavor (8.6), hardness (8.5), liver odor (8.3), chewy 
texture (8.2), and sour flavor (7.7). 

Compared to the control sample T, sample K ranked second in the 
attribute ratings of umami flavor, intensity odor, dark appearance, 
roasting-lamb odor, and juicy appearance. Based on the findings of 
Wang et al. (2022), consumers were attracted to lamb shashliks treated 
by the K method due to their buttery odor, making them unique and 
popular. Among the samples, sample L presented the highest fatty odor 
(8.4), the second greasy appearance (8.4), the second fatty flavor (8.3), 
and the second buttery odor (7.9). Sample D exhibited the highest 
dryness (8.7), highest rubbery texture (8.2), second hardness (8.2), and 
second gamy flavor (8.1). The highest rating was given to sample W for 
gamy flavor (8.8), wet appearance (8.1), and liver odor (7.6). From these 
ratings, it is apparent that the flavor and odor attributes are more 
indicative of the samples processed in different roasting methods. 

The sensory data from the evaluated lamb shashlik samples were 
subjected to PCA to differentiate between different roasting methods. 
For the analysis, the first two principal components (PC1 and PC2) 
explained 83.1% of the total variance (Fig. 1B). With PC1 accounting for 
50.7% of the variance, the positive end of the axis is formed by buttery 
odor, dryness, rubbery texture, hardness, chewy texture, gravy flavor, 
umami flavor, greasy appearance, intense odor, dark appearance, 
bloody flavor, roasting-lamb odor, juicy appearance, fatty flavor, and 
fatty odor. In contrast, the negative axis is formed by liver odor, gamy 
flavor, sour flavor, and wet appearance. 

The samples K, T, and L were grouped on the positive side of PC1. 
They were identified by characteristics that described buttery, intense, 
roasting-lamb, and fatty odors, gravy, umami, fatty, bloody flavor, 
rubbery, chewy, dry, hardness texture, as well as greasy, dark, and juicy 
appearance. Samples D and W were associated with a gamy flavor, liver 
odor, sour flavor, and wet appearance. Furthermore, these were the 
negative effects of PC1. 

3.2. Effect of roasting methods on the development of intelligent sensory 
technologies 

Fig. 1C illustrates the responses of the E-nose to lamb shashliks 
treated with various roasting methods. As indicated by the strong re-
sponses of the sensors W1W, W2W, W5S, W2S, and W1S, lamb shashliks 
that have been roasted by various methods contain high levels of alco-
hols, aldehydes, ketones and sulfides. 

Nevertheless, the intensity of the signal in lamb shashliks varied 
based on the roasting method. Compared to the control sample T, 
sample K showed the strongest response at W1W and W1S (K > T > L >
W > D), suggesting that the shashlik with K used contained more sulfur- 
containing compounds. However, the responses of W3S, W6S, W1C, 
W3C, and W5C were less variable. The E-nose system was effective in 
identifying the characteristic aromas of a variety of samples. According 
to the radar plot, the lamb shashliks treated with the five roasting 
methods showed similar odor profiles. Nevertheless, there was a 
considerable variation in the intensity and proportion of the various 
volatile gases. 

An analysis of the spatial distribution and distances of lamb shashlik 
odors was conducted using PCA (Fig. 1D). In all samples, and the first 
two main components contributed 88.1% to the cumulative variance, 
which indicates that they covered the bulk of the information (PC1 
70.3%, PC2 17.8%). A significant difference between the shashliks 
treated by various roasting methods can be found primarily on PC1, 
where the E-nose completely distinguishes the five roasting methods. In 
each roasting method, shashliks occupied a different aroma region. It 
was found that samples T and K clustered on the positive PC1 axis and 
were associated with sensors W1S, W2S, W3S, W5S, W1W, and W2W. 
On the other hand, samples D, L, and W clustered on the negative PC1 
axis and were associated with sensors W1C, W3C, W5C, and W6S. This 
indicates that the E-nose sensor can distinguish between different 

roasting methods for lamb shashliks. 
Using the E-tongue, differences in taste characteristics were evalu-

ated. Fig. 1E illustrates responses to bitterness, saltiness, astringency, 
sourness, aftertaste-B, aftertaste-A, richness, and umami. The lamb 
shashliks with various roasting methods responded strongly to the 
umami, sourness, and saltiness sensors. Umami and saltiness were the 
strongest responses for lamb shashliks treated by the T method, followed 
by those treated by the K method. Additionally, lamb shashliks treated 
with the D method showed the strongest response regarding sourness. 
There was less variation in richness than aftertaste-A, aftertaste-B, and 
astringency responses. As indicated by the shape of the radar plot, the 
taste profiles of lamb shashliks treated by the five roasting methods were 
similar. The intensity and proportion of each taste, however, varied 
significantly. 

For the electronic tongue, PCA plots of taste differences are shown in 
Fig. 1F. PC1 (60.1%) and PC2 (27.1%) contributed 87.2% of the cu-
mulative contribution and can reflect the overall characteristics of the 
samples as a whole. As determined by the T and K methods, lamb 
shashliks clustered on the positive PC1 axis associated with umami, 
saltiness, richness, astringency, aftertaste-A, and aftertaste-B are highly 
correlated with these attributes. On the other hand, lamb shashlik 
treated with the L, D, and W methods clustered on the negative PC1 axis 
associated with sourness and bitterness. The results of this study suggest 
that E-tongue may prove to be an effective method of separating the 
taste of lamb shashliks prepared using different roasting methods. 

3.3. Identification and quantification of VOCs 

Using SPME-GC–MS to analyze lamb shashliks treated with five 
roasting methods revealed significant differences in the volume and 
composition of VOCs. In total, 79 VOCs were identified and quantified, 
of which 57, 57, 34, 52, and 36 VOCs were found in T, K, D, L, and W, 
respectively (Table S3). Among these, 17, 18, 13, 18, and 15 were al-
dehydes; 14, 13, 5, 12, and 7 were alcohols; 0, 4, 6, 3, and 2 were ke-
tones; 21, 15, 9, 10, and 9 were hydrocarbons; 4, 6, 0, 8, and 2 were 
esters; and 1, 1, 1, 1, 1, and 1 were furans. Using a clustered heat map 
hierarchical clustering analysis (HCA) based on the contents of VOCs, 
lamb shashliks treated with each roasting method were compared. As 
shown in Fig. 2., the heat map displays the overall profile of each VOC in 
the form of colored boxes. A normalized color intensity scale ranges 
from a maximum value of 3.00 (red) to a minimum value of 3.00 (blue), 
which indicates a high or low concentration of VOCs (Florentino-Ramos 
et al., 2019). Based on the HCA results, the lamb shashliks were cate-
gorized into three groups: K method and L method, D method and W 
method, and T method alone. Moreover, the tree diagram could be used 
to categorize the VOCs into four groups. Using the K and L methods, a 
total of 15 VOCs with a high concentration in Group A were detected. T, 
K and L methods revealed 22 VOCs with high contents in Group B. The 
five roasting methods detected hexanal, heptanal, octanal, nonanal, 2- 
pentylfuran, 1-pentanol, 1-octen-3-ol, pentadecanal, toluene and hep-
tadecane in the samples, amongst others. In group C, 35 VOCs were 
found to be more abundant in T samples, predominantly hydrocarbons, 
long-chain aldehydes, and long-chain alcohols. The VOCs with higher 
content in group D were pentadecane, formic acid heptyl ester, 2-hepta-
none, eicosane, 5-pentyldihydro-2(3H)-Furanone, 2-decanone, and 5- 
butyldihydrofuranone-2(3H)-Furanone. 

3.4. Identification of VOCs using HS-GC-IMS 

HS-GC-IMS was used to analyze the VOC content of lamb shashliks 
roasted with five different methods. GC-IMS analysis detected 43 sig-
nals, as shown in Table S4. Based on retention and migration times for 
each VOC, retention indices were calculated using n-ketone C4-C9 as an 
external reference standard and compared with the GC-IMS library. We 
identified 43 VOCs (including monomers and dimers) containing 22 
aldehydes, 7 alcohols, 6 ketones, and 2 acids. Seven peaks, however, 
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remain unidentified. A significant proportion of the compounds detected 
by GC-IMS were aldehydes, accounting for 51.2% of all compounds 
detected. Due to the incorporation of ions and neutral molecules in some 
compounds, multiple signals are observed (monomer and dimer) (Li 
et al., 2019). For example, the monomer and dimer of pentanal exhibited 
similar retention times (Rt pentanal monomer = 163.045, Rt pentanal dimer =

164.811) but different drift times (Dt pentanal monomer = 1.18537, Dt 
pentanal dimer = 1.42954). 

Fig. S1 illustrates the three-dimensional spectra of VOCs from lamb 
shashliks roasted using five different methods. The X-, Y-, and Z-axes 
display the ion drift time, GC retention time, and ion peak intensity, 
respectively. The ion drift time and ion peak intensity were used to 
quantify each aroma component. As shown in Fig. S2, the vertical co-
ordinates indicate the retention time and the horizontal coordinates 
indicate the drift time for lamb shashliks treated by five roasting 
methods. The spectrum has a blue background, and a red vertical line is 
visible on the left side, representing the reactive ion peak (RIP, 
normalized drift time of 2.043–2.045 ms). Each dot on either side of the 
RIP represents a VOC. A substance’s color corresponds to its concen-
tration, with white indicating a lower concentration and red indicating a 
higher concentration. Furthermore, the darker the red, the darker the 
color. GC-IMS successfully separated the VOCs in lamb shashliks using 
five roasting methods. In addition, all the spectra contained several 
signal peaks, which indicate that the lamb shashliks roasted according to 

different methods contained a high level of VOCs. 
Using the difference comparison model, various roasting methods 

were used to compare the differences between lamb shashlik samples 
(Fig. S3). Using the D-method lamb shashlik spectra as a reference, white 
indicates the same concentration of VOCs in both samples after de-
ductions. Contrary to the reference compound, the red color indicates a 
higher concentration of compounds, and the blue color indicates a lower 
concentration. Most signals appeared in the range of retention time 100 
to 550 s and drift time 1.0 to 1.75 s. Compared to lamb shashliks pre-
pared by different roasting methods, some volatile components were 
significantly increased, and others markedly decreased. It appears that 
roasting methods have varying degrees of influence on lamb shashliks’ 
VOCs. 

For a comprehensive visual comparison of VOCs from lamb shashliks 
roasted in five different ways, Gallery Plot was used (Fig. 3). Each row 
represents a peak signal from one sample. In addition, each column 
indicates the presence of the same VOC in different samples. A brighter 
color indicates a higher concentration of VOCs. In regions A and B of 
Fig. 3, the K-method lamb shashliks were found to contain higher con-
centrations of pentanal, heptanal, hexanal, 2-butanone, 2-pentenal, (E)- 
2-octenal, (E)-2-heptenal, (E)-2-hexenal octanal, and (Z)-4-heptenal, as 
well as unidentified peaks at 2, 3, and 7 than the samples of other 
roasting methods. 

Compared to other roasting methods, the W-method lamb shashliks 

Fig. 2. Hierarchical clustering and heatmap visualization of volatile organic compounds of lamb shashliks with five roasting methods.  
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contained higher levels of 1-octen-3-ol, n-hexanol, 1-propanol, and 
pentan-1-ol, 3-hydroxybutan-2-one in the C region. The D region of the 
lamb shashliks treated with the L-method contained higher levels of 
benzaldehyde, 2-methylbutanal, 3-methylbutanal, butanal, 2-hepta-
none, as well as unidentified peaks of 4, 5 and 6 as well as ethyl ace-
tate than those treated with other roasting methods. A relatively small 
difference in aroma composition was observed between lamb shashliks 
prepared by different roasting methods, among which samples L and K 
contained high amounts of aldehydes and ketones, including nonanal, 
octanal, benzaldehyde, 2-methylbutanal, 3-methylbutanal, 2-hepta-
none, 2-butanone, heptanal, hexanal, pentanal, (E)-2-pentenal, (E)-2- 
pentenal, (E)-2-heptenal. Samples W contained relatively high levels of 
alcohols. 

3.5. Multivariate statistical analysis 

To achieve the greatest possible separation and differentiation be-
tween lamb shashliks treated with five roasting methods, OPLS-DA was 
applied to data derived from VOCs (SPME-GC–MS and GC-IMS), an E- 
nose, an E-tongue, as well as a sensory evaluation (QDA). The quality 
parameters in the generated OPLS-DA model showed a good fit (R2Y =
0.961) and high predictive power (Q2 = 0.875). According to Fig. 4A, 
the lamb shashliks were well separated based on the grilling methods. 
OPLS-DA results indicate that GC-based methods, intelligent sensory 
technologies, and sensory evaluation can be combined to characterize 
the profiles of lamb shashliks prepared in five different ways. Notably, 
the flavors of samples K and L were relatively similar, suggesting that the 
two roasting methods may be similar in characterizing the flavors. 
Cross-validation of the substitution test was conducted 200 times to test 
the robustness of the model, and no overfitting was detected (R2 =

0.512, Q2 = -1.01; Fig. 4B). 
For an in-depth analysis of the characteristics of lamb shashliks with 

five roasting methods, t-SNE was used to visualize the data space of the 
fused data (SPME-GC–MS and GC-IMS, E-nose, E-tongues, and sensory 
evaluation). Placing similar data points close to each other makes it 
possible to represent high-dimensional data in a low-dimensional 

nonlinear manifold (Van & Hinton, 2008). The eigenvalues of lamb 
shashliks with five roasting methods were collected for the raw data 
processing, and the eigenvalues were separated explicitly. Fig. S4 shows 
clear boundaries between the visualized data that distinguish five 
roasting methods for lamb shashliks. As a result, the method signifi-
cantly impacts the classification of fused data of features from GC-based 
methods, intelligent sensory technologies, and sensory evaluation 
methods. 

3.6. Prediction modeling of lamb shashliks roasted in different methods 

3.6.1. Prediction results of the content of VOCs 
With five roasting methods, five models were developed for detect-

ing VOCs in lamb shashliks. Based on the fusion of data, including 
intelligent sensory technologies (E-nose and E-tongue), sensory evalu-
ation, and GC-based methods, five models are developed to predict the 
content of six VOCs (aldehydes, alcohols, ketones, hydrocarbons, esters, 
and furans) in lamb shashliks. Table 1 presents the results. A CNN-SVM 
system best predicted aldehydes, achieving recognition accuracy of 
0.9522 and 0.984, respectively, with RMSEs of 0.07049 and 0.06857. In 
addition, CNN-SVM performed the best for predicting ketones, hydro-
carbons, and esters in the training and test sets compared to the other 
four models. Based on the training set, RF performed well in predicting 
furan compounds (RMSE = 0.06822, R2 = 0.9926) but did not perform 
as well in the test set as CNN-SVM (RF: RMSE = 0.0982, R2 = 0.9427; 
CNN-SVM: RMSE = 0.08796, R2 = 0.9627). As for alcohols, CNN-SVM 
obtained the highest accuracy on the training set (R2 = 0.9849), 
whereas DNN 5-Layer achieved the highest accuracy on the test set (R2 

= 0.9554), while CNN-SVM came in second (R2 = 0.9503). As a result, 
the CNN-SVM model provides more accurate predictions than the other 
four models. For each compound type, the accuracy in both the training 
set and test set is higher than 0.95, and the RMSE is lower than 0.10, 
indicating good performance and greater stability. 

Fig. 3. Dynamic fingerprints of lamb shashliks with five roasting methods, generated by Gallery Plot (Please refer to supplementary materials for topographic map, 
three-dimensional topographic map, and difference comparison plots). Each row represents the signal peak of one sample while each column represents the same 
volatile organic compound in different samples. Colors represent the content of a volatile organic compound, and the brighter the color is, the higher the content. 
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Fig. 4. OPLS-DA analysis of lamb shashliks of different roasting methods obtained using GC–MS, GC-IMS, E-nose, E-tongue and QDA. (A) Double-labeled plot of 
OPLS-DA of lamb shashliks with different roasting methods (R2Y = 0.961, Q2 = 0.875). Red hexagons represent lamb shashlik samples and green circles represent 
individual factors; (B) cross-validation by 200 substitution tests (R2 = 0.512, Q2 = − 1.01). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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3.6.2. Prediction of the results of the various roasting methods for lamb 
shashliks 

Five different models were developed using intelligent sensory 
technologies, sensory evaluation, and GC-based methods to identify 
lamb shashliks in various roasting methods. Five models were developed 
using the fusion data. The CNN-SVM provided the best results in pre-
dicting various types of roasting methods. It achieved recognition ac-
curacy higher than 0.95 for both the training and 0.92 for the test set, 
which was higher than the recognition accuracy for the other four 
models. In addition, the RMSEs for this model’s training and test sets are 
lower than 0.05, which is also significantly lower than the RMSEs for the 
other models. The results demonstrate that CNN-SVM can predict the 
five roasting methods for lamb shashliks well. 

4. Discussion 

4.1. Effect of roasting methods on the types and concentrations of VOCs 

VOCs have a significant impact on the aroma of meat products. Also, 
lamb shashliks treated by five roasting methods differed in the types and 
contents of VOCs. SPME-GC–MS detected 57, 57, 34, 52, and 36 VOCs in 
samples treated by T, K, D, L, and W, respectively. HS-GC-IMS detected 
43 VOCs at the same time. As part of the T method, coals were burned 
under the oven to generate heat, and the sample was heated on top of the 
oven to produce VOCs. Alternatively, the L method treats samples like 
the T method but uses electricity as the heat source. In addition, the K, 
W, and D methods generate significant amounts of heat in a confined 
space to produce VOCs from the sample. 

HS-SPME-GC–MS detected 21 aldehydes in lamb shashliks from the 
five roasting methods, while HS-GC-IMS detected 22 (containing 
monomers and dimers). Aldehydes are important intermediates in the 
oxidation of sweeteners and lipids and can interact with amino acids and 
carbonyl groups (Watanabe et al., 2015; Vidal et al., 2020). Because of 
their low threshold and high concentration in cooked meat, aldehydes 

containing six to ten carbons are the main compounds with odor prop-
erties (Mottram, 1998). Nonanal and octanal levels were highest in lamb 
shashliks prepared by the T-method, followed by K and L. By oxidizing 
oleic acid, octanal and nonanal are generated, which are responsible for 
imparting fruity, green, fatty, and grassy flavors to lamb shashliks 
(Huang et al., 2022) which are considered to be important flavor com-
ponents (Domínguez et al., 2014a; Xi et al., 2018). Using the new 
method, hexanal and heptanal were found in the highest amounts in K 
samples. In cooked lamb samples, hexanal is the predominant com-
pound (Meinert et al., 2007). As oxidation products of linoleic and 
arachidonic acids, hexanal and heptanal provide the fatty, fruity, her-
baceous, and pungent aroma of grilled lamb shashlik (Domínguez et al., 
2014b; Bassam et al., 2022). By Strecker degradation, phenyl-
acetaldehyde and benzaldehyde are generated from phenylalanine and 
contribute to the fatty aroma of cooked lamb (Xi et al., 2018). In both K 
and L samples, abundant unsaturated aldehydes were detected 
(Tables S3 and S4), including (E)-2-pentenal, (E)-2-hexenal, (E)-2- 
octanal, (E)-2-nonenal, and (E)-2-decanal, which have significant effects 
on the fatty aroma of roasted lamb (Liu et al., 2021). Additionally, 2- 
methylbutyraldehyde and 3-methylbutyraldehyde were detected by 
GC-IMS in L samples at higher levels than in T samples, and these 
compounds may contribute to the pleasant aroma (Bassam et al., 2022). 

In the muscle, linoleic acid is degraded by lipoxygenase and perox-
idase, which lead to the production of alcohols. In most cases, they are 
characterized by pleasant aromas such as sweetness, freshness, fruit and 
vegetable aromas, as well as floral aromas that enhance the volatile 
flavor of meat products. As a result of various roasting methods, the 
primary alcohols detected in lamb shashliks were propanol, pentanol, 
hexanol, 1-heptanol, and 1-octen-3-ol. Pentanol may be generated 
through the auto-oxidation of polyunsaturated fatty acids. In samples 
from the grilling and roasting treatments, 1-hexanol was predominant. 
In contrast, 2-ethyl-1-hexanol has an aroma described as resinous, floral, 
and green (Calkins & Hodgen, 2007). A high alcohol threshold ensures 
that alcohol has little effect on the volatile flavor of roasted lamb 
shashliks and plays a synergistic role in the overall volatile flavor. The 
aroma of roasted meat is characterized by 1-octen-3-ol, formed by the 
degradation of secondary hydroperoxides of fatty acids and has a 
pleasant mushroomy, grassy flavor with a low threshold and a signifi-
cant contribution to lamb flavor (Wang et al., 2021). The lamb shashliks 
treated by the W method contained more alcohols than those treated by 
other methods, including propanol, hexanol, 1-octen-3-ol, pentanol, 
heptanol, and 2-ethyl-1-hexanol. The presence of long-chain alcohols in 
cooked meat is rare and is considered a potential biomarker for meat 
from grazing animals (Gkarane et al., 2019). Various grilling methods 
have generated long-chain alcohols and aldehydes, including 1-pentade-
canol and pentadecanal. As a result of lipid oxidation, these aldehydes 
and alcohols may be generated (Kerth, 2016). 

As amino acids are degraded, unsaturated fatty acids are oxidized or 
degraded, and oxidation of β-keto acids generates ketones. In particular, 
2-ketones significantly affect the aroma of meat and meat products since 
they are present in large quantities and have a distinct aroma. In samples 
treated with the K method, 2-heptanone, 2,3-octanedione and 2-buta-
none were present in higher concentrations than in samples treated in 
other ways. In the case of lamb shashliks, 2-heptanone imparted a fruity 
aroma and a blue cheese aroma. As a result of the thermal oxidation of 
linoleic acid during meat cooking, 2,3-octanedione is formed, which is 
described as having a herbal aroma, whereas 2-butanone is formed as a 
result of the reaction between sulfur atoms and amino acids (Moran 
et al., 2022). Ketones have a higher threshold than other aldehydes and, 
therefore, positively affect the volatile flavor of lamb shashliks. In the 
overall volatile flavor of meat products, ketones usually play a coordi-
nating role. 

Hydrocarbons, both aliphatic and aromatic, are formed by the 
thermal homogenization of long-chain fatty acids or the thermal 
degradation of lipids. As a result of the incomplete combustion of meat 
and fat during grilling, alkanes are generated (Bassam et al., 2022). As a 

Table 1 
Quantitative prediction results of volatile compounds content of lamb shashlik 
based on different modeling methods.  

Class Model Training set Test set 

RMSE R2 RMSE R2 

Aldehydes SVM  0.07584  0.9361  0.06966  0.8936 
RF  0.11202  0.9181  0.09665  0.8905 
XGBoost  0.08315  0.9376  0.06915  0.9604 
DNN 5-Layer  0.08116  0.9337  0.10294  0.9356 
CNN-SVM  0.07049  0.9522  0.06857  0.984 

Alcohols SVM  0.0634  0.9762  0.07642  0.9022 
RF  0.08385  0.9384  0.08114  0.9103 
XGBoost  0.05456  0.9506  0.13059  0.9212 
DNN 5-Layer  0.11323  0.9019  0.08088  0.9554 
CNN-SVM  0.05458  0.9849  0.0918  0.9503 

Ketones SVM  0.09741  0.9628  0.09785  0.9382 
RF  0.05337  0.9721  0.07449  0.8943 
XGBoost  0.08979  0.9059  0.13755  0.9077 
DNN 5-Layer  0.11009  0.921  0.07414  0.9177 
CNN-SVM  0.04976  0.983  0.0537  0.9636  
SVM  0.12646  0.9055  0.08313  0.9113 
RF  0.10655  0.9595  0.12261  0.9182 
XGBoost  0.09614  0.9545  0.1448  0.9162 
DNN 5-Layer  0.11648  0.9692  0.11076  0.9655 
CNN-SVM  0.07263  0.9621  0.08066  0.9682 

Esters SVM  0.0918  0.9384  0.14169  0.9439 
RF  0.10604  0.9751  0.11424  0.9099 
XGBoost  0.12146  0.9455  0.12998  0.9213 
DNN 5-Layer  0.05193  0.9893  0.14528  0.9342 
CNN-SVM  0.04269  0.9921  0.09563  0.9556 

Furan SVM  0.09153  0.9272  0.08849  0.9002 
RF  0.06822  0.9926  0.0982  0.9427 
XGBoost  0.1265  0.9921  0.14535  0.8952 
DNN 5-Layer  0.11573  0.9141  0.14199  0.9013 
CNN-SVM  0.09321  0.9686  0.08796  0.9627  
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result, roasting over a fire generates more aromatic hydrocarbons. 
Because of this, the T method yielded a higher percentage of alkanes and 
a different type of alkane than the other roasting methods. Table S3 
shows that the T sample contained more toluene, ethylbenzene, o- 
xylene, naphthalene, 2-methylnaphthalene, and 1-methylnaphthalene 
than the other samples. Particularly, toluene, which can contribute to 
the aroma of lamb shashliks, was described as having a fruity and sweet 
aroma (Madruga et al., 2010). As an oxidation product of linoleic acid, 
furans, such as 2-pentylfuran, are found in various meat products and 
provide a sweet or caramel-like aroma in foods containing fats (Liu et al., 
2021; Yao et al., 2022). 

As a result of the degradation of alcohols, esters are usually syn-
thesized through esterification reactions between fats or proteins and 
acids or through ester exchange reactions between triglycerides and 
fatty acids in ethanol (alcoholysis). Esters are highly aromatic com-
pounds that have a low detection threshold for odors. K and L samples 
contained more esters of different types and concentrations than T 
samples. The T method samples were likely roasted on a charcoal fire, 
resulting in incomplete fat combustion to generate alkanes and aromatic 
hydrocarbons, leading to the degradation of esters. The K-treated sam-
ples had the highest concentration of esters, including butanoic acid 
methyl ester, heptanoic acid methyl ester, and decanoic acid methyl 
ester. The L-treated samples contained higher concentrations of methyl 
valerate, hexanoic acid methyl ester, octanoic acid methyl ester, non-
anoic acid methyl ester, and ethyl acetate. As a result of these methyl 
and ethyl esters, the lamb shashliks acquired creamy, fruity, floral, and 
sweet flavors (Li et al., 2021; Wang et al., 2021). 

Meat volatility is influenced by the cooking method (Lorenzo & 
Domínguez, 2014), and the abundance of most VOCs in lamb shashliks 
varied significantly between roasting methods (p < 0.05). Several VOCs 
may influence sensory evaluation, including aldehydes, alcohols, ke-
tones, furans, and esters. 

4.2. Influence of new roasting methods on sensory evaluation 

Despite similar sensory profiles between the lamb shashliks treated 
by the four new roasting methods and those treated by the traditional T 
roasting method (Fig. 1A), odor, flavor, appearance, and texture were 
the four sensory dimensions that differentiated the different roasting 
methods. There is a significant difference in the intensity of each sensory 
attribute between the various roasting methods of lamb shashliks 
(Table S2). For the odor dimension, the intensity of buttery odor, liver 
odor, and fatty odor sensory attributes was higher in lamb shashliks 
treated with the new roasting method than in lamb shashliks treated 
with the T-method. 

In a previous study, the buttery odor was identified as an important 
sensory attribute of lamb shashliks treated by the K method (Wang et al., 
2022). As a result of this attribute, consumers prefer lamb shashliks that 
have been treated with the K method. According to the results of HS- 
SPME-GC–MS and HS-GC-IMS, the attributed buttery odor may result 
from a combination of processing methods with multiple VOCs. Upon 
sensory evaluation, the buttery odor of K lamb shashliks is not quite the 
same as the sweet odor in the actual cream, but rather a slightly sweet 
and intermingled fat odor that can fill the nasal cavity briefly. In Fig. 3, 
unsaturated aldehydes in lamb shashliks prepared using the K-method, 
including (E)-2-pentenal, (E)-2-octenal, (E)-2-heptenal, and (E)-2- 
hexenal, were significantly higher than in lamb shashliks prepared using 
other methods. Unsaturated aldehydes were responsible for the fatty 
odor. Also, the K-method samples contained a higher concentration of 
methyl esters, which generated similar aromas, such as creamy and 
fruity. It was also possible to bring sweet aromas with 2-heptenal. The 
lamb shashliks prepared with the K method also contained higher short- 
chain aldehydes. As mentioned, the lamb shashliks had a mixture of 
sweet, fatty, and buttery odors. On the other hand, the air fryer activates 
a high-powered fan while processing the sample, causing the VOCs 
generated during the process to be released faster as well. As a result, the 

ability to perceive buttery odor is not simply determined by a con-
sumer’s ability to associate (Wang et al., 2022). Lamb shashliks pre-
pared by the K-method contain a variety of short-chain aldehydes with 
unsaturated aldehydes, esters, as well as a high concentration of 2-hep-
tanone. In addition to the intensely sweet aroma caused by a variety of 
VOCs generated during the air fryer processing, the buttery odor is also a 
result of the synergistic effect of these VOCs. Short-chain aldehydes with 
unsaturated aldehydes, methyl esters, and ketones may be the chemical 
basis of the buttery odor in lamb shashliks prepared using the K-method, 
which complemented the research on butter odor by Wang et al. (2022). 
Similar to the buttery odor of the L-method samples, the strength of the 
buttery odor was lower than that of the K-method samples due to the 
differences in processing methods. 

Furthermore, the L-method samples had a higher level of fatty odor 
than the T-method samples. In contrast to the T samples, the L-method 
samples exhibited a fatty odor. In T samples, aldehydes may contribute 
to the fatty odor. The synergistic effect of aldehydes and esters may 
explain the fatty odor of lamb shashliks prepared with the L method 
(Tables S3 and S4). 

Umami is the most important sensory attribute in the taste dimen-
sion. The taste characteristics of lamb are primarily influenced by free 
amino acids and 5′ -nucleotides, where a synergistic effect of mono-
sodium glutamate-like amino acids and 5′-nucleotides provides the taste 
profile. The direct heating of lamb by thermal radiation and thermal 
convection may significantly increase glutamate and 5′-inosine mono-
phosphate concentrations (Liu et al., 2021). Thus, the umami intensity 
of roasted lamb shashliks treated with the T, K, and L methods was 
greater. The texture in the samples treated by the K, D, and W methods 
changed significantly, making them drier and harder than those treated 
by the T method. Possibly, this is because the samples were processed in 
the three ways mentioned above, which resulted in more moisture loss 
in the samples as they were enclosed. In addition, the textures of the 
samples treated by the K and D methods were rubberier and chewier 
than those treated by the T method. Contrary to this, the texture of the 
samples treated with the W method was rougher, which may be due to 
the microwave heating process. The L method, however, generated more 
tender samples than the T method. A possible explanation is that the L 
method uses a milder electric heat and is not processed in a closed 
environment. Because of their outstanding sensory attributes, as well as 
their health benefits and quickness, K and L methods may replace 
traditional charcoal grilling as a new roasting method. 

4.3. Model for the prediction of lamb shashliks 

CNN-SVM combines the strengths of both SVM and CNN models by 
using CNN to extract the feature vector, which is not easy to fit and more 
scientific, and the power of SVM to perform classification and general-
ization. Tables 1 and 2 show that CNN-SVM performs more efficiently 
and is more stable than the other models. This is because deep learning 
models typically involve deep architectures, which can extract more 
abstract and invariant data features and perform better than shallow 
classifiers. In addition, CNN-SVM can establish a good correlation be-
tween appropriate chemometrics obtained from GC–MS, GC-IMS, E- 
nose, and E-tongues, as well as sensory evaluation results, which predict 
various types of VOCs in lamb shashliks and provide a new method for 
quantitatively predicting specific VOCs in other food matrixes. More-
over, the model performs well in identifying the flavor characteristics of 
lamb shashliks with different roasting methods and can distinguish the 
various roasting methods of lamb shashliks with greater clarity. 

5. Conclusion 

The results showed that HS-GC-IMS and HS-SPME-GC–MS tech-
niques, as well as sensory evaluation, E-nose, and E-tongue, were 
effective at identifying the characteristic flavors in lamb shashliks to 
differentiate between the five roasting methods. K and L treated samples 
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contained higher concentrations of unsaturated aldehydes, ketones and 
esters among the new roasting methods. These VOCs may greatly in-
fluence the sensory evaluation of buttery odor. Alcohol concentrations 
were higher in samples treated by the W method. Using a data fusion 
strategy, sensory evaluation, intelligent sensory technologies, and GC- 
based methods were combined. The CNN-SVM performed better than 
other models in quantifying the compounds of six types in lamb shash-
liks and in identifying the roasting method of lamb shashliks. The results 
of this study indicate that combining sensory evaluation, intelligent 
sensory technologies, and chemometric analysis can be a valuable tool 
for identifying and characterizing food products in the food industry. 
This study provide insight into the changes in lamb shashliks following 
different roasting methods, thus offering new ideas and theoretical 
guidance for developing traditional grilled lamb shashliks. 
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